Linear poroelastic isotropic solid model

Overview

This model may be used to represents a porous material with a linear poroelastic isotropic response to coupled deformation-diffusion processes. The relationship between stress and strain is typically formulated within the framework of the Biot theory of poroelasticity, which for the case of linear poroelasticity, may be expressed as:

\sigma_{ij} = \sigma\prime_{ij}  - b p \delta_{ij} = \lambda \epsilon_{kk} + 2 \mu \epsilon_{ij} - b p \delta_{ij},

where \sigma_{ij} is the ij component of the total stress tensor, \sigma\prime_{ij} is the ij component of the effective (Cauchy) stress tensor, \epsilon_{ij} is the ij component of the the strain tensor, \lambda is the Lames elastic constant, \mu is the elastic shear modulus, b is Biot’s coefficient, p is fluid pressure, and \delta is Kronecker delta.

Hooke’s Law may also be expressed using Voigt notation for the effective stress and strain tensors as:

\tensor{\sigma\prime} = \tensor{C} \cdot \tensor{\epsilon},

or,

\begin{bmatrix}
  \sigma\prime_{11} \\
  \sigma\prime_{22} \\
  \sigma\prime_{33} \\
  \sigma\prime_{23} \\
  \sigma\prime_{13} \\
  \sigma\prime_{12}
\end{bmatrix}
=
\begin{bmatrix}
  2\mu+\lambda  &   \lambda     &   \lambda   & 0   & 0 & 0 \\
      \lambda     &  2\mu+\lambda   &   \lambda   & 0   & 0 & 0 \\
      \lambda     &    \lambda    & 2\mu+\lambda & 0  & 0 & 0 \\
      0         &       0     &       0 &\mu  & 0 & 0 \\
  0         &           0     & 0       & 0   & \mu & 0 \\
  0         &       0     & 0       & 0   & 0 & \mu
\end{bmatrix}
\begin{bmatrix}
  \epsilon_{11} \\
  \epsilon_{22} \\
  \epsilon_{33} \\
  2\epsilon_{23} \\
  2\epsilon_{13} \\
  2\epsilon_{12}
\end{bmatrix}.

Variations

The application of linear poroelasticity as presented above is typically restricted to the case of infinitesimal strain. For the case of infinitesimal strain, the above relations are applied directly. For the case of finite strain, the above relations may be slightly modified to an incremental update and rotation:

\Delta \tensor{\sigma\prime} &= \tensor{C} \cdot \hat{\tensor{D}},\\
\tensor{\sigma\prime}^{n+1} &= \hat{\tensor{R}}( \tensor{\sigma\prime}^{n} + \Delta \tensor{\sigma\prime} ) \hat{\tensor{R}}^T,

where \hat{\tensor{D}} is the “incremental rate of deformation tensor” and \hat{\tensor{R}} is the incremental rotation tensor, which are typically calculated from the velocity gradient. This extension into finite strain constitutes a hypo-elastic update, and the choice of method to calculate \hat{\tensor{D}}, and \hat{\tensor{R}} determines if the update is objective. One commonly used method is the Hughes-Winget algorithm.

Parameters

The following attributes are supported:

Name Type Default Description
BiotCoefficient real64 1 Biot’s coefficient
compressibility real64 0 Pore volume compressibilty
defaultBulkModulus real64 -1 Elastic Bulk Modulus Parameter
defaultDensity real64 required Default Material Density
defaultPoissonRatio real64 -1 Poisson’s ratio
defaultShearModulus real64 -1 Elastic Shear Modulus Parameter
defaultYoungsModulus real64 -1 Elastic Young’s Modulus.
name string required A name is required for any non-unique nodes
referencePressure real64 0 ReferencePressure

Example

<Constitutive>
  <PoroLinearElasticIsotropic name="shale"
                              defaultDensity="2700"
                              defaultBulkModulus="61.9e6"
                              defaultShearModulus="28.57e6"
                              BiotCoefficient="1.0"/>
</Constitutive>