GEOS
CoupledSolver.hpp
Go to the documentation of this file.
1 /*
2  * ------------------------------------------------------------------------------------------------------------
3  * SPDX-License-Identifier: LGPL-2.1-only
4  *
5  * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC
6  * Copyright (c) 2018-2024 TotalEnergies
7  * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University
8  * Copyright (c) 2023-2024 Chevron
9  * Copyright (c) 2019- GEOS/GEOSX Contributors
10  * All rights reserved
11  *
12  * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details.
13  * ------------------------------------------------------------------------------------------------------------
14  */
15 
21 #ifndef GEOS_PHYSICSSOLVERS_MULTIPHYSICS_COUPLEDSOLVER_HPP_
22 #define GEOS_PHYSICSSOLVERS_MULTIPHYSICS_COUPLEDSOLVER_HPP_
23 
26 
27 #include <tuple>
28 
29 namespace geos
30 {
31 
32 template< typename ... SOLVERS >
34 {
35 
36 public:
37 
43  CoupledSolver( const string & name,
44  Group * const parent )
45  : PhysicsSolverBase( name, parent )
46  {
47  forEachArgInTuple( m_solvers, [&]( auto solver, auto idx )
48  {
49  using SolverType = TYPEOFPTR( solver );
50  string const key = SolverType::coupledSolverAttributePrefix() + "SolverName";
51  registerWrapper( key, &m_names[idx()] ).
52  setRTTypeName( rtTypes::CustomTypes::groupNameRef ).
54  setDescription( "Name of the " + SolverType::coupledSolverAttributePrefix() + " solver used by the coupled solver" );
55  } );
56 
57  this->getWrapper< string >( PhysicsSolverBase::viewKeyStruct::discretizationString() ).
58  setInputFlag( dataRepository::InputFlags::FALSE );
59 
60  addLogLevel< logInfo::Coupling >();
61  }
62 
64  CoupledSolver( CoupledSolver const & ) = delete;
65 
67  CoupledSolver( CoupledSolver && ) = default;
68 
70  CoupledSolver & operator=( CoupledSolver const & ) = delete;
71 
74 
75 
79  void
81  {
82  forEachArgInTuple( m_solvers, [&]( auto & solver, auto idx )
83  {
84  using SolverPtr = TYPEOFREF( solver );
85  using SolverType = TYPEOFPTR( SolverPtr {} );
86  auto const & solverName = m_names[idx()];
87  auto const & solverType = LvArray::system::demangleType< SolverType >();
88  solver = this->getParent().template getGroupPointer< SolverType >( solverName );
89  GEOS_THROW_IF( solver == nullptr,
90  GEOS_FMT( "{}: Could not find solver '{}' of type {}",
92  solverName, solverType ),
93  InputError );
94  GEOS_LOG_LEVEL_RANK_0( logInfo::Coupling,
95  GEOS_FMT( "{}: found {} solver named {}",
96  getName(), solver->getCatalogName(), solverName ) );
97  } );
98  }
99 
100 
106  virtual void
108  DofManager & dofManager ) const
109  { GEOS_UNUSED_VAR( domain, dofManager ); }
110 
120  virtual void
122  real64 const dt,
123  DomainPartition const & domain,
124  DofManager const & dofManager,
125  CRSMatrixView< real64, globalIndex const > const & localMatrix,
126  arrayView1d< real64 > const & localRhs )
127  { GEOS_UNUSED_VAR( time_n, dt, domain, dofManager, localMatrix, localRhs ); }
128 
136  void
137  setupDofs( DomainPartition const & domain,
138  DofManager & dofManager ) const override
139  {
140  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
141  {
142  solver->setupDofs( domain, dofManager );
143  } );
144 
145  setupCoupling( domain, dofManager );
146  }
147 
148  virtual void
149  implicitStepSetup( real64 const & time_n,
150  real64 const & dt,
151  DomainPartition & domain ) override
152  {
153  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
154  {
155  solver->implicitStepSetup( time_n, dt, domain );
156  } );
157  }
158 
159  virtual void
160  implicitStepComplete( real64 const & time_n,
161  real64 const & dt,
162  DomainPartition & domain ) override
163  {
164  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
165  {
166  solver->implicitStepComplete( time_n, dt, domain );
167  } );
168  }
169 
170  // general version of assembleSystem function, keep in mind many solvers will override it
171  virtual void
172  assembleSystem( real64 const time_n,
173  real64 const dt,
174  DomainPartition & domain,
175  DofManager const & dofManager,
176  CRSMatrixView< real64, globalIndex const > const & localMatrix,
177  arrayView1d< real64 > const & localRhs ) override
178  {
180 
181  // 1. Assemble matrix blocks of each individual solver
182  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
183  {
184  solver->assembleSystem( time_n, dt, domain, dofManager, localMatrix, localRhs );
185  } );
186 
187  // 2. Assemble coupling blocks
188  assembleCouplingTerms( time_n, dt, domain, dofManager, localMatrix, localRhs );
189  }
190 
191  virtual void
192  applySystemSolution( DofManager const & dofManager,
193  arrayView1d< real64 const > const & localSolution,
194  real64 const scalingFactor,
195  real64 const dt,
196  DomainPartition & domain ) override
197  {
198  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
199  {
200  solver->applySystemSolution( dofManager, localSolution, scalingFactor, dt, domain );
201  } );
202  }
203 
204  virtual void
205  updateState( DomainPartition & domain ) override
206  {
207  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
208  {
209  solver->updateState( domain );
210  } );
211  }
212 
213  virtual void
215  {
216  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
217  {
218  solver->resetStateToBeginningOfStep( domain );
219  } );
220  }
221 
224  real64
225  solverStep( real64 const & time_n,
226  real64 const & dt,
227  int const cycleNumber,
228  DomainPartition & domain ) override final
229  {
231 
233  {
234  return fullyCoupledSolverStep( time_n, dt, cycleNumber, domain );
235  }
237  {
238  return sequentiallyCoupledSolverStep( time_n, dt, cycleNumber, domain );
239  }
240  else
241  {
242  GEOS_ERROR( getDataContext() << ": Invalid coupling type option." );
243  return 0;
244  }
245 
246  }
247 
248 
249  virtual void
250  updateAndWriteConvergenceStep( real64 const & time_n, real64 const & dt,
251  integer const cycleNumber, integer const iteration ) override
252  {
253  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
254  {
255  if( m_writeStatisticsCSV >= 2 )
256  {
257  solver->updateAndWriteConvergenceStep( time_n, dt, cycleNumber, iteration );
258  }
259  } );
260  }
261 
262  virtual real64
263  calculateResidualNorm( real64 const & time_n,
264  real64 const & dt,
265  DomainPartition const & domain,
266  DofManager const & dofManager,
267  arrayView1d< real64 const > const & localRhs ) override
268  {
269  real64 norm = 0.0;
270  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
271  {
272  real64 const singlePhysicsNorm = solver->calculateResidualNorm( time_n, dt, domain, dofManager, localRhs );
273  norm += singlePhysicsNorm * singlePhysicsNorm;
274  } );
275 
276  return sqrt( norm );
277  }
278 
279  virtual void
281  real64 const dt,
282  DomainPartition & domain,
283  DofManager const & dofManager,
284  CRSMatrixView< real64, globalIndex const > const & localMatrix,
285  arrayView1d< real64 > const & localRhs ) override
286  {
287  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
288  {
289  solver->applyBoundaryConditions( time_n, dt, domain, dofManager, localMatrix, localRhs );
290  } );
291  }
292 
293  virtual bool
295  DofManager const & dofManager,
296  arrayView1d< real64 const > const & localSolution,
297  real64 const scalingFactor ) override
298  {
299  bool validSolution = true;
300  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
301  {
302  bool const validSinglePhysicsSolution = solver->checkSystemSolution( domain, dofManager, localSolution, scalingFactor );
303  if( !validSinglePhysicsSolution )
304  {
305  GEOS_LOG_RANK_0( GEOS_FMT( " {}/{}: Solution check failed. Newton loop terminated.", getName(), solver->getName()) );
306  }
307  validSolution = validSolution && validSinglePhysicsSolution;
308  } );
309  return validSolution;
310  }
311 
312  virtual real64
314  DofManager const & dofManager,
315  arrayView1d< real64 const > const & localSolution ) override
316  {
317  real64 scalingFactor = 1e9;
318  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
319  {
320  real64 const singlePhysicsScalingFactor = solver->scalingForSystemSolution( domain, dofManager, localSolution );
321  scalingFactor = LvArray::math::min( scalingFactor, singlePhysicsScalingFactor );
322  } );
323  return scalingFactor;
324  }
325 
326  virtual real64
327  setNextDt( real64 const & currentTime,
328  real64 const & currentDt,
329  DomainPartition & domain ) override
330  {
331  real64 nextDt = PhysicsSolverBase::setNextDt( currentTime, currentDt, domain );
332  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
333  {
334  real64 const singlePhysicsNextDt =
335  solver->setNextDt( currentTime, currentDt, domain );
336  nextDt = LvArray::math::min( singlePhysicsNextDt, nextDt );
337  } );
338  return nextDt;
339  }
340 
341  virtual void cleanup( real64 const time_n,
342  integer const cycleNumber,
343  integer const eventCounter,
344  real64 const eventProgress,
345  DomainPartition & domain ) override
346  {
347  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
348  {
349  solver->cleanup( time_n, cycleNumber, eventCounter, eventProgress, domain );
350  } );
351  PhysicsSolverBase::cleanup( time_n, cycleNumber, eventCounter, eventProgress, domain );
352  }
353 
356  virtual bool checkSequentialSolutionIncrements( DomainPartition & domain ) const override
357  {
358  bool isConverged = true;
359  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
360  {
361  isConverged &= solver->checkSequentialSolutionIncrements( domain );
362  } );
363  return isConverged;
364  }
365 
366  virtual bool updateConfiguration( DomainPartition & domain ) override
367  {
368  bool result = true;
369  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
370  {
371  result &= solver->updateConfiguration( domain );
372  } );
373  return result;
374  }
375 
376  virtual void outputConfigurationStatistics( DomainPartition const & domain ) const override
377  {
378  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
379  {
380  solver->outputConfigurationStatistics( domain );
381  } );
382  }
383 
384  virtual void resetConfigurationToBeginningOfStep( DomainPartition & domain ) override
385  {
386  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
387  {
388  solver->resetConfigurationToBeginningOfStep( domain );
389  } );
390  }
391 
392  virtual bool resetConfigurationToDefault( DomainPartition & domain ) const override
393  {
394  bool result = true;
395  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
396  {
397  result &= solver->resetConfigurationToDefault( domain );
398  } );
399  return result;
400  }
401 
402 protected:
403 
413  virtual real64 fullyCoupledSolverStep( real64 const & time_n,
414  real64 const & dt,
415  int const cycleNumber,
416  DomainPartition & domain )
417  {
418  return PhysicsSolverBase::solverStep( time_n, dt, cycleNumber, domain );
419  }
420 
431  virtual real64 sequentiallyCoupledSolverStep( real64 const & time_n,
432  real64 const & dt,
433  integer const cycleNumber,
434  DomainPartition & domain )
435  {
437 
438  // Only build the sparsity pattern if the mesh has changed
439  Timestamp const meshModificationTimestamp = getMeshModificationTimestamp( domain );
440  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
441  {
442  if( meshModificationTimestamp > solver->getSystemSetupTimestamp() )
443  {
444  solver->setupSystem( domain,
445  solver->getDofManager(),
446  solver->getLocalMatrix(),
447  solver->getSystemRhs(),
448  solver->getSystemSolution() );
449  solver->setSystemSetupTimestamp( meshModificationTimestamp );
450  }
451  } );
452 
453  implicitStepSetup( time_n, dt, domain );
454 
456  integer const maxNumberDtCuts = solverParams.m_maxTimeStepCuts;
457  real64 const dtCutFactor = solverParams.m_timeStepCutFactor;
458  integer & dtAttempt = solverParams.m_numTimeStepAttempts;
459 
460  bool isConverged = false;
461  // dt may be cut during the course of this step, so we are keeping a local
462  // value to track the achieved dt for this step.
463  real64 stepDt = dt;
464 
465  // outer loop attempts to apply full timestep, and managed the cutting of the timestep if
466  // required.
467  for( dtAttempt = 0; dtAttempt < maxNumberDtCuts; ++dtAttempt )
468  {
469  // TODO configuration loop
470 
471  // Reset the states of all solvers if any of them had to restart
472  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
473  {
474  solver->resetStateToBeginningOfStep( domain );
475  solver->getIterationStats().resetCurrentTimeStepStatistics(); // initialize counters for subsolvers
476  } );
477  resetStateToBeginningOfStep( domain );
478 
479  integer & iter = solverParams.m_numNewtonIterations;
480 
482  for( iter = 0; iter < solverParams.m_maxIterNewton; iter++ )
483  {
484  // Increment the solver statistics for reporting purposes
486 
487  startSequentialIteration( iter, domain );
488 
489  // Solve the subproblems nonlinearly
490  forEachArgInTuple( m_solvers, [&]( auto & solver, auto idx )
491  {
492  GEOS_LOG_LEVEL_RANK_0( logInfo::NonlinearSolver,
493  GEOS_FMT( " Iteration {:2}: {}", iter + 1, solver->getName() ) );
494  real64 solverDt = solver->nonlinearImplicitStep( time_n,
495  stepDt,
496  cycleNumber,
497  domain );
498 
499  // save fields (e.g. pressure and temperature) after inner solve
500  if( solver->getNonlinearSolverParameters().couplingType() == NonlinearSolverParameters::CouplingType::Sequential )
501  {
502  solver->saveSequentialIterationState( domain );
503  }
504 
505  mapSolutionBetweenSolvers( domain, idx() );
506 
507  if( solverDt < stepDt ) // subsolver had to cut the time step
508  {
509  iter = 0; // restart outer loop
510  stepDt = solverDt; // sync time step
512  }
513  } );
514  // Check convergence of the outer loop
515  isConverged = checkSequentialConvergence( cycleNumber,
516  iter,
517  time_n,
518  stepDt,
519  domain );
520 
521  if( isConverged )
522  {
523  // we still want to count current iteration
524  ++iter;
525  // exit outer loop
526  break;
527  }
528  else
529  {
530  finishSequentialIteration( iter, domain );
531  }
532  }
533 
534  if( isConverged )
535  {
536  // Save time step statistics for the subsolvers
537  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
538  {
539  solver->getIterationStats().iterateTimeStepStatistics();
540  } );
541  // get out of the time loop
542  break;
543  }
544  else
545  {
546  // cut timestep, go back to beginning of step and restart the Newton loop
547  stepDt *= dtCutFactor;
549  GEOS_LOG_LEVEL_RANK_0( logInfo::TimeStep, GEOS_FMT( "New dt = {}", stepDt ) );
550 
551  // notify the solver statistics counter that this is a time step cut
553  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
554  {
555  solver->getIterationStats().updateTimeStepCut();
556  } );
557  }
558  }
559 
560  if( !isConverged )
561  {
562  GEOS_LOG_RANK_0( "Convergence not achieved." );
563 
565  {
566  GEOS_LOG_RANK_0( "The accepted solution may be inaccurate." );
567  }
568  else
569  {
570  GEOS_ERROR( "Nonconverged solutions not allowed. Terminating..." );
571  }
572  }
573 
574  implicitStepComplete( time_n, stepDt, domain );
575 
576  return stepDt;
577  }
578 
586  integer const solverType )
587  {
588  GEOS_UNUSED_VAR( domain, solverType );
589  }
590 
591  virtual bool checkSequentialConvergence( integer const cycleNumber,
592  integer const iter,
593  real64 const & time_n,
594  real64 const & dt,
595  DomainPartition & domain )
596  {
598  bool isConverged = true;
599 
600  if( params.m_subcyclingOption == 0 )
601  {
602  GEOS_LOG_LEVEL_RANK_0( logInfo::Convergence, "***** Single Pass solver, no subcycling *****" );
603  }
604  else
605  {
606  GEOS_LOG_LEVEL_RANK_0( logInfo::Convergence, GEOS_FMT( " Iteration {:2}: outer-loop convergence check", iter + 1 ) );
607 
609  {
610  real64 residualNorm = 0;
611 
612  // loop over all the single-physics solvers
613  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
614  {
615 
616  solver->getLocalMatrix().toViewConstSizes().zero();
617  solver->getSystemRhs().zero();
618  arrayView1d< real64 > const localRhs = solver->getSystemRhs().open();
619 
620  // for each solver, we have to recompute the residual (and Jacobian, although not necessary)
621  solver->assembleSystem( time_n,
622  dt,
623  domain,
624  solver->getDofManager(),
625  solver->getLocalMatrix().toViewConstSizes(),
626  localRhs );
627  solver->applyBoundaryConditions( time_n,
628  dt,
629  domain,
630  solver->getDofManager(),
631  solver->getLocalMatrix().toViewConstSizes(),
632  localRhs );
633  solver->getSystemRhs().close();
634 
635  // once this is done, we recompute the single-physics residual
636  real64 const singlePhysicsNorm =
637  solver->calculateResidualNorm( time_n,
638  dt,
639  domain,
640  solver->getDofManager(),
641  solver->getSystemRhs().values() );
642  residualNorm += singlePhysicsNorm * singlePhysicsNorm;
643  } );
644 
645  // finally, we perform the convergence check on the multiphysics residual
646  residualNorm = sqrt( residualNorm );
647  GEOS_LOG_LEVEL_RANK_0( logInfo::ResidualNorm,
648  GEOS_FMT( " ( R ) = ( {:4.2e} )", residualNorm ) );
649  getConvergenceStats().setResidualValue( "R", residualNorm );
650  updateAndWriteConvergenceStep( time_n, dt, cycleNumber, iter );
651 
652  isConverged = ( residualNorm < params.m_newtonTol );
653 
654  }
656  {
657  // TODO also make recursive?
658  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
659  {
660  NonlinearSolverParameters const & singlePhysicsParams = solver->getNonlinearSolverParameters();
661  if( singlePhysicsParams.m_numNewtonIterations > singlePhysicsParams.m_minIterNewton )
662  {
663  isConverged = false;
664  }
665  } );
666  }
668  {
669  isConverged = checkSequentialSolutionIncrements( domain );
670  }
671  else
672  {
673  GEOS_ERROR( getDataContext() << ": Invalid sequential convergence criterion." );
674  }
675 
676  if( isConverged )
677  {
678  GEOS_LOG_LEVEL_RANK_0( logInfo::Convergence,
679  GEOS_FMT( "***** The iterative coupling has converged in {} iteration(s) *****", iter + 1 ) );
680  }
681  }
682  return isConverged;
683  }
684 
685  virtual void
687  {
688  setSubSolvers();
689 
691 
694  GEOS_THROW_IF( isSequential && usesLineSearch,
695  GEOS_FMT( "{}: line search is not supported by the coupled solver when {} is set to `{}`. Please set {} to `{}` to remove this error",
696  getNonlinearSolverParameters().getWrapperDataContext( NonlinearSolverParameters::viewKeysStruct::couplingTypeString() ),
697  NonlinearSolverParameters::viewKeysStruct::couplingTypeString(),
699  NonlinearSolverParameters::viewKeysStruct::lineSearchActionString(),
701  InputError );
702 
703  if( !isSequential )
704  {
706  }
707 
709  validateNonlinearAcceleration();
710  }
711 
712  virtual void validateNonlinearAcceleration()
713  {
714  GEOS_THROW ( GEOS_FMT( "{}: Nonlinear acceleration {} is not supported by {} solver '{}'",
715  getWrapperDataContext( NonlinearSolverParameters::viewKeysStruct::nonlinearAccelerationTypeString() ),
717  getCatalogName(), getName()),
718  InputError );
719  }
720 
721  virtual void
723  {
724  forEachArgInTuple( m_solvers, [&]( auto & solver, auto )
725  {
726  solver->getNonlinearSolverParameters() = getNonlinearSolverParameters();
727  } );
728  }
729 
730  virtual void startSequentialIteration( integer const & iter,
731  DomainPartition & domain )
732  {
733  GEOS_UNUSED_VAR( iter, domain );
734  }
735 
736  virtual void finishSequentialIteration( integer const & iter,
737  DomainPartition & domain )
738  {
739  GEOS_UNUSED_VAR( iter, domain );
740  }
741 
742 protected:
743 
745  std::tuple< SOLVERS *... > m_solvers;
746 
748  std::array< string, sizeof...( SOLVERS ) > m_names;
749 };
750 
751 } /* namespace geos */
752 
753 #endif /* GEOS_PHYSICSSOLVERS_MULTIPHYSICS_COUPLEDSOLVER_HPP_ */
#define GEOS_UNUSED_VAR(...)
Mark an unused variable and silence compiler warnings.
Definition: GeosxMacros.hpp:84
#define GEOS_THROW(msg, TYPE)
Throw an exception.
Definition: Logger.hpp:164
#define GEOS_ERROR(msg)
Raise a hard error and terminate the program.
Definition: Logger.hpp:157
#define GEOS_LOG_RANK_0(msg)
Log a message on screen on rank 0.
Definition: Logger.hpp:101
#define GEOS_THROW_IF(EXP, msg, TYPE)
Conditionally throw an exception.
Definition: Logger.hpp:151
#define GEOS_MARK_FUNCTION
Mark function with both Caliper and NVTX if enabled.
virtual void assembleCouplingTerms(real64 const time_n, real64 const dt, DomainPartition const &domain, DofManager const &dofManager, CRSMatrixView< real64, globalIndex const > const &localMatrix, arrayView1d< real64 > const &localRhs)
Utility function to compute coupling terms.
CoupledSolver & operator=(CoupledSolver const &)=delete
deleted assignment operator
virtual real64 fullyCoupledSolverStep(real64 const &time_n, real64 const &dt, int const cycleNumber, DomainPartition &domain)
Fully coupled solution approach solution step.
virtual bool resetConfigurationToDefault(DomainPartition &domain) const override
resets the configuration to the default value.
CoupledSolver(const string &name, Group *const parent)
main constructor for CoupledSolver Objects
virtual void outputConfigurationStatistics(DomainPartition const &domain) const override
CoupledSolver(CoupledSolver &&)=default
default move constructor
virtual void resetConfigurationToBeginningOfStep(DomainPartition &domain) override
resets the configuration to the beginning of the time-step.
virtual real64 sequentiallyCoupledSolverStep(real64 const &time_n, real64 const &dt, integer const cycleNumber, DomainPartition &domain)
Sequentially coupled solver step. It solves a nonlinear system of equations using a sequential approa...
CoupledSolver(CoupledSolver const &)=delete
deleted copy constructor
virtual void synchronizeNonlinearSolverParameters() override
synchronize the nonlinear solver parameters.
virtual void setupCoupling(DomainPartition const &domain, DofManager &dofManager) const
Utility function to set the coupling between degrees of freedom.
virtual bool checkSequentialSolutionIncrements(DomainPartition &domain) const override
Check if the solution increments are ok to use.
virtual void postInputInitialization() override
virtual bool updateConfiguration(DomainPartition &domain) override
updates the configuration (if needed) based on the state after a converged Newton loop.
std::array< string, sizeof...(SOLVERS) > m_names
Names of the single-physics solvers.
std::tuple< SOLVERS *... > m_solvers
Pointers of the single-physics solvers.
CoupledSolver & operator=(CoupledSolver &&)=delete
deleted move operator
void setSubSolvers()
Utility function to set the subsolvers pointers using the names provided by the user.
virtual void mapSolutionBetweenSolvers(DomainPartition &domain, integer const solverType)
Maps the solution obtained from one solver to the fields used by the other solver(s)
The DoFManager is responsible for allocating global dofs, constructing sparsity patterns,...
Definition: DofManager.hpp:45
Partition of the decomposed physical domain. It also manages the connexion information to its neighbo...
void incrementConfigIteration()
Tell the solverStatistics that we have done a configuration iteration.
void updateTimeStepCut()
Tell the solverStatistics that we cut the time step and we increment the cumulative counters for disc...
SequentialConvergenceCriterion sequentialConvergenceCriterion() const
Getter for the sequential convergence criterion.
integer m_allowNonConverged
Flag to allow for a non-converged nonlinear solution and continue with the problem.
real64 m_newtonTol
The tolerance for the nonlinear convergence check.
NonlinearAccelerationType m_nonlinearAccelerationType
Type of nonlinear acceleration for sequential solver.
integer m_maxIterNewton
The maximum number of nonlinear iterations that are allowed.
real64 m_timeStepCutFactor
Factor by which the time step will be cut if a timestep cut is required.
integer m_numNewtonIterations
The number of nonlinear iterations that have been exectued.
integer m_numTimeStepAttempts
Number of times that the time-step had to be cut.
integer m_maxTimeStepCuts
Max number of time step cuts.
CouplingType couplingType() const
Getter for the coupling type.
LineSearchAction m_lineSearchAction
Flag to apply a line search.
@ ResidualNorm
convergence achieved when the residual drops below a given norm
@ NumberOfNonlinearIterations
convergence achieved when the subproblems convergence is achieved in less than minNewtonIteration
@ SolutionIncrements
convergence achieved when the solution increments are small enough
integer m_subcyclingOption
Flag to specify whether subcycling is allowed or not in sequential schemes.
Base class for all physics solvers.
virtual string getCatalogName() const =0
IterationsStatistics & getIterationStats()
integer m_numTimestepsSinceLastDtCut
Number of cycles since last timestep cut.
virtual void cleanup(real64 const time_n, integer const cycleNumber, integer const eventCounter, real64 const eventProgress, DomainPartition &domain) override
Called as the code exits the main run loop.
Timestamp getMeshModificationTimestamp(DomainPartition &domain) const
getter for the timestamp of the mesh modification on the mesh levels
virtual void postInputInitialization() override
ConvergenceStatistics & getConvergenceStats()
NonlinearSolverParameters & getNonlinearSolverParameters()
accessor for the nonlinear solver parameters.
NonlinearSolverParameters m_nonlinearSolverParameters
Nonlinear solver parameters.
Wrapper< TBASE > & registerWrapper(string const &name, wrapperMap::KeyIndex::index_type *const rkey=nullptr)
Create and register a Wrapper around a new object.
DataContext const & getDataContext() const
Definition: Group.hpp:1345
string const & getName() const
Get group name.
Definition: Group.hpp:1331
Group & getParent()
Access the group's parent.
Definition: Group.hpp:1364
DataContext const & getWrapperDataContext(KEY key) const
Definition: Group.hpp:1356
#define GEOS_LOG_LEVEL_RANK_0(logInfoStruct, msg)
Output messages (only on rank 0) based on current Group's log level.
virtual void implicitStepSetup(real64 const &time_n, real64 const &dt, DomainPartition &domain) override
function to perform setup for implicit timestep
virtual void cleanup(real64 const time_n, integer const cycleNumber, integer const eventCounter, real64 const eventProgress, DomainPartition &domain) override
Called as the code exits the main run loop.
virtual real64 scalingForSystemSolution(DomainPartition &domain, DofManager const &dofManager, arrayView1d< real64 const > const &localSolution) override
Function to determine if the solution vector should be scaled back in order to maintain a known const...
virtual void updateAndWriteConvergenceStep(real64 const &time_n, real64 const &dt, integer const cycleNumber, integer const iteration) override
Update the convergence information and write then into a CSV file.
virtual void updateState(DomainPartition &domain) override
Recompute all dependent quantities from primary variables (including constitutive models)
virtual void implicitStepComplete(real64 const &time_n, real64 const &dt, DomainPartition &domain) override
perform cleanup for implicit timestep
virtual void applyBoundaryConditions(real64 const time_n, real64 const dt, DomainPartition &domain, DofManager const &dofManager, CRSMatrixView< real64, globalIndex const > const &localMatrix, arrayView1d< real64 > const &localRhs) override
apply boundary condition to system
virtual real64 calculateResidualNorm(real64 const &time_n, real64 const &dt, DomainPartition const &domain, DofManager const &dofManager, arrayView1d< real64 const > const &localRhs) override
calculate the norm of the global system residual
real64 solverStep(real64 const &time_n, real64 const &dt, int const cycleNumber, DomainPartition &domain) override final
virtual real64 setNextDt(real64 const &currentTime, real64 const &currentDt, DomainPartition &domain) override
function to set the next time step size
virtual real64 solverStep(real64 const &time_n, real64 const &dt, integer const cycleNumber, DomainPartition &domain)
entry function to perform a solver step
void setupDofs(DomainPartition const &domain, DofManager &dofManager) const override
Populate degree-of-freedom manager with fields relevant to this solver.
virtual void applySystemSolution(DofManager const &dofManager, arrayView1d< real64 const > const &localSolution, real64 const scalingFactor, real64 const dt, DomainPartition &domain) override
Function to apply the solution vector to the state.
virtual real64 setNextDt(real64 const &currentTime, real64 const &currentDt, DomainPartition &domain)
function to set the next time step size
virtual void assembleSystem(real64 const time_n, real64 const dt, DomainPartition &domain, DofManager const &dofManager, CRSMatrixView< real64, globalIndex const > const &localMatrix, arrayView1d< real64 > const &localRhs) override
function to assemble the linear system matrix and rhs
virtual bool checkSystemSolution(DomainPartition &domain, DofManager const &dofManager, arrayView1d< real64 const > const &localSolution, real64 const scalingFactor) override
Function to check system solution for physical consistency and constraint violation.
virtual void resetStateToBeginningOfStep(DomainPartition &domain) override
reset state of physics back to the beginning of the step.
@ FALSE
Not read from input.
@ REQUIRED
Required in input.
ArrayView< T, 1 > arrayView1d
Alias for 1D array view.
Definition: DataTypes.hpp:179
unsigned long long int Timestamp
Timestamp type (used to perform actions such a sparsity pattern computation after mesh modifications)
Definition: DataTypes.hpp:126
std::string string
String type.
Definition: DataTypes.hpp:90
double real64
64-bit floating point type.
Definition: DataTypes.hpp:98
LvArray::CRSMatrixView< T, COL_INDEX, INDEX_TYPE const, LvArray::ChaiBuffer > CRSMatrixView
Alias for CRS Matrix View.
Definition: DataTypes.hpp:309
int integer
Signed integer type.
Definition: DataTypes.hpp:81
Provides enum <-> string conversion facilities.
Exception class used to report errors in user input.
Definition: Logger.hpp:464
static constexpr char const * discretizationString()