Geomechanics models
This
geos.geomechanics.model.MohrCircle module
MohrCircle module define the Mohr’s circle parameters.
Inputs are a 6 component stress vector, a circle id, and the mechanical convention used for compression. The class computes principal components from stress vector during initialization. Accessors get access to these 3 principal components as well as circle center and radius.
To use the object:
from processing.MohrCircle import MohrCircle
# create the object
stressVector :npt.NDArray[np.float64]
circleId :str
mohrCircle :MohrCircle = MohrCircle(circleId)
# either directly set principal components (p3 <= p2 <= p1)
mohrCircle.SetPrincipalComponents(p3, p2, p1)
# or compute them from stress vector
mohrCircle.computePrincipalComponents(stressVector)
# access to members
id :str = mohrCircle.getCircleId()
p1, p2, p3 :float = mohrCircle.getPrincipalComponents()
radius :float = mohrCircle.getCircleRadius()
center :float = mohrCircle.getCircleCenter()
- class geos.geomechanics.model.MohrCircle.MohrCircle(circleId)[source]
Bases:
object
Compute Mohr’s Circle from input stress.
- Parameters:
circleId (str) – Mohr’s circle id.
- computePrincipalComponents(stressVector)[source]
Calculate principal components.
- Parameters:
stressVector (npt.NDArray[np.float64]) – 6 components stress vector Stress vector must follow GEOS convention (XX, YY, ZZ, YZ, XZ, XY)
geos.geomechanics.model.MohrCoulomb module
MohrCoulomb module define the Mohr-Coulomb failure envelop class.
Inputs are the rock cohesion (Pa) and the friction angle (°). 2 methods allow to compute either shear stress values according to normal stress values, or the failure envelope including normal stress and corresponding shear stress values.
To use the object:
from processing.MohrCoulomb import MohrCoulomb
# create the object
rockCohesion :float = 1.5e9 # Pa
frictionAngle :float = 10 # degree
mohrCoulomb = MohrCoulomb(rockCohesion, frictionAngle)
# compute shear stress values according to normal stress values
normalStress :npt.NDArray[np.float64] = np.linspace(1e9, 1.5e9)
shearStress :npt.NDArray[np.float64] = mohrCoulomb.computeShearStress(normalStress)
# compute the failure envelope including normal stress and corresponding shear
# stress values
# ones may also define minimum normal stress and the number of points
normalStressMax :float = 1.5e9
normalStress, shearStress = mohrCoulomb.computeFailureEnvelop(normalStressMax)
- class geos.geomechanics.model.MohrCoulomb.MohrCoulomb(rockCohesion, frictionAngle)[source]
Bases:
object
Define Mohr-Coulomb failure envelop.
- Parameters:
rockCohesion (float) – rock cohesion (Pa).
frictionAngle (float) – friction angle (rad).
- computeFailureEnvelop(stressNormalMax, stressNormalMin=None, n=100)[source]
Compute the envelope failure between min and max normal stress.
- Parameters:
stressNormalMax (float) – Maximum normal stress (Pa)
stressNormalMin (float | None, optional) –
Minimum normal stress. If it is None, the envelop is computed from the its intersection with the abscissa axis.
Defaults to None.
n (int, optional) – Number of points to define the envelop.
100. (Defaults to)
- Returns:
failure envelop coordinates where first element is the abscissa and second element is the ordinates.
- Return type:
tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]