Solid mechanics embedded fractures solver

Introduction

Discretization & soltuion strategy

The linear momentum balance equation is discretized using a low order finite element method. Moreover, to account for the influence of the fractures on the overall behavior, we utilize the enriched finite element method (EFEM) with a piece-wise constant enrichment. This method employs an element-local enrichment of the FE space using the concept of assumedenhanced strain [1-6].

Example

An example of a valid XML block is given here:

    <SolidMechanicsEmbeddedFractures
      name="mechSolve"
      targetRegions="{ Domain, Fracture }"
      initialDt="10"
      timeIntegrationOption="QuasiStatic"
      discretization="FE1"
      logLevel="1"
      contactPenaltyStiffness="0.0e8">
      <NonlinearSolverParameters
        newtonTol="1.0e-6"
        newtonMaxIter="2"
        maxTimeStepCuts="1"/>
      <LinearSolverParameters
        solverType="direct"
        directParallel="0"
        logLevel="0"/>
    </SolidMechanicsEmbeddedFractures>

    <EmbeddedSurfaceGenerator
      name="SurfaceGenerator"
      discretization="FE1"
      targetRegions="{ Domain, Fracture }"
      fractureRegion="Fracture"
      targetObjects="{ FracturePlane }"
      logLevel="1"
      mpiCommOrder="1"/>
  </Solvers>

Parameters

In the preceding XML block, The SolidMechanicsEmbeddedFractures is specified by the title of the subblock of the Solvers block. Note that the SolidMechanicsEmbeddedFractures always relies on the existance of a The following attributes are supported in the input block for SolidMechanicsEmbeddedFractures:

XML Element: SolidMechanicsEmbeddedFractures

Name

Type

Default

Description

cflFactor

real64

0.5

Factor to apply to the CFL condition when calculating the maximum allowable time step. Values should be in the interval (0,1]

contactPenaltyStiffness

real64

required

Value of the penetration penalty stiffness. Units of Pressure/length

discretization

groupNameRef

required

Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

initialDt

real64

1e+99

Initial time-step value required by the solver to the event manager.

logLevel

integer

0

Sets the level of information to write in the standard output (the console typically).
Level 0 outputs no specific information for this solver. Higher levels require more outputs.
1
- Line search information
- Solution information (scaling, maximum changes, quality check)
- Convergence information
- Time step information
- Linear solver information
- Nonlinear solver information
- Solver timers information
2
- The summary of declared fields and coupling

massDamping

real64

0

Value of mass based damping coefficient.

maxNumResolves

integer

10

Value to indicate how many resolves may be executed after some other event is executed. For example, if a SurfaceGenerator is specified, it will be executed after the mechanics solve. However if a new surface is generated, then the mechanics solve must be executed again due to the change in topology.

name

groupName

required

A name is required for any non-unique nodes

newmarkBeta

real64

0.25

Value of \beta in the Newmark Method for Implicit Dynamic time integration option. This should be pow(newmarkGamma+0.5,2.0)/4.0 unless you know what you are doing.

newmarkGamma

real64

0.5

Value of \gamma in the Newmark Method for Implicit Dynamic time integration option

stiffnessDamping

real64

0

Value of stiffness based damping coefficient.

strainTheory

integer

0

Indicates whether or not to use Infinitesimal Strain Theory, or Finite Strain Theory. Valid Inputs are:
0 - Infinitesimal Strain
1 - Finite Strain

targetRegions

groupNameRef_array

required

Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

timeIntegrationOption

geos_SolidMechanicsLagrangianFEM_TimeIntegrationOption

ExplicitDynamic

Time integration method. Options are:
* QuasiStatic
* ImplicitDynamic
* ExplicitDynamic

useStaticCondensation

integer

0

Defines whether to use static condensation or not.

writeLinearSystem

integer

0

Write matrix, rhs, solution to screen ( = 1) or file ( = 2).

LinearSolverParameters

node

unique

XML Element: LinearSolverParameters

NonlinearSolverParameters

node

unique

XML Element: NonlinearSolverParameters

The following data are allocated and used by the solver:

Datastructure: SolidMechanicsEmbeddedFractures

Name

Type

Description

contactRelationName

groupNameRef

Name of contact relation to enforce constraints on fracture boundary.

maxForce

real64

The maximum force contribution in the problem domain.

maxStableDt

real64

Value of the Maximum Stable Timestep for this solver.

meshTargets

geos_mapBase<std___1_pair<std___1_basic_string<char, std___1_char_traits<char>, std___1_allocator<char>>, std___1_basic_string<char, std___1_char_traits<char>, std___1_allocator<char>>>, LvArray_Array<std___1_basic_string<char, std___1_char_traits<char>, std___1_allocator<char>>, 1, camp_int_seq<long, 0l>, int, LvArray_ChaiBuffer>, std___1_integral_constant<bool, true>>

MeshBody/Region combinations that the solver will be applied to.

surfaceGeneratorName

string

Name of the surface generator to use

LinearSolverParameters

node

Datastructure: LinearSolverParameters

NonlinearSolverParameters

node

Datastructure: NonlinearSolverParameters

SolverStatistics

node

Datastructure: SolverStatistics

References

  1. Simo JC, Rifai MS. A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng. 1990;29(8):1595-1638. Available at: http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620290802.

  2. Foster CD, Borja RI, Regueiro RA. Embedded strong discontinuity finite elements for fractured geomaterials with variable friction. Int J Numer Methods Eng. 2007;72(5):549-581. Available at: http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2020.

  3. Wells G, Sluys L. Three-dimensional embedded discontinuity model for brittle fracture. Int J Solids Struct. 2001;38(5):897-913. Available at: https://doi.org/10.1016/S0020-7683(00)00029-9.

  4. Oliver J, Huespe AE, Sánchez PJ. A comparative study on finite elements for capturing strong discontinuities: E-fem vs x-fem. Comput Methods Appl Mech Eng. 2006;195(37-40):4732-4752. Available at: https://doi.org/10.1002/nme.4814.

  5. Borja RI. Assumed enhanced strain and the extended finite element methods: a unification of concepts. Comput Methods Appl Mech Eng. 2008;197(33):2789-2803. Available at: https://doi.org/10.1016/j.cma.2008.01.019.

  6. Wu J-Y. Unified analysis of enriched finite elements for modeling cohesive cracks. Comput Methods Appl Mech Eng. 2011;200(45-46):3031-3050. Available at: https://doi.org/10.1016/j.cma.2011.05.008.