Source code for geos_posp.processing.MohrCoulomb

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright 2023-2024 TotalEnergies.
# SPDX-FileContributor: Alexandre Benedicto, Martin Lemay
import numpy as np
import numpy.typing as npt
from typing_extensions import Self, Union

__doc__ = """
MohrCoulomb module define the Mohr-Coulomb failure envelop class.

Inputs are the rock cohesion (Pa) and the friction angle (°).
2 methods allow to compute either shear stress values according to normal stress
values, or the failure envelope including normal stress and corresponding shear
stress values.

To use the object:

.. code-block:: python

    from processing.MohrCoulomb import MohrCoulomb

    # create the object
    rockCohesion :float = 1.5e9 # Pa
    frictionAngle :float = 10 # degree
    mohrCoulomb = MohrCoulomb(rockCohesion, frictionAngle)

    # compute shear stress values according to normal stress values
    normalStress :npt.NDArray[np.float64] = np.linspace(1e9, 1.5e9)
    shearStress :npt.NDArray[np.float64] = mohrCoulomb.computeShearStress(normalStress)

    # compute the failure envelope including normal stress and corresponding shear
    # stress values
    # ones may also define minimum normal stress and the number of points
    normalStressMax :float = 1.5e9
    normalStress, shearStress = mohrCoulomb.computeFailureEnvelop(normalStressMax)
"""


[docs] class MohrCoulomb: def __init__(self: Self, rockCohesion: float, frictionAngle: float) -> None: """Define Mohr-Coulomb failure envelop. Args: rockCohesion (float): rock cohesion (Pa). frictionAngle (float): friction angle (rad). """ # rock cohesion self.m_rockCohesion = rockCohesion # failure envelop slope self.m_slope: float = np.tan(frictionAngle) # intersection of failure envelop and abscissa axis self.m_sigmaMin: float = -rockCohesion / self.m_slope
[docs] def computeShearStress( self: Self, stressNormal0: Union[float, npt.NDArray[np.float64]] ) -> Union[float, npt.NDArray[np.float64]]: """Compute shear stress from normal stress. Args: stressNormal0 (float | npt.NDArray[np.float64]): normal stress value (Pa) Returns: float | npt.NDArray[np.float64]): shear stress value. """ stressNormal: npt.NDArray[np.float64] = np.array(stressNormal0) tau: npt.NDArray[np.float64] = self.m_slope * stressNormal + self.m_rockCohesion return tau
[docs] def computeFailureEnvelop( self: Self, stressNormalMax: float, stressNormalMin: Union[float, None] = None, n: int = 100, ) -> tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]: """Compute the envelope failure between min and max normal stress. Args: stressNormalMax (float): Maximum normal stress (Pa) stressNormalMin (float | None, optional): Minimum normal stress. If it is None, the envelop is computed from the its intersection with the abscissa axis. Defaults to None. n (int, optional): Number of points to define the envelop. Defaults to 100. Returns: tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]: failure envelop coordinates where first element is the abscissa and second element is the ordinates. """ sigmaMin: float = ( self.m_sigmaMin if stressNormalMin is None else stressNormalMin ) stressNormal: npt.NDArray[np.float64] = np.linspace( sigmaMin, stressNormalMax, n ) return (stressNormal, np.array(self.computeShearStress(stressNormal)))