Processing
The processing part of geos-geomechanics package contains functions tools to compute geomechanical properties.
geos.geomechanics.processing.geomechanicsCalculatorFunctions module
Functions to compute additional geomechanical properties.
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.biotCoefficient(Kgrain, bulkModulus)[source]
Compute Biot coefficient.
\[b = 1-\frac{K}{K_{grain}}\]- Parameters:
Kgrain (float) – grain bulk modulus (\(K_{grain}\) - Pa)
bulkModulus (npt.NDArray[np.float64]) – default bulk modulus (K - Pa)
- Returns:
biot coefficient (b)
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.bulkModulus(youngModulus, poissonRatio)[source]
Compute bulk Modulus from young modulus and poisson ratio.
\[K = \frac{E}{3(1-2\nu)}\]- Parameters:
youngModulus (npt.NDArray[np.float64]) – Young modulus (E - Pa)
poissonRatio (npt.NDArray[np.float64]) – Poisson’s ratio (\(\nu\))
- Returns:
Bulk modulus (K - Pa)
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.compressibility(poissonRatio, bulkModulus, biotCoefficient, porosity)[source]
Compute compressibility from elastic moduli, biot coefficient and porosity.
Compressibility formula is:
\[C = \frac{1-2\nu}{\phi K}\left(\frac{b²(1+\nu)}{1-\nu} + 3(b-\phi)(1-b)\right)\]- Parameters:
poissonRatio (npt.NDArray[np.float64]) – Poisson’s ratio (\(\nu\)).
bulkModulus (npt.NDArray[np.float64]) – Bulk Modulus (K - Pa)
biotCoefficient (npt.NDArray[np.float64]) – Biot coefficient (b).
porosity (npt.NDArray[np.float64]) – Rock porosity (\(\phi\)).
- Returns:
Compressibility array (C - Pa^-1).
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.compressibilityOed(shearModulus, bulkModulus, porosity)[source]
Compute compressibility from elastic moduli and porosity.
Compressibility formula is:
\[C = \frac{1}{\phi}.\frac{3}{3K+4G}\]- Parameters:
shearModulus (npt.NDArray[np.float64]) – shear modulus (G - Pa).
bulkModulus (npt.NDArray[np.float64]) – Bulk Modulus (K - Pa).
porosity (npt.NDArray[np.float64]) – Rock porosity (\(\phi\)).
- Returns:
Oedometric Compressibility (C - Pa^-1).
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.compressibilityReal(deltaPressure, porosity, porosityInitial)[source]
Compute compressibility from elastic moduli and porosity.
Compressibility formula is:
\[C = \frac{\phi-\phi_0}{\Delta P.\phi_0}\]- Parameters:
deltaPressure (npt.NDArray[np.float64]) – Pressure deviation (\(\Delta P\) - Pa).
porosity (npt.NDArray[np.float64]) – Rock porosity (\(\phi\)).
porosityInitial (npt.NDArray[np.float64]) – initial porosity (\(\phi_0\)).
- Returns:
Real compressibility (C - Pa^-1).
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.computeNormalShearStress(stressTensor, directionVector)[source]
Compute normal and shear stress according to stress tensor and direction.
- Parameters:
stressTensor (npt.NDArray[np.float64]) – 3x3 stress tensor
directionVector (npt.NDArray[np.float64]) – direction vector
- Returns:
normal and shear stresses.
- Return type:
tuple[float, float]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.computeStressPrincipalComponents(stressTensor)[source]
Compute stress principal components.
- Parameters:
stressTensor (npt.NDArray[np.float64]) – stress tensor.
- Returns:
- Principal components sorted in ascending
order.
- Return type:
tuple[float, float, float]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.computeStressPrincipalComponentsFromStressVector(stressVector)[source]
Compute stress principal components from stress vector.
- Parameters:
stressVector (npt.NDArray[np.float64]) – stress vector.
- Returns:
- Principal components sorted in ascending
order.
- Return type:
tuple[float, float, float]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.criticalPorePressure(stressVector, rockCohesion, frictionAngle=0.0)[source]
Compute the critical pore pressure.
Fracturing can occur in areas where Critical pore pressure is greater than the pressure. (see Khan, S., Khulief, Y., Juanes, R., Bashmal, S., Usman, M., & Al-Shuhail, A. (2024). Geomechanical Modeling of CO2 Sequestration: A Review Focused on CO2 Injection and Monitoring. Journal of Environmental Chemical Engineering, 112847. https://doi.org/10.1016/j.jece.2024.112847)
\[P_{Cr}=\frac{c.\cos(\alpha)}{1-\sin(\alpha)} + \frac{3\sigma_3-\sigma_1}{2}\]- Parameters:
stressVector (npt.NDArray[np.float64]) – stress vector (\(\sigma\) - Pa).
rockCohesion (float) – rock cohesion (c - Pa)
frictionAngle (float, optional) –
friction angle (\(\alpha\) - rad).
Defaults to 0 rad.
- Returns:
critical pore pressure (\(P_{Cr}\) - Pa)
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.criticalPorePressureThreshold(pressure, criticalPorePressure)[source]
Compute the critical pore pressure threshold.
Defined as the ratio between pressure and critical pore pressure. Fracturing can occur in areas where critical pore pressure threshold is >1.
\[P_{Th}=\frac{P}{P_{Cr}}\]- Parameters:
pressure (npt.NDArray[np.float64]) – pressure (P - Pa)
criticalPorePressure (npt.NDArray[np.float64]) – Critical pore pressure (\(P_{Cr}\) - Pa)
- Returns:
Critical pore pressure threshold (\(P_{Th}\))
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.criticalTotalStressRatio(pressure, verticalStress)[source]
Compute critical total stress ratio.
Corresponds to the fracture index from Lemgruber-Traby et al (2024). Fracturing can occur in areas where K > Total stress ratio. (see Lemgruber-Traby, A., Cacas, M. C., Bonte, D., Rudkiewicz, J. L., Gout, C., & Cornu, T. (2024). Basin modelling workflow applied to the screening of deep aquifers for potential CO2 storage. Geoenergy, geoenergy2024-010. https://doi.org/10.1144/geoenergy2024-010)
\[\sigma_{Ĉr}=\frac{P}{\sigma_v}\]- Parameters:
pressure (npt.NDArray[np.float64]) – Pressure (P - Pa)
verticalStress (npt.NDArray[np.float64]) – Vertical total stress (\(\sigma_v\) - Pa) using Geos convention
- Returns:
- critical total stress ratio
(\(\sigma_{Cr}\))
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.deviatoricStressPathOed(poissonRatio)[source]
Compute the Deviatoric Stress Path parameter in oedometric conditions.
This parameter corresponds to the ratio between horizontal and vertical stresses in oedometric conditions.
\[DSP=\frac{\nu}{1-\nu}\]- Parameters:
poissonRatio (npt.NDArray[np.float64]) – Poisson’s ratio (\(\nu\))
- Returns:
- Deviatoric Stress Path parameter in
oedometric conditions (DSP)
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.elasticStrainFromBulkShear(deltaEffectiveStress, bulkModulus, shearModulus)[source]
Compute elastic strain from Bulk and Shear moduli.
See documentation on https://dnicolasespinoza.github.io/node5.html.
\[ \begin{align}\begin{aligned}\epsilon=\Delta\sigma_{eff}.C^{-1}\\\begin{split}C=\begin{pmatrix} K+\frac{4}{3}G & K-\frac{2}{3}G & K-\frac{2}{3}G & 0 & 0 & 0\\ K-\frac{2}{3}G & K+\frac{4}{3}G & K-\frac{2}{3}G & 0 & 0 & 0\\ K-\frac{2}{3}G & K-\frac{2}{3}G & K+\frac{4}{3}G & 0 & 0 & 0\\ 0 & 0 & 0 & \nu & 0 & 0\\ 0 & 0 & 0 & 0 & \nu & 0\\ 0 & 0 & 0 & 0 & 0 & \nu\\ \end{pmatrix}\end{split}\end{aligned}\end{align} \]where C is stiffness tensor.
- Parameters:
deltaEffectiveStress (npt.NDArray[np.float64]) – effective stress variation (\(\Delta\sigma_{eff}\) - Pa) [S11, S22, S33, S23, S13, S12]
bulkModulus (npt.NDArray[np.float64]) – Bulk modulus (K - Pa)
shearModulus (npt.NDArray[np.float64]) – Shear modulus (G - Pa)
- Returns:
elastic strain (\(\epsilon\))
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.elasticStrainFromYoungPoisson(deltaEffectiveStress, youngModulus, poissonRatio)[source]
Compute elastic strain from Young modulus and Poisson ratio.
See documentation on https://dnicolasespinoza.github.io/node5.html.
\[ \begin{align}\begin{aligned}\epsilon=\Delta\sigma_{eff}.C^{-1}\\\begin{split}C=\begin{pmatrix} \lambda+2G & \lambda & \lambda & 0 & 0 & 0\\ \lambda & \lambda+2G & \lambda & 0 & 0 & 0\\ \lambda & \lambda & \lambda+2G & 0 & 0 & 0\\ 0 & 0 & 0 & \nu & 0 & 0\\ 0 & 0 & 0 & 0 & \nu & 0\\ 0 & 0 & 0 & 0 & 0 & \nu\\ \end{pmatrix}\end{split}\end{aligned}\end{align} \]where C is stiffness tensor, \(\nu\) is shear modulus, \(\lambda\) is lambda coefficient.
- Parameters:
deltaEffectiveStress (npt.NDArray[np.float64]) – effective stress variation (\(\Delta\sigma_{eff}\) - Pa) [S11, S22, S33, S23, S13, S12]
youngModulus (npt.NDArray[np.float64]) – Young modulus (E - Pa)
poissonRatio (npt.NDArray[np.float64]) – Poisson’s ratio (\(\nu\))
- Returns:
elastic strain (\(\epsilon\))
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.lambdaCoefficient(youngModulus, poissonRatio)[source]
Compute lambda coefficient from young modulus and Poisson ratio.
\[\lambda = \frac{E*\nu}{(1+\nu)(1-2\nu)}\]- Parameters:
youngModulus (npt.NDArray[np.float64]) – Young modulus (E - Pa)
poissonRatio (npt.NDArray[np.float64]) – Poisson’s ratio (\(\nu\))
- Returns:
lambda coefficient (\(\lambda\))
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.lithostaticStress(depth, density, gravity)[source]
Compute the lithostatic stress.
- Parameters:
depth (npt.NDArray[np.float64]) – depth from surface - m)
density (npt.NDArray[np.float64]) – density of the overburden (kg/m³)
gravity (float) – gravity (m²/s)
- Returns:
lithostatic stress (Pa)
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.oedometricModulus(Edef, poissonRatio)[source]
Compute Oedometric modulus.
\[M_{oed} = \frac{E_{def}}{1-2\frac{\nu^2}{1-\nu}}\]- Parameters:
Edef (npt.NDArray[np.float64]) – Deformation modulus (\(E_{def}\) - Pa)
poissonRatio (npt.NDArray[np.float64]) – Poisson’s ratio (\(\nu\))
- Returns:
Oedometric modulus (\(M_{oed}\) - Pa)
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.poissonRatio(bulkModulus, shearModulus)[source]
Compute Poisson’s ratio.
\[\nu = \frac{3K-2G}{2(3K+G)}\]- Parameters:
bulkModulus (npt.NDArray[np.float64]) – Bulk modulus (K - Pa)
shearModulus (npt.NDArray[np.float64]) – Shear modulus (G - Pa)
- Returns:
Poisson’s ratio (\(\nu\))
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.reservoirStressPathOed(biotCoefficient, poissonRatio)[source]
Compute reservoir stress path in oedometric conditions.
\[RSP_{oed}=b\frac{1-2\nu}{1-\nu}\]- Parameters:
biotCoefficient (npt.NDArray[np.float64]) – biot coefficient (b)
poissonRatio (npt.NDArray[np.float64]) – Poisson’s ratio (\(\nu\))
- Returns:
reservoir stress path (\(RSP_{oed}\))
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.reservoirStressPathReal(deltaStress, deltaPressure)[source]
Compute real reservoir stress path.
\[RSP_{real}=\frac{\Delta\sigma}{\Delta P}\]- Parameters:
deltaStress (npt.NDArray[np.float64]) – stress difference from start (\(\Delta\sigma\) - Pa)
deltaPressure (npt.NDArray[np.float64]) – pressure difference from start (\(\Delta P\) - Pa)
- Returns:
reservoir stress path (\(RSP_{real}\))
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.shearCapacityUtilization(traction, rockCohesion, frictionAngle)[source]
Compute shear capacity utilization (SCU).
\[SCU = \frac{abs(\tau_1)}{\tau_{max}}\]where tau_{max} is the Mohr-Coulomb failure threshold.
- Parameters:
traction (npt.NDArray[np.float64]) – traction vector (\((\sigma, \tau_1, \tau2)\) - Pa)
rockCohesion (float) – rock cohesion (c - Pa).
frictionAngle (float) – friction angle (\(\alpha\) - rad).
- Returns:
SCU
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.shearModulus(youngModulus, poissonRatio)[source]
Compute shear Modulus from young modulus and poisson ratio.
\[G = \frac{E}{2(1+\nu)}\]- Parameters:
youngModulus (npt.NDArray[np.float64]) – Young modulus (E - Pa)
poissonRatio (npt.NDArray[np.float64]) – Poisson’s ratio (\(\nu\))
- Returns:
Shear modulus (G - Pa)
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.specificGravity(density, specificDensity)[source]
Compute the specific gravity.
\[SG = \frac{\rho}{\rho_f}\]- Parameters:
density (npt.NDArray[np.float64]) – density (\(\rho\) - kg/m³)
specificDensity (float) – fluid density (\(\rho_f\) - kg/m³)
- Returns:
specific gravity (SG - no unit)
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.stressRatio(horizontalStress, verticalStress)[source]
Compute horizontal to vertical stress ratio.
\[r = \frac{\sigma_h}{\sigma_v}\]- Parameters:
horizontalStress (npt.NDArray[np.float64]) – horizontal stress (\(\sigma_h\) - Pa)
verticalStress (npt.NDArray[np.float64]) – vertical stress (\(\sigma_v\) - Pa)
- Returns:
stress ratio (\(\sigma\) - Pa)
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.totalStress(effectiveStress, biot, pressure)[source]
Compute total stress from effective stress, pressure, and Biot coeff.
\[\sigma_{tot} = \sigma_{eff}-bP\]- Parameters:
effectiveStress (npt.NDArray[np.float64]) – effective stress (\(\sigma_{eff}\) - Pa) using Geos convention
biot (npt.NDArray[np.float64]) – Biot coefficient (b)
pressure (npt.NDArray[np.float64]) – Pore pressure (P - Pa)
- Returns:
total stress (\(\sigma_{tot}\) - Pa)
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.totalStressRatioThreshold(pressure, horizontalStress)[source]
Compute total stress ratio threshold.
Corresponds to the fracture threshold from Lemgruber-Traby et al (2024). Fracturing can occur in areas where FT > 1. Equals FractureIndex / totalStressRatio. (see Lemgruber-Traby, A., Cacas, M. C., Bonte, D., Rudkiewicz, J. L., Gout, C., & Cornu, T. (2024). Basin modelling workflow applied to the screening of deep aquifers for potential CO2 storage. Geoenergy, geoenergy2024-010. https://doi.org/10.1144/geoenergy2024-010)
\[\sigma_{Th}=\frac{P}{\sigma_h}\]- Parameters:
pressure (npt.NDArray[np.float64]) – Pressure (P - Pa)
horizontalStress (npt.NDArray[np.float64]) – minimal horizontal total stress (\(\sigma_h\) - Pa) using Geos convention
- Returns:
fracture threshold (\(\sigma_{Th}\))
- Return type:
npt.NDArray[np.float64]
- geos.geomechanics.processing.geomechanicsCalculatorFunctions.youngModulus(bulkModulus, shearModulus)[source]
Compute Young modulus.
\[E = \frac{9K.G}{3K+G}\]- Parameters:
bulkModulus (npt.NDArray[np.float64]) – Bulk modulus (K - Pa)
shearModulus (npt.NDArray[np.float64]) – Shear modulus (G - Pa)
- Returns:
Young modulus (E - Pa)
- Return type:
npt.NDArray[np.float64]