GEOS
PhysicsSolverBase.hpp
Go to the documentation of this file.
1 /*
2  * ------------------------------------------------------------------------------------------------------------
3  * SPDX-License-Identifier: LGPL-2.1-only
4  *
5  * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC
6  * Copyright (c) 2018-2024 TotalEnergies
7  * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University
8  * Copyright (c) 2023-2024 Chevron
9  * Copyright (c) 2019- GEOS/GEOSX Contributors
10  * All rights reserved
11  *
12  * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details.
13  * ------------------------------------------------------------------------------------------------------------
14  */
15 
20 #ifndef GEOS_PHYSICSSOLVERS_PHYSICSSOLVERBASE_HPP_
21 #define GEOS_PHYSICSSOLVERS_PHYSICSSOLVERBASE_HPP_
22 
23 #include "codingUtilities/traits.hpp"
24 #include "common/DataTypes.hpp"
31 #include "mesh/MeshBody.hpp"
32 #include "physicsSolvers/NonlinearSolverParameters.hpp"
34 #include "physicsSolvers/SolverStatistics.hpp"
35 
36 #include <limits>
37 
38 namespace geos
39 {
40 
41 class DomainPartition;
42 
52 {
53 public:
54 
60  explicit PhysicsSolverBase( string const & name,
61  Group * const parent );
62 
67 
71  virtual ~PhysicsSolverBase() override;
72 
76  PhysicsSolverBase() = delete;
77 
81  PhysicsSolverBase( PhysicsSolverBase const & ) = delete;
82 
87 
92 
96  virtual string getCatalogName() const = 0;
97 
98 
103  virtual void registerDataOnMesh( Group & MeshBodies ) override;
104 
108  virtual void initialize_postMeshGeneration() override;
109 
114  void generateMeshTargetsFromTargetRegions( Group const & meshBodies );
115 
119  virtual void cleanup( real64 const time_n,
120  integer const cycleNumber,
121  integer const eventCounter,
122  real64 const eventProgress,
123  DomainPartition & domain ) override;
124 
128  virtual bool execute( real64 const time_n,
129  real64 const dt,
130  integer const cycleNumber,
131  integer const eventCounter,
132  real64 const eventProgress,
133  DomainPartition & domain ) override;
134 
140 
145  ParallelMatrix const & getSystemMatrix() const { return m_matrix; }
146 
152 
157  ParallelVector const & getSystemRhs() const { return m_rhs; }
158 
164 
169  ParallelVector const & getSystemSolution() const { return m_solution; }
170 
176 
181  DofManager const & getDofManager() const { return m_dofManager; }
182 
188 
194 
213  virtual real64 solverStep( real64 const & time_n,
214  real64 const & dt,
215  integer const cycleNumber,
216  DomainPartition & domain );
217 
225  virtual real64 setNextDt( real64 const & currentTime,
226  real64 const & currentDt,
227  DomainPartition & domain );
228 
234  virtual real64 setNextDtBasedOnIterNumber( real64 const & currentDt );
235 
242  virtual real64 setNextDtBasedOnStateChange( real64 const & currentDt,
243  DomainPartition & domain );
244 
253  virtual real64 explicitStep( real64 const & time_n,
254  real64 const & dt,
255  integer const cycleNumber,
256  DomainPartition & domain );
257 
271  virtual real64 nonlinearImplicitStep( real64 const & time_n,
272  real64 const & dt,
273  integer const cycleNumber,
274  DomainPartition & domain );
275 
296  virtual bool
297  lineSearch( real64 const & time_n,
298  real64 const & dt,
299  integer const cycleNumber,
300  integer const newtonIter,
301  DomainPartition & domain,
302  DofManager const & dofManager,
303  CRSMatrixView< real64, globalIndex const > const & localMatrix,
304  ParallelVector & rhs,
305  ParallelVector & solution,
306  real64 const scaleFactor,
307  real64 & lastResidual );
308 
326  virtual bool
328  real64 const & dt,
329  integer const cycleNumber,
330  integer const newtonIter,
331  DomainPartition & domain,
332  DofManager const & dofManager,
333  CRSMatrixView< real64, globalIndex const > const & localMatrix,
334  ParallelVector & rhs,
335  ParallelVector & solution,
336  real64 const scaleFactor,
337  real64 & lastResidual,
338  real64 & residualNormT );
339 
354  virtual real64 linearImplicitStep( real64 const & time_n,
355  real64 const & dt,
356  integer const cycleNumber,
357  DomainPartition & domain );
358 
371  virtual void
372  implicitStepSetup( real64 const & time_n,
373  real64 const & dt,
374  DomainPartition & domain );
375 
381  virtual void
382  setupDofs( DomainPartition const & domain,
383  DofManager & dofManager ) const;
384 
397  virtual void
399  DofManager & dofManager,
400  CRSMatrix< real64, globalIndex > & localMatrix,
401  ParallelVector & rhs,
402  ParallelVector & solution,
403  bool const setSparsity = true );
404 
410  virtual std::unique_ptr< PreconditionerBase< LAInterface > >
412 
431  virtual void
432  assembleSystem( real64 const time,
433  real64 const dt,
434  DomainPartition & domain,
435  DofManager const & dofManager,
436  CRSMatrixView< real64, globalIndex const > const & localMatrix,
437  arrayView1d< real64 > const & localRhs );
438 
451  virtual void
453  real64 const dt,
454  DomainPartition & domain,
455  DofManager const & dofManager,
456  CRSMatrixView< real64, globalIndex const > const & localMatrix,
457  arrayView1d< real64 > const & localRhs );
458 
467  void
468  debugOutputSystem( real64 const & time,
469  integer const cycleNumber,
470  integer const nonlinearIteration,
471  ParallelMatrix const & matrix,
472  ParallelVector const & rhs ) const;
473 
481  void
483  integer const cycleNumber,
484  integer const nonlinearIteration,
485  ParallelVector const & solution ) const;
486 
494  virtual void
496  real64 const & dt,
497  integer const cycleNumber,
498  integer const iteration );
499 
512  virtual real64
514  real64 const & dt,
515  DomainPartition const & domain,
516  DofManager const & dofManager,
517  arrayView1d< real64 const > const & localRhs );
518 
532  virtual void
533  solveLinearSystem( DofManager const & dofManager,
534  ParallelMatrix & matrix,
535  ParallelVector & rhs,
536  ParallelVector & solution );
537 
550  virtual bool
552  DofManager const & dofManager,
553  arrayView1d< real64 const > const & localSolution,
554  real64 const scalingFactor );
555 
563  virtual real64
565  DofManager const & dofManager,
566  arrayView1d< real64 const > const & localSolution );
567 
589  virtual void
590  applySystemSolution( DofManager const & dofManager,
591  arrayView1d< real64 const > const & localSolution,
592  real64 const scalingFactor,
593  real64 const dt,
594  DomainPartition & domain );
595 
601  virtual bool updateConfiguration( DomainPartition & domain );
602 
607  virtual void outputConfigurationStatistics( DomainPartition const & domain ) const;
608 
614 
620  virtual bool resetConfigurationToDefault( DomainPartition & domain ) const;
621 
622 
627  virtual void updateState( DomainPartition & domain );
628 
640  virtual void
642 
656  virtual void
658  real64 const & dt,
659  DomainPartition & domain );
660 
661 
666  virtual real64 getTimestepRequest( real64 const ) override
667  {return m_nextDt;};
675  {return m_nextDt;};
676 
683  virtual Group * createChild( string const & childKey, string const & childName ) override;
684 
689 
695 
700  {
702  static constexpr char const * cflFactorString() { return "cflFactor"; }
703 
705  static constexpr char const * initialDtString() { return "initialDt"; }
706 
708  static constexpr char const * minDtIncreaseIntervalString() { return "minDtIncreaseInterval"; }
709 
711  static constexpr char const * discretizationString() { return "discretization"; }
712 
714  static constexpr char const * targetRegionsString() { return "targetRegions"; }
715 
717  static constexpr char const * writeLinearSystemString() { return "writeLinearSystem"; }
718 
720  static constexpr char const * usePhysicsScalingString() { return "usePhysicsScaling"; }
721 
723  static constexpr char const * allowNonConvergedLinearSolverSolutionString() { return "allowNonConvergedLinearSolverSolution"; }
724 
726  static constexpr char const * writeStatisticsCSVString() { return "writeStatistics"; }
727 
729  static constexpr char const * numTimestepsSinceLastDtCutString() { return "numTimestepsSinceLastDtCut"; }
730  };
731 
736  {
738  static constexpr char const * linearSolverParametersString() { return "LinearSolverParameters"; }
739 
741  static constexpr char const * nonlinearSolverParametersString() { return "NonlinearSolverParameters"; }
742 
744  static constexpr char const * solverStatisticsString() { return "SolverStatistics"; }
745  };
746 
752 
759 
764  void setSystemSetupTimestamp( Timestamp timestamp ) { m_systemSetupTimestamp = timestamp; }
765 
774  R1Tensor const gravityVector() const;
775 
781  virtual bool checkSequentialSolutionIncrements( DomainPartition & domain ) const;
782 
788 
794  {
795  return m_linearSolverParameters.get();
796  }
797 
803  {
804  return m_linearSolverParameters.get();
805  }
806 
812  {
814  }
815 
821  {
823  }
824 
828  virtual void
830  { /* empty here, overriden in CoupledSolver */ }
831 
837  localIndex targetRegionIndex( string const & regionName ) const;
838 
839 
840 
848  template< typename LAMBDA >
849  void forDiscretizationOnMeshTargets( Group const & meshBodies, LAMBDA && lambda ) const
850  {
851  for( auto const & target: m_meshTargets )
852  {
853  string const meshBodyName = target.first.first;
854  string const meshLevelName = target.first.second;
855  string_array const & regionNames = target.second;
856  MeshBody const & meshBody = meshBodies.getGroup< MeshBody >( meshBodyName );
857 
858  MeshLevel const * meshLevelPtr = meshBody.getMeshLevels().getGroupPointer< MeshLevel >( meshLevelName );
859  if( meshLevelPtr==nullptr )
860  {
862  }
863  lambda( meshBodyName, *meshLevelPtr, regionNames );
864  }
865  }
866 
874  template< typename LAMBDA >
875  void forDiscretizationOnMeshTargets( Group & meshBodies, LAMBDA && lambda ) const
876  {
877  for( auto const & target: m_meshTargets )
878  {
879  string const meshBodyName = target.first.first;
880  string const meshLevelName = target.first.second;
881  string_array const & regionNames = target.second;
882  MeshBody & meshBody = meshBodies.getGroup< MeshBody >( meshBodyName );
883 
884  MeshLevel * meshLevelPtr = meshBody.getMeshLevels().getGroupPointer< MeshLevel >( meshLevelName );
885  if( meshLevelPtr==nullptr )
886  {
888  }
889  lambda( meshBodyName, *meshLevelPtr, regionNames );
890  }
891  }
892 
898 
907  virtual bool registerCallback( void * func, const std::type_info & funcType ) final override;
908 
914  {
916  }
921  {
923  }
924 
930 
936 
937 #if defined(GEOS_USE_PYGEOSX)
942  virtual PyTypeObject * getPythonType() const override;
943 #endif
944 
950  {
951  return m_meshTargets;
952  }
953 protected:
954 
955  virtual void postInputInitialization() override;
956 
982  real64 eisenstatWalker( real64 const newNewtonNorm,
983  real64 const oldNewtonNorm,
984  LinearSolverParameters::Krylov const & krylovParams );
985 
993  template< typename CONSTITUTIVE_BASE_TYPE >
994  static string getConstitutiveName( ElementSubRegionBase const & subRegion );
995 
1003  template< typename CONSTITUTIVE_BASE_TYPE >
1004  static string getConstitutiveName( ParticleSubRegionBase const & subRegion ); // particle overload
1005 
1014  template< typename CONSTITUTIVE >
1015  void setConstitutiveName( ElementSubRegionBase & subRegion, string const & wrapperName, string const & constitutiveType ) const;
1016 
1023  virtual void setConstitutiveNamesCallSuper( ElementSubRegionBase & subRegion ) const { GEOS_UNUSED_VAR( subRegion ); }
1024 
1025 
1034  template< typename BASETYPE = constitutive::ConstitutiveBase, typename LOOKUP_TYPE >
1035  static BASETYPE const & getConstitutiveModel( dataRepository::Group const & dataGroup, LOOKUP_TYPE const & key )
1036  {
1038  return constitutiveModels.getGroup< BASETYPE >( key );
1039  }
1040 
1049  template< typename BASETYPE = constitutive::ConstitutiveBase, typename LOOKUP_TYPE >
1050  static BASETYPE & getConstitutiveModel( dataRepository::Group & dataGroup, LOOKUP_TYPE const & key )
1051  {
1053  return constitutiveModels.getGroup< BASETYPE >( key );
1054  }
1055 
1062  template< typename CONSTITUTIVE_TYPE >
1063  static CONSTITUTIVE_TYPE & getConstitutiveModel( ElementSubRegionBase & subRegion )
1064  {
1065  return getConstitutiveModel< CONSTITUTIVE_TYPE >( subRegion, getConstitutiveName< CONSTITUTIVE_TYPE >( subRegion ) );
1066  }
1067 
1070 
1073 
1076 
1079 
1082 
1085 
1088 
1091 
1094 
1097 
1100 
1103 
1105  std::unique_ptr< LinearSolverBase< LAInterface > > m_linearSolver;
1106 
1108  std::unique_ptr< PreconditionerBase< LAInterface > > m_precond;
1109 
1112 
1116 
1119 
1122 
1125 
1128 
1131 
1134 
1136  std::map< std::string, std::chrono::system_clock::duration > m_timers;
1137 
1138 private:
1140  string_array m_targetRegionNames;
1141 
1144 
1151  virtual void setConstitutiveNames( ElementSubRegionBase & subRegion ) const { GEOS_UNUSED_VAR( subRegion ); }
1152 
1161  bool solveNonlinearSystem( real64 const & time_n,
1162  real64 const & dt,
1163  integer const cycleNumber,
1164  DomainPartition & domain );
1165 
1172  void logEndOfCycleInformation( integer const cycleNumber,
1173  integer const numOfSubSteps,
1174  stdVector< real64 > const & subStepDts ) const;
1175 };
1176 
1177 
1178 template< typename CONSTITUTIVE_BASE_TYPE >
1180 {
1181  string validName;
1182  dataRepository::Group const & constitutiveModels = subRegion.getConstitutiveModels();
1183 
1184  constitutiveModels.forSubGroups< CONSTITUTIVE_BASE_TYPE >( [&]( dataRepository::Group const & model )
1185  {
1186  GEOS_ERROR_IF( !validName.empty(), "A valid constitutive model was already found." );
1187  validName = model.getName();
1188  } );
1189 
1190  return validName;
1191 }
1192 
1193 template< typename CONSTITUTIVE_BASE_TYPE >
1194 string PhysicsSolverBase::getConstitutiveName( ParticleSubRegionBase const & subRegion ) // particle overload
1195 {
1196  string validName;
1197  dataRepository::Group const & constitutiveModels = subRegion.getConstitutiveModels();
1198 
1199  constitutiveModels.forSubGroups< CONSTITUTIVE_BASE_TYPE >( [&]( dataRepository::Group const & model )
1200  {
1201  GEOS_ERROR_IF( !validName.empty(), "A valid constitutive model was already found." );
1202  validName = model.getName();
1203  } );
1204  return validName;
1205 }
1206 
1207 template< typename CONSTITUTIVE >
1208 void PhysicsSolverBase::setConstitutiveName( ElementSubRegionBase & subRegion, string const & wrapperName, string const & constitutiveType ) const
1209 {
1210  subRegion.registerWrapper< string >( wrapperName ).
1211  setPlotLevel( dataRepository::PlotLevel::NOPLOT ).
1213  setSizedFromParent( 0 );
1214 
1215  string & constitutiveName = subRegion.getReference< string >( wrapperName );
1216  constitutiveName = getConstitutiveName< CONSTITUTIVE >( subRegion );
1217  GEOS_ERROR_IF( constitutiveName.empty(), GEOS_FMT( "{}: {} constitutive model not found on subregion {}",
1218  getDataContext(), constitutiveType, subRegion.getName() ) );
1219 }
1220 
1221 } // namespace geos
1222 
1223 
1224 #endif /* GEOS_PHYSICSSOLVERS_PHYSICSSOLVERBASE_HPP_ */
#define GEOS_UNUSED_VAR(...)
Mark an unused variable and silence compiler warnings.
Definition: GeosxMacros.hpp:84
#define GEOS_ERROR_IF(EXP, msg)
Conditionally raise a hard error and terminate the program.
Definition: Logger.hpp:142
Class containing convergence information given a time-step.
The DoFManager is responsible for allocating global dofs, constructing sparsity patterns,...
Definition: DofManager.hpp:45
Partition of the decomposed physical domain. It also manages the connexion information to its neighbo...
dataRepository::Group const & getConstitutiveModels() const
Get the group in which the constitutive models of this subregion are registered.
Class containing solver iterations data for a time-step.
Linear solver parameters with Group capabilities.
The class is used to manage mesh body.
Definition: MeshBody.hpp:36
Group & getMeshLevels()
Get the meshLevels group.
Definition: MeshBody.hpp:86
Class facilitating the representation of a multi-level discretization of a MeshBody.
Definition: MeshLevel.hpp:42
dataRepository::Group const & getConstitutiveModels() const
Get the group in which the constitutive models of this subregion are registered.
Base class for all physics solvers.
SolverStatistics const & getSolverStatistics() const
const accessor for the solver statistics.
void setSystemSetupTimestamp(Timestamp timestamp)
set the timestamp of the system setup
map< std::pair< string, string >, string_array > const & getMeshTargets() const
accessor for m_meshTargets
integer m_allowNonConvergedLinearSolverSolution
behavior in case of linear solver failure
virtual void registerDataOnMesh(Group &MeshBodies) override
Register wrappers that contain data on the mesh objects.
PhysicsSolverBase(PhysicsSolverBase const &)=delete
Deleted copy constructor.
static BASETYPE const & getConstitutiveModel(dataRepository::Group const &dataGroup, LOOKUP_TYPE const &key)
Get the Constitutive Model object.
virtual string getCatalogName() const =0
DofManager & getDofManager()
Getter for degree-of-freedom manager.
SolverStatistics m_solverStatistics
Solver statistics.
real64 m_cflFactor
Courant–Friedrichs–Lewy factor for the timestep.
string m_discretizationName
name of the FV discretization object in the data repository
IterationsStatistics & getIterationStats()
string getDiscretizationName() const
return the name of the discretization object
ParallelVector const & getSystemRhs() const
Getter for system rhs vector.
ParallelMatrix m_matrix
System matrix.
std::map< std::string, std::chrono::system_clock::duration > m_timers
Timers for the aggregate profiling of the solver.
LinearSolverParameters & getLinearSolverParameters()
accessor for the linear solver parameters.
static BASETYPE & getConstitutiveModel(dataRepository::Group &dataGroup, LOOKUP_TYPE const &key)
Get the Constitutive Model object.
void forDiscretizationOnMeshTargets(Group const &meshBodies, LAMBDA &&lambda) const
Loop over the target discretization on all mesh targets and apply callback.
virtual bool checkSequentialSolutionIncrements(DomainPartition &domain) const
Check if the solution increments are ok to use.
PhysicsSolverBase(string const &name, Group *const parent)
Constructor for PhysicsSolverBase.
ParallelMatrix & getSystemMatrix()
Getter for system matrix.
static string getConstitutiveName(ElementSubRegionBase const &subRegion)
Get the Constitutive Name object.
integer m_numTimestepsSinceLastDtCut
Number of cycles since last timestep cut.
virtual void setConstitutiveNamesCallSuper(ElementSubRegionBase &subRegion) const
This function sets constitutive name fields on an ElementSubRegionBase, and calls the base function i...
ParallelVector & getSystemRhs()
Getter for system rhs vector.
virtual void cleanup(real64 const time_n, integer const cycleNumber, integer const eventCounter, real64 const eventProgress, DomainPartition &domain) override
Called as the code exits the main run loop.
std::unique_ptr< PreconditionerBase< LAInterface > > m_precond
Custom preconditioner for the "native" iterative solver.
Timestamp getMeshModificationTimestamp(DomainPartition &domain) const
getter for the timestamp of the mesh modification on the mesh levels
ParallelVector m_scaling
Diagonal scaling vector D (Ahat = D * A * D, bhat = D * b, x = D * xhat)
virtual void postInputInitialization() override
void forDiscretizationOnMeshTargets(Group &meshBodies, LAMBDA &&lambda) const
Loop over the target discretization on all mesh targets and apply callback.
localIndex targetRegionIndex(string const &regionName) const
Get position of a given region within solver's target region list.
ParallelMatrix const & getSystemMatrix() const
Getter for system rhs vector.
integer m_writeLinearSystem
flag for debug output of matrix, rhs, and solution
PhysicsSolverBase()=delete
Deleted constructor.
LinearSolverParameters const & getLinearSolverParameters() const
const accessor for the linear solver parameters.
LinearSolverResult m_linearSolverResult
Result of the last linear solver.
virtual ~PhysicsSolverBase() override
Destructor for PhysicsSolverBase.
CRSMatrix< real64, globalIndex > m_localMatrix
Local system matrix and rhs.
ParallelVector const & getSystemSolution() const
Getter for system solution vector.
virtual void synchronizeNonlinearSolverParameters()
synchronize the nonlinear solver parameters.
virtual bool registerCallback(void *func, const std::type_info &funcType) final override
function to set the value of m_assemblyCallback
SolverStatistics & getSolverStatistics()
accessor for the solver statistics.
static CONSTITUTIVE_TYPE & getConstitutiveModel(ElementSubRegionBase &subRegion)
Get the Constitutive Model object.
virtual bool execute(real64 const time_n, real64 const dt, integer const cycleNumber, integer const eventCounter, real64 const eventProgress, DomainPartition &domain) override
Main extension point of executable targets.
virtual Group * createChild(string const &childKey, string const &childName) override
creates a child group of of this PhysicsSolverBase instantiation
virtual void saveSequentialIterationState(DomainPartition &domain)
Save the state of the solver for sequential iteration.
PhysicsSolverBase(PhysicsSolverBase &&)=default
Move constructor for PhysicsSolverBase.
real64 getTimestepRequest()
getter for the next timestep size
void setConstitutiveName(ElementSubRegionBase &subRegion, string const &wrapperName, string const &constitutiveType) const
Register wrapper with given name and store constitutive model name on the subregion.
ConvergenceStatistics & getConvergenceStats()
PhysicsSolverBase & operator=(PhysicsSolverBase const &)=delete
Deleted copy assignment operator.
integer m_usePhysicsScaling
Flag to decide whether to apply physics-based scaling to the linear system.
static CatalogInterface::CatalogType & getCatalog()
Get the singleton catalog for PhysicsSolverBase.
PhysicsSolverBase & operator=(PhysicsSolverBase &&)=delete
Deleted move assignment operator.
NonlinearSolverParameters const & getNonlinearSolverParameters() const
const accessor for the nonlinear solver parameters.
DofManager m_dofManager
Data structure to handle degrees of freedom.
R1Tensor const gravityVector() const
return the value of the gravity vector specified in PhysicsSolverManager
virtual void initialize_postMeshGeneration() override
Initialization tasks after mesh generation is completed.
real64 eisenstatWalker(real64 const newNewtonNorm, real64 const oldNewtonNorm, LinearSolverParameters::Krylov const &krylovParams)
Eisenstat-Walker adaptive tolerance.
ParallelVector m_solution
System solution vector.
ParallelVector m_rhs
System right-hand side vector.
std::function< void(CRSMatrix< real64, globalIndex >, array1d< real64 >) > m_assemblyCallback
Callback function for assembly step.
CRSMatrixView< real64 const, globalIndex const > getLocalMatrix() const
Getter for local matrix.
Timestamp getSystemSetupTimestamp() const
getter for the timestamp of the system setup
ParallelVector & getSystemSolution()
Getter for system solution vector.
NonlinearSolverParameters & getNonlinearSolverParameters()
accessor for the nonlinear solver parameters.
Timestamp m_systemSetupTimestamp
Timestamp of the last call to setup system.
LinearSolverParametersInput m_linearSolverParameters
Linear solver parameters.
CRSMatrix< real64, globalIndex > & getLocalMatrix()
Getter for local matrix.
std::unique_ptr< LinearSolverBase< LAInterface > > m_linearSolver
Custom linear solver for the "native" solver type.
NonlinearSolverParameters m_nonlinearSolverParameters
Nonlinear solver parameters.
real64 m_nextDt
timestep of the next cycle
void generateMeshTargetsFromTargetRegions(Group const &meshBodies)
Generate mesh targets from target regions.
DofManager const & getDofManager() const
Getter for degree-of-freedom manager.
This class records solver statistics for each time step.
IterationsStatistics m_iterationsStats
Contain iteration data given a time step.
ConvergenceStatistics m_convergenceStats
Contain convergence data given a time step.
This class provides the base class/interface for the catalog value objects.
std::unordered_map< std::string, std::unique_ptr< CatalogInterface< BASETYPE, ARGS... > > > CatalogType
This is the type that will be used for the catalog. The catalog is actually instantiated in the BASET...
Wrapper< TBASE > & registerWrapper(string const &name, wrapperMap::KeyIndex::index_type *const rkey=nullptr)
Create and register a Wrapper around a new object.
T * getGroupPointer(KEY const &key)
Return a pointer to a sub-group of the current Group.
Definition: Group.hpp:299
DataContext const & getDataContext() const
Definition: Group.hpp:1345
void setRestartFlags(RestartFlags flags)
Set flags that control restart output of this group.
Definition: Group.hpp:1426
string const & getName() const
Get group name.
Definition: Group.hpp:1331
GEOS_DECLTYPE_AUTO_RETURN getReference(LOOKUP_TYPE const &lookup) const
Look up a wrapper and get reference to wrapped object.
Definition: Group.hpp:1275
T & getGroup(KEY const &key)
Return a reference to a sub-group of the current Group.
Definition: Group.hpp:318
void forSubGroups(LAMBDA &&lambda)
Apply the given functor to subgroups that can be casted to one of specified types.
Definition: Group.hpp:500
Group & setSizedFromParent(int val)
Set whether this wrapper is resized when its parent is resized.
Definition: Group.hpp:1411
Base template for ordered and unordered maps.
virtual void updateState(DomainPartition &domain)
Recompute all dependent quantities from primary variables (including constitutive models)
virtual void applySystemSolution(DofManager const &dofManager, arrayView1d< real64 const > const &localSolution, real64 const scalingFactor, real64 const dt, DomainPartition &domain)
Function to apply the solution vector to the state.
virtual real64 setNextDtBasedOnStateChange(real64 const &currentDt, DomainPartition &domain)
function to set the next dt based on state change
virtual void resetStateToBeginningOfStep(DomainPartition &domain)
reset state of physics back to the beginning of the step.
virtual bool lineSearchWithParabolicInterpolation(real64 const &time_n, real64 const &dt, integer const cycleNumber, integer const newtonIter, DomainPartition &domain, DofManager const &dofManager, CRSMatrixView< real64, globalIndex const > const &localMatrix, ParallelVector &rhs, ParallelVector &solution, real64 const scaleFactor, real64 &lastResidual, real64 &residualNormT)
Function to perform line search using a parabolic interpolation to find the scaling factor.
virtual void assembleSystem(real64 const time, real64 const dt, DomainPartition &domain, DofManager const &dofManager, CRSMatrixView< real64, globalIndex const > const &localMatrix, arrayView1d< real64 > const &localRhs)
function to assemble the linear system matrix and rhs
virtual bool resetConfigurationToDefault(DomainPartition &domain) const
resets the configuration to the default value.
virtual real64 linearImplicitStep(real64 const &time_n, real64 const &dt, integer const cycleNumber, DomainPartition &domain)
Function for a linear implicit integration step.
virtual bool updateConfiguration(DomainPartition &domain)
updates the configuration (if needed) based on the state after a converged Newton loop.
virtual void applyBoundaryConditions(real64 const time, real64 const dt, DomainPartition &domain, DofManager const &dofManager, CRSMatrixView< real64, globalIndex const > const &localMatrix, arrayView1d< real64 > const &localRhs)
apply boundary condition to system
virtual real64 nonlinearImplicitStep(real64 const &time_n, real64 const &dt, integer const cycleNumber, DomainPartition &domain)
Function for a nonlinear implicit integration step.
virtual real64 scalingForSystemSolution(DomainPartition &domain, DofManager const &dofManager, arrayView1d< real64 const > const &localSolution)
Function to determine if the solution vector should be scaled back in order to maintain a known const...
virtual void implicitStepSetup(real64 const &time_n, real64 const &dt, DomainPartition &domain)
function to perform setup for implicit timestep
virtual std::unique_ptr< PreconditionerBase< LAInterface > > createPreconditioner(DomainPartition &domain) const
Create a preconditioner for this solver's linear system.
void debugOutputSolution(real64 const &time, integer const cycleNumber, integer const nonlinearIteration, ParallelVector const &solution) const
Output the linear system solution for debug purposes.
virtual bool lineSearch(real64 const &time_n, real64 const &dt, integer const cycleNumber, integer const newtonIter, DomainPartition &domain, DofManager const &dofManager, CRSMatrixView< real64, globalIndex const > const &localMatrix, ParallelVector &rhs, ParallelVector &solution, real64 const scaleFactor, real64 &lastResidual)
Function to perform line search.
virtual void setupSystem(DomainPartition &domain, DofManager &dofManager, CRSMatrix< real64, globalIndex > &localMatrix, ParallelVector &rhs, ParallelVector &solution, bool const setSparsity=true)
Set up the linear system (DOF indices and sparsity patterns)
virtual real64 setNextDtBasedOnIterNumber(real64 const &currentDt)
function to set the next time step size based on convergence
virtual bool checkSystemSolution(DomainPartition &domain, DofManager const &dofManager, arrayView1d< real64 const > const &localSolution, real64 const scalingFactor)
Function to check system solution for physical consistency and constraint violation.
virtual real64 calculateResidualNorm(real64 const &time, real64 const &dt, DomainPartition const &domain, DofManager const &dofManager, arrayView1d< real64 const > const &localRhs)
calculate the norm of the global system residual
virtual real64 solverStep(real64 const &time_n, real64 const &dt, integer const cycleNumber, DomainPartition &domain)
entry function to perform a solver step
virtual void setupDofs(DomainPartition const &domain, DofManager &dofManager) const
Populate degree-of-freedom manager with fields relevant to this solver.
virtual void implicitStepComplete(real64 const &time, real64 const &dt, DomainPartition &domain)
perform cleanup for implicit timestep
virtual real64 setNextDt(real64 const &currentTime, real64 const &currentDt, DomainPartition &domain)
function to set the next time step size
virtual void updateAndWriteConvergenceStep(real64 const &time_n, real64 const &dt, integer const cycleNumber, integer const iteration)
Update the convergence information and write then into a CSV file.
virtual void outputConfigurationStatistics(DomainPartition const &domain) const
void debugOutputSystem(real64 const &time, integer const cycleNumber, integer const nonlinearIteration, ParallelMatrix const &matrix, ParallelVector const &rhs) const
Output the assembled linear system for debug purposes.
virtual void solveLinearSystem(DofManager const &dofManager, ParallelMatrix &matrix, ParallelVector &rhs, ParallelVector &solution)
function to apply a linear system solver to the assembled system.
virtual real64 getTimestepRequest(real64 const) override
getter for the next timestep size
virtual void resetConfigurationToBeginningOfStep(DomainPartition &domain)
resets the configuration to the beginning of the time-step.
virtual real64 explicitStep(real64 const &time_n, real64 const &dt, integer const cycleNumber, DomainPartition &domain)
Entry function for an explicit time integration step.
@ NOPLOT
Do not ever write to plot file.
@ NO_WRITE
Do not write into restart.
ArrayView< T, 1 > arrayView1d
Alias for 1D array view.
Definition: DataTypes.hpp:179
stdVector< string > string_array
A 1-dimensional array of geos::string types.
Definition: DataTypes.hpp:361
unsigned long long int Timestamp
Timestamp type (used to perform actions such a sparsity pattern computation after mesh modifications)
Definition: DataTypes.hpp:126
LvArray::CRSMatrix< T, COL_INDEX, INDEX_TYPE, LvArray::ChaiBuffer > CRSMatrix
Alias for CRS Matrix class.
Definition: DataTypes.hpp:305
double real64
64-bit floating point type.
Definition: DataTypes.hpp:98
GEOS_LOCALINDEX_TYPE localIndex
Local index type (for indexing objects within an MPI partition).
Definition: DataTypes.hpp:84
LvArray::CRSMatrixView< T, COL_INDEX, INDEX_TYPE const, LvArray::ChaiBuffer > CRSMatrixView
Alias for CRS Matrix View.
Definition: DataTypes.hpp:309
LAInterface::ParallelMatrix ParallelMatrix
Alias for ParallelMatrix.
int integer
Signed integer type.
Definition: DataTypes.hpp:81
Array< T, 1 > array1d
Alias for 1D array.
Definition: DataTypes.hpp:175
LAInterface::ParallelVector ParallelVector
Alias for ParallelVector.
internal::StdVectorWrapper< T, Allocator, USE_STD_CONTAINER_BOUNDS_CHECKING > stdVector
Set of parameters for a linear solver or preconditioner.
Results/stats of a linear solve.
static constexpr char const * baseDiscretizationString()
Definition: MeshBody.hpp:217
Structure to hold scoped key names.
static constexpr char const * nonlinearSolverParametersString()
static constexpr char const * solverStatisticsString()
static constexpr char const * linearSolverParametersString()
Structure to hold scoped key names.
static constexpr char const * cflFactorString()
static constexpr char const * discretizationString()
static constexpr char const * writeLinearSystemString()
static constexpr char const * targetRegionsString()
static constexpr char const * usePhysicsScalingString()
static constexpr char const * minDtIncreaseIntervalString()
static constexpr char const * initialDtString()
static constexpr char const * writeStatisticsCSVString()
static constexpr char const * numTimestepsSinceLastDtCutString()
static constexpr char const * allowNonConvergedLinearSolverSolutionString()