21 #ifndef GEOS_PHYSICSSOLVERS_MULTIPHYSICS_COUPLEDSOLVER_HPP_
22 #define GEOS_PHYSICSSOLVERS_MULTIPHYSICS_COUPLEDSOLVER_HPP_
32 template<
typename ... SOLVERS >
44 Group *
const parent )
47 forEachArgInTuple(
m_solvers, [&](
auto solver,
auto idx )
49 using SolverType = TYPEOFPTR( solver );
50 string const key = SolverType::coupledSolverAttributePrefix() +
"SolverName";
52 setRTTypeName( rtTypes::CustomTypes::groupNameRef ).
54 setDescription(
"Name of the " + SolverType::coupledSolverAttributePrefix() +
" solver used by the coupled solver" );
60 addLogLevel< logInfo::Coupling >();
82 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto idx )
84 using SolverPtr = TYPEOFREF( solver );
85 using SolverType = TYPEOFPTR( SolverPtr {} );
86 auto const & solverName =
m_names[idx()];
87 auto const & solverType = LvArray::system::demangleType< SolverType >();
88 solver = this->
getParent().template getGroupPointer< SolverType >( solverName );
90 GEOS_FMT(
"{}: Could not find solver '{}' of type {}",
92 solverName, solverType ),
95 GEOS_FMT(
"{}: found {} solver named {}",
96 getName(), solver->getCatalogName(), solverName ) );
127 {
GEOS_UNUSED_VAR( time_n, dt, domain, dofManager, localMatrix, localRhs ); }
140 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
142 solver->setupDofs( domain, dofManager );
153 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
155 solver->implicitStepSetup( time_n, dt, domain );
164 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
166 solver->implicitStepComplete( time_n, dt, domain );
182 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
184 solver->assembleSystem( time_n, dt, domain, dofManager, localMatrix, localRhs );
194 real64 const scalingFactor,
198 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
200 solver->applySystemSolution( dofManager, localSolution, scalingFactor, dt, domain );
207 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
209 solver->updateState( domain );
216 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
218 solver->resetStateToBeginningOfStep( domain );
227 int const cycleNumber,
253 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
257 solver->updateAndWriteConvergenceStep( time_n, dt, cycleNumber, iteration );
270 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
272 real64 const singlePhysicsNorm = solver->calculateResidualNorm( time_n, dt, domain, dofManager, localRhs );
273 norm += singlePhysicsNorm * singlePhysicsNorm;
287 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
289 solver->applyBoundaryConditions( time_n, dt, domain, dofManager, localMatrix, localRhs );
297 real64 const scalingFactor )
override
299 bool validSolution =
true;
300 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
302 bool const validSinglePhysicsSolution = solver->checkSystemSolution( domain, dofManager, localSolution, scalingFactor );
303 if( !validSinglePhysicsSolution )
305 GEOS_LOG_RANK_0( GEOS_FMT(
" {}/{}: Solution check failed. Newton loop terminated.",
getName(), solver->getName()) );
307 validSolution = validSolution && validSinglePhysicsSolution;
309 return validSolution;
317 real64 scalingFactor = 1e9;
318 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
320 real64 const singlePhysicsScalingFactor = solver->scalingForSystemSolution( domain, dofManager, localSolution );
321 scalingFactor = LvArray::math::min( scalingFactor, singlePhysicsScalingFactor );
323 return scalingFactor;
332 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
334 real64 const singlePhysicsNextDt =
335 solver->setNextDt( currentTime, currentDt, domain );
336 nextDt = LvArray::math::min( singlePhysicsNextDt, nextDt );
344 real64 const eventProgress,
347 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
349 solver->cleanup( time_n, cycleNumber, eventCounter, eventProgress, domain );
358 bool isConverged =
true;
359 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
361 isConverged &= solver->checkSequentialSolutionIncrements( domain );
369 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
371 result &= solver->updateConfiguration( domain );
378 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
380 solver->outputConfigurationStatistics( domain );
386 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
388 solver->resetConfigurationToBeginningOfStep( domain );
395 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
397 result &= solver->resetConfigurationToDefault( domain );
415 int const cycleNumber,
440 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
442 if( meshModificationTimestamp > solver->getSystemSetupTimestamp() )
444 solver->setupSystem( domain,
445 solver->getDofManager(),
446 solver->getLocalMatrix(),
447 solver->getSystemRhs(),
448 solver->getSystemSolution() );
449 solver->setSystemSetupTimestamp( meshModificationTimestamp );
460 bool isConverged =
false;
467 for( dtAttempt = 0; dtAttempt < maxNumberDtCuts; ++dtAttempt )
472 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
474 solver->resetStateToBeginningOfStep( domain );
475 solver->getIterationStats().resetCurrentTimeStepStatistics();
487 startSequentialIteration( iter, domain );
490 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto idx )
493 GEOS_FMT(
" Iteration {:2}: {}", iter + 1, solver->getName() ) );
494 real64 solverDt = solver->nonlinearImplicitStep( time_n,
502 solver->saveSequentialIterationState( domain );
507 if( solverDt < stepDt )
515 isConverged = checkSequentialConvergence( cycleNumber,
530 finishSequentialIteration( iter, domain );
537 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
539 solver->getIterationStats().iterateTimeStepStatistics();
547 stepDt *= dtCutFactor;
553 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
555 solver->getIterationStats().updateTimeStepCut();
570 GEOS_ERROR(
"Nonconverged solutions not allowed. Terminating..." );
591 virtual bool checkSequentialConvergence(
integer const cycleNumber,
598 bool isConverged =
true;
606 GEOS_LOG_LEVEL_RANK_0( logInfo::Convergence, GEOS_FMT(
" Iteration {:2}: outer-loop convergence check", iter + 1 ) );
613 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
616 solver->getLocalMatrix().toViewConstSizes().zero();
617 solver->getSystemRhs().zero();
618 arrayView1d< real64 >
const localRhs = solver->getSystemRhs().open();
621 solver->assembleSystem( time_n,
624 solver->getDofManager(),
625 solver->getLocalMatrix().toViewConstSizes(),
627 solver->applyBoundaryConditions( time_n,
630 solver->getDofManager(),
631 solver->getLocalMatrix().toViewConstSizes(),
633 solver->getSystemRhs().close();
636 real64 const singlePhysicsNorm =
637 solver->calculateResidualNorm( time_n,
640 solver->getDofManager(),
641 solver->getSystemRhs().values() );
642 residualNorm += singlePhysicsNorm * singlePhysicsNorm;
646 residualNorm = sqrt( residualNorm );
648 GEOS_FMT(
" ( R ) = ( {:4.2e} )", residualNorm ) );
652 isConverged = ( residualNorm < params.
m_newtonTol );
658 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
660 NonlinearSolverParameters
const & singlePhysicsParams = solver->getNonlinearSolverParameters();
661 if( singlePhysicsParams.m_numNewtonIterations > singlePhysicsParams.m_minIterNewton )
679 GEOS_FMT(
"***** The iterative coupling has converged in {} iteration(s) *****", iter + 1 ) );
695 GEOS_FMT(
"{}: line search is not supported by the coupled solver when {} is set to `{}`. Please set {} to `{}` to remove this error",
697 NonlinearSolverParameters::viewKeysStruct::couplingTypeString(),
699 NonlinearSolverParameters::viewKeysStruct::lineSearchActionString(),
709 validateNonlinearAcceleration();
712 virtual void validateNonlinearAcceleration()
714 GEOS_THROW ( GEOS_FMT(
"{}: Nonlinear acceleration {} is not supported by {} solver '{}'",
715 getWrapperDataContext( NonlinearSolverParameters::viewKeysStruct::nonlinearAccelerationTypeString() ),
724 forEachArgInTuple(
m_solvers, [&](
auto & solver,
auto )
730 virtual void startSequentialIteration(
integer const & iter,
736 virtual void finishSequentialIteration(
integer const & iter,
737 DomainPartition & domain )
#define GEOS_UNUSED_VAR(...)
Mark an unused variable and silence compiler warnings.
#define GEOS_THROW(msg, TYPE)
Throw an exception.
#define GEOS_ERROR(msg)
Raise a hard error and terminate the program.
#define GEOS_LOG_RANK_0(msg)
Log a message on screen on rank 0.
#define GEOS_THROW_IF(EXP, msg, TYPE)
Conditionally throw an exception.
#define GEOS_MARK_FUNCTION
Mark function with both Caliper and NVTX if enabled.
virtual void assembleCouplingTerms(real64 const time_n, real64 const dt, DomainPartition const &domain, DofManager const &dofManager, CRSMatrixView< real64, globalIndex const > const &localMatrix, arrayView1d< real64 > const &localRhs)
Utility function to compute coupling terms.
CoupledSolver & operator=(CoupledSolver const &)=delete
deleted assignment operator
virtual real64 fullyCoupledSolverStep(real64 const &time_n, real64 const &dt, int const cycleNumber, DomainPartition &domain)
Fully coupled solution approach solution step.
virtual bool resetConfigurationToDefault(DomainPartition &domain) const override
resets the configuration to the default value.
CoupledSolver(const string &name, Group *const parent)
main constructor for CoupledSolver Objects
virtual void outputConfigurationStatistics(DomainPartition const &domain) const override
CoupledSolver(CoupledSolver &&)=default
default move constructor
virtual void resetConfigurationToBeginningOfStep(DomainPartition &domain) override
resets the configuration to the beginning of the time-step.
virtual real64 sequentiallyCoupledSolverStep(real64 const &time_n, real64 const &dt, integer const cycleNumber, DomainPartition &domain)
Sequentially coupled solver step. It solves a nonlinear system of equations using a sequential approa...
CoupledSolver(CoupledSolver const &)=delete
deleted copy constructor
virtual void synchronizeNonlinearSolverParameters() override
synchronize the nonlinear solver parameters.
virtual void setupCoupling(DomainPartition const &domain, DofManager &dofManager) const
Utility function to set the coupling between degrees of freedom.
virtual bool checkSequentialSolutionIncrements(DomainPartition &domain) const override
Check if the solution increments are ok to use.
virtual void postInputInitialization() override
virtual bool updateConfiguration(DomainPartition &domain) override
updates the configuration (if needed) based on the state after a converged Newton loop.
std::array< string, sizeof...(SOLVERS) > m_names
Names of the single-physics solvers.
std::tuple< SOLVERS *... > m_solvers
Pointers of the single-physics solvers.
CoupledSolver & operator=(CoupledSolver &&)=delete
deleted move operator
void setSubSolvers()
Utility function to set the subsolvers pointers using the names provided by the user.
virtual void mapSolutionBetweenSolvers(DomainPartition &domain, integer const solverType)
Maps the solution obtained from one solver to the fields used by the other solver(s)
The DoFManager is responsible for allocating global dofs, constructing sparsity patterns,...
Partition of the decomposed physical domain. It also manages the connexion information to its neighbo...
void incrementConfigIteration()
Tell the solverStatistics that we have done a configuration iteration.
void updateTimeStepCut()
Tell the solverStatistics that we cut the time step and we increment the cumulative counters for disc...
SequentialConvergenceCriterion sequentialConvergenceCriterion() const
Getter for the sequential convergence criterion.
integer m_allowNonConverged
Flag to allow for a non-converged nonlinear solution and continue with the problem.
@ FullyImplicit
Fully-implicit coupling.
@ Sequential
Sequential coupling.
real64 m_newtonTol
The tolerance for the nonlinear convergence check.
NonlinearAccelerationType m_nonlinearAccelerationType
Type of nonlinear acceleration for sequential solver.
@ None
Do not use line search.
integer m_maxIterNewton
The maximum number of nonlinear iterations that are allowed.
real64 m_timeStepCutFactor
Factor by which the time step will be cut if a timestep cut is required.
integer m_numNewtonIterations
The number of nonlinear iterations that have been exectued.
integer m_numTimeStepAttempts
Number of times that the time-step had to be cut.
integer m_maxTimeStepCuts
Max number of time step cuts.
CouplingType couplingType() const
Getter for the coupling type.
LineSearchAction m_lineSearchAction
Flag to apply a line search.
@ ResidualNorm
convergence achieved when the residual drops below a given norm
@ NumberOfNonlinearIterations
convergence achieved when the subproblems convergence is achieved in less than minNewtonIteration
@ SolutionIncrements
convergence achieved when the solution increments are small enough
integer m_subcyclingOption
Flag to specify whether subcycling is allowed or not in sequential schemes.
Base class for all physics solvers.
virtual string getCatalogName() const =0
IterationsStatistics & getIterationStats()
integer m_numTimestepsSinceLastDtCut
Number of cycles since last timestep cut.
virtual void cleanup(real64 const time_n, integer const cycleNumber, integer const eventCounter, real64 const eventProgress, DomainPartition &domain) override
Called as the code exits the main run loop.
Timestamp getMeshModificationTimestamp(DomainPartition &domain) const
getter for the timestamp of the mesh modification on the mesh levels
virtual void postInputInitialization() override
ConvergenceStatistics & getConvergenceStats()
integer m_writeStatisticsCSV
NonlinearSolverParameters & getNonlinearSolverParameters()
accessor for the nonlinear solver parameters.
NonlinearSolverParameters m_nonlinearSolverParameters
Nonlinear solver parameters.
Wrapper< TBASE > & registerWrapper(string const &name, wrapperMap::KeyIndex::index_type *const rkey=nullptr)
Create and register a Wrapper around a new object.
DataContext const & getDataContext() const
string const & getName() const
Get group name.
Group & getParent()
Access the group's parent.
DataContext const & getWrapperDataContext(KEY key) const
#define GEOS_LOG_LEVEL_RANK_0(logInfoStruct, msg)
Output messages (only on rank 0) based on current Group's log level.
virtual void implicitStepSetup(real64 const &time_n, real64 const &dt, DomainPartition &domain) override
function to perform setup for implicit timestep
virtual void cleanup(real64 const time_n, integer const cycleNumber, integer const eventCounter, real64 const eventProgress, DomainPartition &domain) override
Called as the code exits the main run loop.
virtual real64 scalingForSystemSolution(DomainPartition &domain, DofManager const &dofManager, arrayView1d< real64 const > const &localSolution) override
Function to determine if the solution vector should be scaled back in order to maintain a known const...
virtual void updateAndWriteConvergenceStep(real64 const &time_n, real64 const &dt, integer const cycleNumber, integer const iteration) override
Update the convergence information and write then into a CSV file.
virtual void updateState(DomainPartition &domain) override
Recompute all dependent quantities from primary variables (including constitutive models)
virtual void implicitStepComplete(real64 const &time_n, real64 const &dt, DomainPartition &domain) override
perform cleanup for implicit timestep
virtual void applyBoundaryConditions(real64 const time_n, real64 const dt, DomainPartition &domain, DofManager const &dofManager, CRSMatrixView< real64, globalIndex const > const &localMatrix, arrayView1d< real64 > const &localRhs) override
apply boundary condition to system
virtual real64 calculateResidualNorm(real64 const &time_n, real64 const &dt, DomainPartition const &domain, DofManager const &dofManager, arrayView1d< real64 const > const &localRhs) override
calculate the norm of the global system residual
real64 solverStep(real64 const &time_n, real64 const &dt, int const cycleNumber, DomainPartition &domain) override final
virtual real64 setNextDt(real64 const ¤tTime, real64 const ¤tDt, DomainPartition &domain) override
function to set the next time step size
virtual real64 solverStep(real64 const &time_n, real64 const &dt, integer const cycleNumber, DomainPartition &domain)
entry function to perform a solver step
void setupDofs(DomainPartition const &domain, DofManager &dofManager) const override
Populate degree-of-freedom manager with fields relevant to this solver.
virtual void applySystemSolution(DofManager const &dofManager, arrayView1d< real64 const > const &localSolution, real64 const scalingFactor, real64 const dt, DomainPartition &domain) override
Function to apply the solution vector to the state.
virtual real64 setNextDt(real64 const ¤tTime, real64 const ¤tDt, DomainPartition &domain)
function to set the next time step size
virtual void assembleSystem(real64 const time_n, real64 const dt, DomainPartition &domain, DofManager const &dofManager, CRSMatrixView< real64, globalIndex const > const &localMatrix, arrayView1d< real64 > const &localRhs) override
function to assemble the linear system matrix and rhs
virtual bool checkSystemSolution(DomainPartition &domain, DofManager const &dofManager, arrayView1d< real64 const > const &localSolution, real64 const scalingFactor) override
Function to check system solution for physical consistency and constraint violation.
virtual void resetStateToBeginningOfStep(DomainPartition &domain) override
reset state of physics back to the beginning of the step.
@ FALSE
Not read from input.
@ REQUIRED
Required in input.
ArrayView< T, 1 > arrayView1d
Alias for 1D array view.
unsigned long long int Timestamp
Timestamp type (used to perform actions such a sparsity pattern computation after mesh modifications)
std::string string
String type.
double real64
64-bit floating point type.
LvArray::CRSMatrixView< T, COL_INDEX, INDEX_TYPE const, LvArray::ChaiBuffer > CRSMatrixView
Alias for CRS Matrix View.
int integer
Signed integer type.
Provides enum <-> string conversion facilities.
static constexpr char const * discretizationString()