# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright 2023-2024 TotalEnergies.
# SPDX-FileContributor: Alexandre Benedicto, Martin Lemay
import numpy as np
import numpy.typing as npt
from typing_extensions import Self, Union
__doc__ = """
MohrCoulomb module define the Mohr-Coulomb failure envelop class.
Inputs are the rock cohesion (Pa) and the friction angle (°).
2 methods allow to compute either shear stress values according to normal stress
values, or the failure envelope including normal stress and corresponding shear
stress values.
To use the object:
.. code-block:: python
from processing.MohrCoulomb import MohrCoulomb
# create the object
rockCohesion :float = 1.5e9 # Pa
frictionAngle :float = 10 # degree
mohrCoulomb = MohrCoulomb(rockCohesion, frictionAngle)
# compute shear stress values according to normal stress values
normalStress :npt.NDArray[np.float64] = np.linspace(1e9, 1.5e9)
shearStress :npt.NDArray[np.float64] = mohrCoulomb.computeShearStress(normalStress)
# compute the failure envelope including normal stress and corresponding shear
# stress values
# ones may also define minimum normal stress and the number of points
normalStressMax :float = 1.5e9
normalStress, shearStress = mohrCoulomb.computeFailureEnvelop(normalStressMax)
"""
[docs]
class MohrCoulomb:
def __init__(self: Self, rockCohesion: float, frictionAngle: float) -> None:
"""Define Mohr-Coulomb failure envelop.
Args:
rockCohesion (float): rock cohesion (Pa).
frictionAngle (float): friction angle (rad).
"""
# rock cohesion
self.m_rockCohesion = rockCohesion
# failure envelop slope
self.m_slope: float = np.tan(frictionAngle)
# intersection of failure envelop and abscissa axis
self.m_sigmaMin: float = -rockCohesion / self.m_slope
[docs]
def computeShearStress(
self: Self, stressNormal0: Union[float, npt.NDArray[np.float64]]
) -> Union[float, npt.NDArray[np.float64]]:
"""Compute shear stress from normal stress.
Args:
stressNormal0 (float | npt.NDArray[np.float64]): normal stress
value (Pa)
Returns:
float | npt.NDArray[np.float64]): shear stress value.
"""
stressNormal: npt.NDArray[np.float64] = np.array(stressNormal0)
tau: npt.NDArray[np.float64] = self.m_slope * stressNormal + self.m_rockCohesion
return tau
[docs]
def computeFailureEnvelop(
self: Self,
stressNormalMax: float,
stressNormalMin: Union[float, None] = None,
n: int = 100,
) -> tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]:
"""Compute the envelope failure between min and max normal stress.
Args:
stressNormalMax (float): Maximum normal stress (Pa)
stressNormalMin (float | None, optional): Minimum normal stress.
If it is None, the envelop is computed from the its intersection
with the abscissa axis.
Defaults to None.
n (int, optional): Number of points to define the envelop.
Defaults to 100.
Returns:
tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]: failure
envelop coordinates where first element is the abscissa and second
element is the ordinates.
"""
sigmaMin: float = (
self.m_sigmaMin if stressNormalMin is None else stressNormalMin
)
stressNormal: npt.NDArray[np.float64] = np.linspace(
sigmaMin, stressNormalMax, n
)
return (stressNormal, np.array(self.computeShearStress(stressNormal)))