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GEOS Documentation

GEOS is a code framework focused on enabling streamlined development of physics simulations on high performance
computing platforms. Our documentation is organized into several separate guides, given that different users will have
different needs.

We recommend all users begin with the Quick Start guide, which will walk you through downloading and compiling
the code. Application focused users may then want to explore our Tutorials, which provide an introduction to the basic
capabilities of the code. More detailed descriptions of these capabilities can then be found in the User Guide.

For those interested in developing new capabilities in GEOS, we provide a Developer Guide. The code itself is also
documented inline using doxygen. The Build Guide contains more detailed information about third-party dependencies,
the build system, and the continuous integration system. Finally, GEOS has a self-documenting data structure. The
Datastructure Index is an automatically generated list of all available input parameters and data structures in the code.
This is a comprehensive resource, but probably not the place to start.

High quality documentation is a critical component of a successful code. If you have suggestions for improving the
guides below, please post an issue on our issue tracker.

Quick Start Guide

New to GEOS? We will walk you through downloading the source, compiling the code, and testing the installation.
To the Quick Start

Tutorials

Working tutorials that show how to run some common problems. After going through these examples, you should have
a good understanding of how to set up and solve your own models.

To the Tutorials

Basic Examples

Example problems that are organized around physical processes (fluid flow, mechanics, etc.).
To the Basic Examples

Advanced Examples

Example problems that demonstrate additional physical models, constitutive models, advanced features, etc.
To the Advanced Examples

User Guide

Detailed instructions on how to construct input files, configure problems, manage outputs, etc.
To the User Guide

Python Tools

Documentation for the python packages distributed alongside GEOS used to manage xml files, condition numerical
meshes, read outputs, etc.

To the Python Tools Documentation
Feature Requests, Reporting Bugs, and Support
To make feature requests, report bugs, or get support (after reviewing the user guide) please submit an issue on Github.

To the “New issue” page on the GEOS Github repository
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1.1 Quick Start Guide

The goal of this page is to get you started as quickly as possible using GEOS. We will walk you through downloading
the source, compiling the code, and testing the installation.

Before jumping to the installation process, we want to first address some frequently asked questions we get from new
users. If you are itching to get started, feel free to jump ahead to the relevant sections.

1.1.1 Frequently Asked Questions

Does GEOS have a graphical user interface?:

Given the focus on rapid development and HPC environments, GEOS does not have a graphical user interface. This is
consistent with many other high performance computing packages, but we recognize it can be a deal-breaker for certain
users. For those who can get past this failing, we promise we still have a lot to offer. In a typical workflow, you will
prepare an XML-based input file describing your problem. You may also prepare a mesh file containing geometric and
property information describing, say, a reservoir you would like to simulate. There is no shortage of GUI tools that
can help you in this model building stage. The resulting input deck is then consumed by GEOS to run the simulation
and produce results. This may be done in a terminal of your local machine or by submitting a job to a remote server.
The resulting output files can then be visualized by any number of graphical visualization programs (typically Vislt or
paraview). Thus, while GEOS is GUI free, the typical workflow is not.

Do | need to be a code developer to use GEOS?:

For the moment, most users will need to download and compile the code from source, which we readily admit this
requires a certain level of development expertise. We try to make this process as easy as possible, and we are working
on additional deployment options to make this process easier. Once installed, however, our goal is to make GEOS
accessible to developers and non-developers alike. Our target audience includes engineers and scientists who want to
solve tough application problems, but could care less about the insides of the tool. For those of you who are interested
in scientific computing, however, GEOS is an open source project and we welcome external contributions.

What are the system requirements?:

GEOS is primarily written in C++, with a focus on standards compliance and platform-to-platform portability. It is
designed to run on everything from commodity laptops to the world’s most powerful supercomputers. We regularly test
the code across a variety of operating systems and compilers. Most of these operating systems are Linux/UNIX based
(e.g. Ubuntu, CentOS, Mac OSX). We do have developers working in Windows environments, but they use a Virtual
Machine or work within a docker image rather than directly in the Windows environment. In the instructions below, we
assume you have access to fairly standard development tools. Using advanced features of GEOS, like GPU-acceleration,
will of course introduce additional hardware and software requirements.



https://wci.llnl.gov/simulation/computer-codes/visit/
https://www.paraview.org/
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Help, | get errors while trying to download/compile/run!:

Unfortunately, no set of instructions is foolproof. It is simply impossible to anticipate every system configuration or
user. If you run into problems during the installation, we recommend the following five-step process:

1. Take a moment to relax, and then re-read the instructions carefully. Perhaps you overlooked a key step? Re-read
the error message(s) closely. Modern compilation tools are often quite helpful in reporting exactly why things
fail.

2. Type a few keywords from your error into a search engine. It is possible someone else out there has encountered
your problem before, and a well-chosen keyword can often produce an instant solution. Note that when a com-
pilation fails, you may get pages and pages of errors. Try to identify the first one to occur and fix that. One error
will often trigger subsequent errors, and looking at the last error on the screen may not be so helpful.

3. If you encounter problems building one of the third-party libraries we depend on, check out their support pages.
They may be able to help you more directly than we can.

4. Still stuck? Check out our issues tracker, searching current or closed issues that may address your problem.
Perhaps someone has had an identical issue, or something close. The issue tracker has a convenient search bar
where you can search for relevant keywords. Remember to remove the default is:open keyword to search both
open and closed issues.

5. If you have exhausted the options above, it is time to seek help from the developers. Post an issue on our issue
tracker. Be specific, providing as much information as possible about your system setup and the error you are
encountering. Please be patient in this process, as we may need to correspond a few times and ask you to run
additional tests. Most of the time, users have a slightly unusual system configuration that we haven’t encountered
yet, such as an older version of a particular library. Other times there is a legitimate bug in GEOS to be addressed.
Take pride in the fact that you may be saving the next user from wasted time and frustration.

1.1.2 Repository Organization

The source for GEOS and related tools are hosted on Github. We use Git workflows to version control our code
and manage the entire development process. On Github, we have a GEOS Organization that hosts several related
repositories.

You should sign up for a free Github account, particularly if you are interested in posting issues to our issue tracker and
communicating with the developers. The main repository of interest is obviously GEOS itself: GEOS

We also rely on two types of dependencies: first-party and third-party. First-party dependencies are projects directly
associated with the GEOS effort, but kept in separate repositories because they form stand-alone tools. For example,
there is an equation-of-state package called PVTPackage or the streamlined CMake-based foundation BLT . These
packages are handled as Git Submodules, which provides a transparent way of coordinating multiple code development
projects. Most users will never have to worry that these modules are in fact separate projects from GEOS.

We also rely on several open-source Third-Party Libraries (TPLs) (see thirdPartyLibs). These are well-respected
projects developed externally to GEOS. We have found, however, that many compilation issues stem from version
incompatibilities between different packages. To address this, we provide a mirror of these TPLs, with version com-
binations we know play nicely together. We also provide a build script that conveniently and consistently builds those
dependencies.

Our build system will automatically use the mirror package versions by default. You are welcome to tune your config-
uration, however, to point to different versions installed on your system. If you work on an HPC platform, for example,
common packages may already be available and optimized for platform hardware. For new users, however, it may be
safer to begin with the TPL mirror.

© Note
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If you are working on an HPC platform with several other GEOS users, we often compile the TPLs in a shared
location so individual users don’t have to waste their storage quota. Inquire with your institution’s point-of-contact
whether this option already exists. For all LLNL systems, the answer is yes.

Finally, there are also several private repositories only accessible to the core development team, which we use for
behind-the-scene testing and maintenance of the code.

1.1.3 Username and Authentication
New users should sign up for a free Github account.

If you intend to develop in the GEOS codebase, you may benefit from setting up your git credentials (see Git Workflow).

1.1.4 Download

It is possible to directly download the source code as a zip file. We strongly suggest, however, that users don’t rely on
this option. Instead, most users should use Git to either clone or fork the repository. This makes it much easier to stay
up to date with the latest releases and bug fixes. If you are not familiar with the basics of Git, here is a helpful resource
to get you started.

The tutorial here assumes you will use a https clone with no specific credentials. Using an ssh connection pattern
requires a very slight modification. See the Additional Notes at the end of this section for details.

If you do not already have Git installed on your system, you will need to install it. We recommend using a relatively
recent version of Git, as there have been some notable improvements over the past few years. You can check if Git is
already available by opening a terminal and typing

[git --version J

You’ll also need the git-1fs large file extension.

The first task is to clone the GEOS and thirdPartyLibs repositories. If you do not tell it otherwise, the build system
will expect the GEOS and thirdPartyLibs to be parallel to each other in the directory structure. For example,

codes/
GEOS/
thirdPartyLibs/

where the toplevel codes directory can be re-named and located wherever you like. It is possible to customize the
build system to expect a different structure, but for now let us assume you take the simplest approach.

First, using a terminal, create the codes directory wherever you like.

cd /insert/your/desired/path/
mkdir codes
cd codes

Inside this directory, we can clone the GEOS repository. We will also use some Git commands to initialize and down-
load the submodules (e.g. LvArray).

git clone https://github.com/GEOS-DEV/GEOS.git
cd GEOS

git 1fs install

git submodule init

git submodule update

cd ..

1.1. Quick Start Guide 5
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If all goes well, you should have a complete copy of the GEOS source at this point. The most common errors people
encounter here have to do with Github not recognizing their authentication settings and/or repository permissions. See
the previous section for tips on ensuring your SSH is working properly.

Note: Previous versions of GEOS also imported the integratedTests submodule, which is not publicly available (access
is limited to the core development team). This may cause the git submodule update command to fail. In that case,
run git submodule deinit integratedTests before git submodule update. This submodule is not required
for building GEOS.

cd GEOS

git submodule update --init src/cmake/blt

git submodule update --init src/coreComponents/LvArray

git submodule update --init src/coreComponents/fileI0O/coupling/hdf5_interface
git submodule update --init src/coreComponents/constitutive/PVTPackage

cd ..

Once we have grabbed GEOS, we do the same for the thirdPartyLibs repository. From the codes directory, type

git clone https://github.com/GEOS-DEV/thirdPartyLibs.git
cd thirdPartyLibs

git 1fs install

git pull

git submodule init

git submodule update

cd ..

Again, if all goes well you should now have a copy of all necessary TPL packages.
Additional Notes:

#. git-1£fs may not function properly (or may be very slow) if your version of git and git-Ifs are not current. If you
are using an older version, you may need to add git 1fs pull after git pull in the above procedures.

#. You can adapt the commands if you use an ssh connection instead. The clone https://github.com/GEOS-DEV/
GEOS.git becomes git clone git@github.com:GEOS-DEV/GEOS.git. You may also be willing to insert your
credentials in the command line (less secure) git clone https://${USER}:${TOKEN}@github.com/GEOS-DEV/
GEOS.git.

1.1.5 Configuration

Before proceeding, make sure to have installed all the minimal prerequisites as described in System prerequisites Note
that GEOS supports a variety of parallel computing models, depending on the hardware and software environment.
Advanced users are referred to the Build Guide for a discussion of the available configuration options.

Before beginning, it is a good idea to have a clear idea of the flavor and version of the build tools you are using. If
something goes wrong, the first thing the support team will ask you for is this information.

cpp --version
mpic++ --version
cmake --version

Here, you may need to replace cpp with the full path to the C++ compiler you would like to use, depending on how
your path and any aliases are configured.
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Defining a Host-Config File

GEOS compilations are driven by a CMake host-config file, which informs the build system about the compilers
you are using, where various packages reside, and what options you want to enable.

A template for creating a simple host-config is provided in host-configs/quick-start-template.cmake.

set( CONFIG_NAME "quick-start" )

# Set compilers path
set (CMAKE_C_COMPILER "path-to-gcc/bin/gcc” CACHE PATH "") # This is typically..

—>something like /usr/bin/gcc ... or clang
set (CMAKE_CXX_COMPILER "path-to-gcc/bin/g++" CACHE PATH "") # This is typically.
—ssomething like /usr/bin/g++ ... or clang++

set (ENABLE_FORTRAN OFF CACHE BOOL "" FORCE)

# Set paths to mpi

set (ENABLE_MPI ON CACHE PATH "")

set (MPI_C_COMPILER "path-to-mpi/bin/mpicc" CACHE PATH "") # This is typically.
—ssomething like /usr/bin/mpicc

set (MPI_CXX_COMPILER "path-to-mpi/bin/mpicxx" CACHE PATH "") # This is typically.
—something like /usr/bin/mpicxx

set (MPIEXEC "path-to-mpi/bin/mpirun" CACHE PATH "") # This is typically..
—>something like /usr/bin/mpirun

# Set paths to blas and lapack

set( BLAS_LIBRARIES "path-to-blas"™ CACHE PATH "" FORCE ) # This is typically.
—>something like /usr/1ib64/libblas.so

set( LAPACK_LIBRARIES "path-to-lapack" CACHE PATH "" FORCE ) # This is typically.
—>something like /usr/lib64/liblapack.so

# Cuda and openMP
set( ENABLE_CUDA OFF CACHE PATH "" FORCE )
set( ENABLE_OPENMP OFF CACHE PATH "" FORCE )

# TPLs

set( ENABLE_TRILINOS OFF CACHE PATH "" FORCE )
set( ENABLE_CALIPER OFF CACHE PATH "" FORCE )
set( ENABLE_DOXYGEN OFF CACHE BOOL "" FORCE)
set( ENABLE_MATHPRESSO OFF CACHE BOOL "" FORCE )

if(NOT ( EXISTS "${GEOS_TPL_DIR}" AND IS_DIRECTORY "${GEOS_TPL_DIR}" ) )

set (GEOS_TPL_DIR " ${CMAKE_SOURCE_DIR}/../../thirdPartyLibs/install-${CONFIG_NAME }-
—release" CACHE PATH "" FORCE )
endif()

include(${CMAKE_CURRENT_LIST_DIR}/tpls.cmake)

The various set () commands are used to set variables that control the build. To begin, make a copy of the template
file and modify the paths according to the installation locations on your system.

We have created a number of default host-config files for common systems. You should browse them to see if any are
close to your needs: We maintain host configuration files (ending in . cmake) for HPC systems at various institutions,
as well as for common personal systems. If you cannot find one that matches your needs, we suggest starting with one
of the shorter ones and modifying it as needed.

1.1. Quick Start Guide 7
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© Note

If you develop a new host-config for a particular platform that may be useful for other users, please consider
sharing it with the developer team.

1.1.6 Compilation

The configuration process for both the third-party libraries (TPLs) and GEOS is managed through a Python script called
config-build.py. This script simplifies and automates the setup by configuring the build and install directories and
by running CMake based on the options set in the host-config file which is passed as a command-Ine argument. The
config-build.py script has several command-line options. Here, we will only use some basic options and rely
on default values for many others. During this build process there wil be automatically generated build and install
directories for both the TPLs and the main code, with names consistent with the name specified in the host-config by
the variable CONFIG_NAME, i.e. build-your-platform-release and install-your-platform-release.

All options can be visualized by running

cd thirdPartyLibs
python scripts/config-build.py -h

© Note

It is strongly recommended that GEOS and TPLs be configured using the same host configuration file. Below,
we assume that you keep this file in, for example, GEOS/host-configs/your-platform.cmake, but the exact
location is up to you.

Compiling the TPLs

© Note

If you are working on an HPC system with other GEOS developers, check with them to see if the TPLs have already
been compiled in a shared directory. If this is the case, you can skip ahead to just compiling the main code. If you
are working on your own machine, you will need to configure and compile both the TPLs and the main code.

We begin by configuring the third-party libraries (TPLs) using the config-build.py script. This script sets up the
build directory and runs CMake to generate the necessary build files.

cd thirdPartyLibs
python scripts/config-build.py -hc ../GEOS/host-configs/your-platform.cmake -bt Release

The TPLs will be configured in a build directory named consistently with your host configuration file, i.e.,
build-your-platform-release.

cd build-your-platform-release
make

© Note

Building all of the TPLs can take quite a while, so you may want to go get a cup of coffee at this point. Also note
that you should not use a parallel make -j N command to try and speed up the build time.
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Compiling GEOS

Once the TPLs have been compiler, the next step is to compile the main code. The config-build.py script is used
to configure the build directory. Before running the configuration script, ensure that the path to the TPLs is correctly
set in the host configuration file by setting

[set(GEOS_TPL_DIR "/path/to/your/TPL/installation/dir" CACHE PATH "") ]

If you have followed these instructions, the TPLs are installed at the default location, i.e. /path/to/your/TPL/
thirdPartyLibs/install-your-platform-release.

cd ../../GEOS
python scripts/config-build.py -hc host-configs/your-platform.cmake -bt Release

An alternative is to set the path GEOS_TPL_DIR via a cmake command line option, e.g.

python scripts/config-build.py -hc host-configs/your-platform.cmake -bt Release -D GEOS_
—TPL_DIR=/full/path/to/thirdPartyLibs

© Note

We highly recommend using full paths, rather than relative paths, whenever possible.

Once the configuration process is completed, we proceed with the compilation of the main code and the instalation of
geos.

cd build-your-platform-release
make -3j4
make install

The parallel make -j 4 will use four processes for compilation, which can substantially speed up the build if you have
a multi-processor machine. You can adjust this value to match the number of processors available on your machine.
The make install command then installs GEOS to a default location unless otherwise specified.

If all goes well, a geosx executable should now be available

[GEOS/install—your—platform—release/bin/geosx J

1.1.7 Running

We can do a quick check that the geosx executable is working properly by calling the executable with our help flag

[./bin/geosx --help ]

This should print out a brief summary of the available command line arguments:

USAGE: geosx -i input.xml [options]

Options:

-7, --help

-i, --input, Input xml filename (required)

-r, --restart, Target restart filename

-X, --X-partitions, Number of partitions in the x-direction
-y, --y-partitions, Number of partitions in the y-direction

(continues on next page)
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(continued from previous page)

-z, --z-partitions, Number of partitions in the z-direction

-s, --schema, Name of the output schema

-b, --use-nonblocking, Use non-blocking MPI communication

-n, --name, Name of the problem, used for output

-s, --suppress-pinned, Suppress usage of pinned memory for MPI communication buffers
-0, --output, Directory to put the output files

-t, --timers, String specifying the type of timer output
--trace-data-migration, Trace host-device data migration

--pause-for, Pause geosx for a given number of seconds before starting.
—execution

Obviously this doesn’t do much interesting, but it will at least confirm that the executable runs. In typical usage, an
input XML must be provided describing the problem to be run, e.g.

[./bin/geosx -i your-problem.xml ]

In a parallel setting, the command might look something like

[mpirun -np 8 ./bin/geosx -i your-problem.xml -x 2 -y 2 -z 2 ]

Note that we provide a series of Tutorials to walk you through the actual usage of the code, with several input examples.
Once you are comfortable the build is working properly, we suggest new users start working through these tutorials.

1.1.8 Testing

It is wise to run our unit test suite as an additional check that everything is working properly. You can run them in the
build folder you just created.

cd GEOS/build-your-platform-release
ctest -V

This will run a large suite of simple tests that check various components of the code. If you have access, you may also
consider running the integrated tests. Please refer to Integrated Tests for further information.

© Note

If all of the unit tests fail, there is likely something wrong with your installation. Refer to the FAQs above for how
best to proceed in this situation. If only a few tests fail, it is possible that your platform configuration has exposed
some issue that our existing platform tests do not catch. If you suspect this is the case, please consider posting an
issue to our issue tracker (after first checking whether other users have encountered a similar issue).

1.2 Tutorials

The easiest way to learn to use GEOS is through worked examples. Here, we have included tutorials showing how to
run some common problems. After working through these examples, you should have a good understanding of how to
set up and solve your own models.

Note that these tutorials are intended to be followed in sequence, as each step introduces a few new skills. Most of the
tutorial models are also quite small, so that large computational resources are not required.
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1.2.1 Tutorial 1: First Steps
Context

In this tutorial, we use a single-phase flow solver (see Singlephase Flow Solver) to solve for pressure propagation on a
10x10x10 cube mesh with anisotropic permeability values. The pressure source is the lowest-left corner element, and
the pressure sink sits at the opposite top corner.

]

A\
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NEANIAN
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NN

Objectives
At the end of this tutorial you will know:
* the basic structure of XML input files used by GEOS,

* how to run GEOS on a simple case requiring no external input files,
* the basic syntax of a solver block for single-phase problems,

* how to control output and visualize results.
Input file

GEOS runs by reading user input information from one or more XML files. For this tutorial, we only need a single
GEOS input file located at:

[inputFi1es/singlePhaseFlow/BD_l@x 10x10_compressible_smoke.xml

Running GEOS

If our XML input file is called my_input.xml, GEOS runs this file by executing:
[/path/to/geosx -i /path/to/my_input.xml

The -i flag indicates the path to the XML input file. To get help on what other command line input flags GEOS
supports, run geosx --help.

Input file structure

1.2. Tutorials
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XML files store information in a tree-like structure using nested blocks of information called elements. In GEOS, the
root of this tree structure is the element called Problem. All elements in an XML file are defined by an opening tag
(<ElementName>) and end by a corresponding closing tag (</ElementName>). Elements can have properties defined
as attributes with key="value" pairs. A typical GEOS input file contains the following tags:

1. Solver

Mesh

Geometry

Events
NumericalMethods
ElementRegions
Constitutive

FieldSpecifications

o ® N kLD

Outputs
XML validation tools

If you have not already done so, please use or enable an XML validation tool (see User Guide/Input Files/Input
Validation). Such tools will help you identify common issues that may occur when working with XML files.

© Note

Common errors come from the fact that XML is case-sensitive, and all opened tags must be properly closed.

Single-phase solver

GEOS is a multiphysics simulator. To find the solution to different physical problems such as diffusion or mechanical
deformation, GEOS uses one or more physics solvers. The Solvers tag is used to define and parameterize these
solvers. Different combinations of solvers can be applied in different regions of the domain at different moments of the
simulation.

In this first example, we use one type of solver in the entire domain and for the entire du-
ration of the simulation. The input file for this tutorial can be found in the repository at
inputFiles/singlePhaseFlow/3D_10x10x10_compressible_smoke.xml, which also includes input-
Files/singlePhaseFlow/3D_10x10x10_compressible_base.xml. The solver we are specifying here is a single-phase
flow solver. In GEOS, such a solver is created using a SinglePhaseFVM element. This type of solver is one among
several cell-centered single-phase finite volume methods.

The XML block used to define this single-phase finite volume solver is shown here:

<Solvers>
<SinglePhaseFVM
name="SinglePhaseFlow"
logLevel="1"
discretization="singlePhaseTPFA"
targetRegions="{ mainRegion }'">
<NonlinearSolverParameters
newtonTol="1.0e-6"
newtonMaxIter="8"/>
<LinearSolverParameters
solverType="gmres"
(continues on next page)
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(continued from previous page)
preconditionerType="amg"
krylovTol="1.0e-10"/>
</SinglePhaseFVM>
</Solvers>

Each type of solver has a specific set of parameters that are required and some parameters that are optional. Optional
values are usually set with sensible default values.

name

First, we register a solver of type SinglePhaseFVM with a user-chosen name, here SinglePhaseFlow. This unique
user-defined name can be almost anything. However, some symbols are known to cause issues in names : avoid
commas, slashes, curly braces. GEOS is case-sensitive: it makes a distinction between two SinglePhaseFVM solvers
called mySolver and MySolver. Giving elements a name is a common practice in GEOS: users need to give unique
identifiers to objects they define. That name is the handle to this instance of a solver class.

logLevel

Then, we set a solver-specific level of console logging (1ogLevel set to 1 here). Notice that the value (1) is between
double-quotes. This is a general convention for all attributes: we write key="value" regardless of the value type
(integers, strings, lists, etc.).

For logLevel, higher values lead to more console output or intermediate results saved to files. When debugging,
higher logLevel values is often convenient. In production runs, you may want to suppress most console output.

discretization

For solvers of the SinglePhaseFVM family, one required attribute is a discretization scheme. Here, we use a Two-
Point Flux Approximation (TPFA) finite volume discretization scheme called singlePhaseTPFA. To know the list of
admissible values of an attribute, please see GEOS’s XML schema. This discretization type must know how to find
permeability values that it uses internally to compute transmissibilities. The permeabilityNames attribute tells the
solver the user-defined name (the handle) of the permeability values that will be defined elsewhere in the input file.
Note that the order of attributes inside an element is not important.

fluidNames, solidNames, targetRegions

Here, we specify a collection of fluids, rocks, and target regions of the mesh on which the solver will apply. Curly
brackets are used in GEOS inputs to indicate collections of values (sets or lists). The curly brackets used here are
necessary, even if the collection contains a single value. Commas are used to separate members of a set.

Nested elements

Finally, note that other XML elements can be nested inside the Solvers element. Here, we use specific XML ele-
ments to set values for numerical tolerances. The solver stops when numerical residuals are smaller than the specified
tolerances (convergence is achieved) or when the maximum number of iterations allowed is exceeded (convergence not
achieved).

Mesh
To solve this problem, we need to define a mesh for our numerical calculations. This is the role of the Mesh element.
There are two approaches to specifying meshes in GEOS: internal or external.

* The external approach allows to import mesh files created outside GEOS, such as a corner-point grid or an
unstructured grid representing complex shapes and structures.

* The internal approach uses GEOS’s built-in capability to create simple meshes from a small number of param-
eters. It does not require any external file information. The geometric complexity of internal meshes is limited,
but many practical problems can be solved on such simple grids.

1.2. Tutorials 13
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In this tutorial, to keep things self-contained, we use the internal mesh generator. We parameterize it with the Inter-
nalMesh element.

<Mesh>
<InternalMesh
name="mesh"
elementTypes="{ C3D8 }"
xCoords="{ 0, 10 }"
yCoords="{ 0, 10 1}"
zCoords="{ 0, 10 }"

nx="{ 10 }"

ny="{ 10 }"

nz="{ 10 }"

cellBlockNames="{ cellBlock }"/>
</Mesh>

name

Just like for solvers, we register the InternalMesh element using a unique name attribute. Here the InternalMesh
object is instantiated with the name mesh.

elementTypes

We specify the collection of elements types that this mesh contains. Tetrahedra, hexahedra, and wedges are examples
of element types. If a mesh contains different types of elements (a hybrid mesh), we should indicate this here by listing
all unique types of elements in curly brackets. Keeping things simple, our element collection has only one type of
element: a C3D8 type representing a hexahedral element (linear 8-node brick).

A mesh can contain several geometrical types of elements. For numerical convenience, elements are aggregated by
types into cel1Blocks. Here, we only have linear 8-node brick elements, so the entire domain is one object called
cellBlock.

xCoords, yCoords, zCoords, nx, ny, nz

This specifies the spatial arrangement of the mesh elements. The mesh defined here goes from coordinate x=0 to
x=10 in the x-direction, with nx=10 subdivisions along this segment. The same is true for the y-dimension and the
z-dimension. Our mesh is a cube of 10x10x10=1,000 elements with a bounding box defined by corner coordinates
(0,0,0) and (10,10,10).
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Geometry

The Geometry tag allows users to capture subregions of a mesh and assign them a unique name. Here, we name two
Box elements, one for the location of the source and one for the sink. Pressure values are assigned to these named
regions elsewhere in the input file.

The pressure source is the element in the (0,0,0) corner of the domain, and the sink is the element in the (10,10,10)

corner.
For an element to be inside a geometric region, it must have all its vertices strictly inside that region. Consequently, we
need to extend the geometry limits a small amount beyond the actual coordinates of the elements to catch all vertices.

Here, we use a safety padding of 0.01.

<Geometry>
<Box
name="source"
xMin="{ -0.01, -0.01, -0.01 }"
xMax="{ 1.01, 1.01, 1.01 }"/>

<Box
name="sink"
(continues on next page)

1.2. Tutorials 15



GEOS Documentation

(continued from previous page)
xMin="{ 8.99, 8.99, 8.99 }"
xMax="{ 10.01, 10.01, 10.01 }"/>
</Geometry>

There are several methods to achieve similar conditions (Dirichlet boundary condition on faces, etc.). The Box defined
here is one of the simplest approaches.
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Events

In GEOS, we call Events anything that happens at a set time or frequency. Events are a central element for time-
stepping in GEOS, and a dedicated section just for events is necessary to give them the treatment they deserve.

For now, we focus on three simple events: the time at which we wish the simulation to end (maxTime), the times at
which we want the solver to perform updates, and the times we wish to have simulation output values reported.

In GEOS, all times are specified in seconds, so here maxTime=5000 .0 means that the simulation will run from time 0
to time 5,000 seconds.

If we focus on the PeriodicEvent elements, we see :

1. A periodic solver application: this event is named solverApplications. With the attribute forceDt=20, it

16
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tells the solver to compute results at 20-second time intervals. We know what this event does by looking at its
target attribute: here, from time 0 to maxTime and with a forced time step of 20 seconds, we instruct GEOS to
call the solver registered as SinglePhaseFlow. Note the hierarchical structure of the target formulation, using
‘/’ to indicate a specific named instance (SinglePhaseFlow) of an element (Solvers). If the solver needs to
take smaller time steps, it is allowed to do so, but it will have to compute results for every 20-second increment
between time zero and maxTime regardless of possible intermediate time steps.

2. An output event: this event is used for reporting purposes and instructs GEOS to write out results at specific
frequencies. Here, we need to see results at every 100-second increment. This event triggers a full application
of solvers, even if solvers were not summoned by the previous event. In other words, an output event will force
an application of solvers, possibly in addition to the periodic events requested directly.

<Events maxTime="5000.0">
<PeriodicEvent
name="solverApplications"
forceDt="20.0"
target="/Solvers/SinglePhaseFlow" />
<PeriodicEvent
name="outputs"
timeFrequency="100.0"
target="/Outputs/siloOutput" />
</Events>

Numerical methods

GEOS comes with several useful numerical methods. In the Solvers elements, for instance, we had specified to use
a two-point flux approximation as discretization scheme for the finite volume single-phase solver. Now to use this
scheme, we need to supply more details in the NumericalMethods element.

<NumericalMethods>
<FiniteVolume>
<TwoPointFluxApproximation
name="singlePhaseTPFA"
/>
</FiniteVolume>
</NumericalMethods>

Note that in GEOS, there is a difference between physics solvers and numerical methods. Their parameterizations are
thus independent. We can have multiple solvers using the same numerical scheme but with different tolerances, for
instance.

The available numerical methods and their options are listed in the GEOS XML schema documentation which may be
found by using the search function in the documentation.

Regions

In GEOS, ElementsRegions are used to attach material properties to regions of elements. Here, we use only one Cel-
1ElementRegion to represent the entire domain (user name: mainRegion). It contains all the blocks called cel1Block
defined in the mesh section. We specify the materials contained in that region using a materialList. Several mate-
rials coexist in cel1Block, and we list them using their user-defined names: water and rock in this exemple. Each
material is a definition of physical properties.

<ElementRegions>
<CellElementRegion
name="mainRegion"

(continues on next page)
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(continued from previous page)
cellBlocks="{ * }"
materiallList="{ water, rock }"/>
</ElementRegions>

Constitutive models
The Constitutive element attaches physical properties to all materials contained in the domain.

The physical properties of the materials defined as water, rockPorosity, and rockPerm are provided here,
each material being derived from a different material type: CompressibleSinglePhaseFluid for the water,
PressurePorosity for the rock porosity, and ConstantPermeability for rock permeability. The list of attributes
differs between these constitutive materials.

<Constitutive>
<CompressibleSinglePhaseFluid

name="water"
defaultDensity="1000"
defaultViscosity="0.001"
referencePressure="0.0"
compressibility="5e-10"
viscosibility="0.0"/>

<CompressibleSolidConstantPermeability
name="rock"
solidModelName="nullSolid"
porosityModelName="rockPorosity"
permeabilityModelName="rockPerm"/>

<NullModel
name="nullSolid" />

<PressurePorosity
name="rockPorosity"
defaultReferencePorosity="0.05"
referencePressure="0.0"
compressibility="1.0e-9"/>

<ConstantPermeability
name="rockPerm"
permeabilityComponents="{ 1.0e-12, 1.0e-12, 1.0e-15 }"/>
</Constitutive>

The names water, rockPorosity and rockPerm are defined by the user as handles to specific instances of physical
materials. GEOS uses S.I. units throughout, not field units. Pressures, for instance, are in Pascal, not psia. The x- and
y-permeability are set to 1.0e-12 m? corresponding to approximately to 1 Darcy.

We have used the handles water, rockPorosity and rockPerm in the input file in the ElementRegions section of
the XML file, before the registration of these materials took place here, in Constitutive element.

© Note

This highlights an important aspect of using XML in GEOS: the order in which objects are registered and used in
the XML file is not important.
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Defining properties

In the FieldSpecifications section, properties such as source and sink pressures are set. GEOS offers a lot of
flexibility to specify field values through space and time.

Spatially, in GEOS, all field specifications are associated to a target object on which the field values are mounted. This
allows for a lot of freedom in defining fields: for instance, one can have volume property values attached to a subset of
volume elements of the mesh, or surface properties attached to faces of a subset of elements.

For each FieldSpecification, we specify a name, a fieldName (this name is used by solvers or numerical meth-
ods), an objectPath, setNames and a scale. The ObjectPath is important and it reflects the internal class hier-
archy of the code. Here, for the fieldName pressure, we assign the value defined by scale (5e6 Pascal) to one of
the ElementRegions (class) called mainRegions (instance). More specifically, we target the elementSubRegions
called cel1Block (this contains all the C3D8 elements, effectively all the domain). The setNames allows to use the
elements defined in Geometry, or use everything in the object path (using the all).

<FieldSpecifications>
<FieldSpecification

name="initialPressure"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/mainRegion/cellBlock"
fieldName="pressure"
scale="5e6"/>

<FieldSpecification
name="sourceTerm"
objectPath="ElementRegions/mainRegion/cellBlock"
fieldName="pressure"
scale="1e7"
setNames="{ source }"/>

<FieldSpecification
name="sinkTerm"
objectPath="ElementRegions/mainRegion/cellBlock"
fieldName="pressure"
scale="0.0"
setNames="{ sink }"/>
</FieldSpecifications>

The image below shows the pressures after the very first time step, with the domain initialized at 5 MPa, the sink at O
MPa on the top right, and the source in the lower left corner at 10 MPa.
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Output
In order to retrieve results from a simulation, we need to instantiate one or multiple Outputs.

Here, we define a single object of type Silo. Silo is a library and a format for reading and writing a wide variety of
scientific data. Data in Silo format can be read by Vislt.

This Silo output object is called siloOutput. We had referred to this object already in the Events section: it was
the target of a periodic event named outputs. You can verify that the Events section is using this object as a target. It
does so by pointing to /Outputs/siloOutput.

<Outputs>
<Silo
name="siloOutput"/>
</Outputs>

GEOS currently supports outputs that are readable by VisIt and Kitware’s Paraview, as well as other visualization tools.
In this example, we only request a Silo format compatible with VisIt.

All elements are now in place to run GEOS.
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Running GEOS

The command to run GEOS is

path/to/geosx -i path/to/this/xml_file.xml

Note that all paths for files included in the XML file are relative to this XML file.

While running GEOS, it logs status information on the console output with a verbosity that is controlled at the object
level, and that can be changed using the 1logLevel flag.

The first few lines appearing to the console are indicating that the XML elements are read and registered correctly:

Adding Solver of type SinglePhaseFVM, named SinglePhaseFlow

Adding Mesh: InternalMesh, mesh

Adding Geometric Object: Box, source

Adding Geometric Object: Box, sink

Adding Event: PeriodicEvent, solverApplications

Adding Event: PeriodicEvent, outputs

Adding Output: Silo, siloOutput

Adding Object CellElementRegion named mainRegion from ObjectManager::Catalog.
mainRegion/cellBlock/water is allocated with 1 quadrature points.
mainRegion/cellBlock/rock is allocated with 1 quadrature points.
mainRegion/cellBlock/rockPerm is allocated with 1 quadrature points.
mainRegion/cellBlock/rockPorosity is allocated with 1 quadrature points.
mainRegion/cellBlock/nullSolid is allocated with 1 quadrature points.

Then, we go into the execution of the simulation itself:

Time: 0s, dt:20s, Cycle: 0
Attempt: O, NewtonIter: 0
(R) =(5.65e+00 ) ;
Attempt: 0, NewtonIter: 1
(R)=0(2.07e-04 ) ;
Last LinSolve(iter,res) ( 63, 8.96e-11 ) ;
Attempt: O, NewtonIter: 2
(R) =(9.86e-11 ) ;
Last LinSolve(iter,res) = ( 70, 4.07e-11 ) ;

Each time iteration at every 20s interval is logged to console, until the end of the simulation at maxTime=5000:

Time: 4980s, dt:20s, Cycle: 249
Attempt: 0, NewtonIter: 0
(R) =(4.74e-09 ) ;
Attempt: 0, NewtonIter: 1
(R) =(2.05e-14 ) ;
Last LinSolve(iter,res) = ( 67, 5.6le-11 ) ;
SinglePhaseFlow: Newton solver converged in less than 4 iterations, time-step required.
—will be doubled.
Cleaning up events

Umpire HOST sum across ranks: 14.8 MB
Umpire HOST rank max: 14.8 MB
total time 5.658s
initialization time 0.147s
run time 3.289s

All newton iterations are logged along with corresponding nonlinear residuals for each time iteration. In turn, for each
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newton iteration, LinSolve provides the number of linear iterations and the final residual reached by the linear solver.
Information on run times, initialization times, and maximum amounts of memory (high water mark) are given at the
end of the simulation, if successful.

Congratulations on completing this first run!

Visualization

Here, we have requested results to be written in Silo, a format compatible with VisIt. To visualize results, open Vislt
and directly load the database of simulation output files.

After a few time step, pressure between the source and sink are in equilibrium, as shown on the representation below.
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To go further
Feedback on this tutorial

This concludes the single-phase internal mesh tutorial. For any feedback on this tutorial, please submit a GitHub issue
on the project’s GitHub page.

For more details

* More on single-phase flow solvers, please see Singlephase Flow Solver.

22 Chapter 1. Table of Contents


https://wci.llnl.gov/simulation/computer-codes/visit/
https://github.com/GEOS-DEV/GEOS/issues
https://github.com/GEOS-DEV/GEOS/issues

GEOS Documentation

* More on meshes, please see Meshes.

* More on events, please see Event Management.

1.2.2 Tutorial 2: External Meshes

Context

In this tutorial, we use a simple single-phase flow solver (see Singlephase Flow Solver) to solve for pressure propagation
on a mesh that is imported into GEOS. The main goal of this tutorial is to learn how to work with external meshes,
and to learn how easy it is to swap meshes on the same physical problem in GEOS. This makes GEOS a powerful tool
to solve real field applications with complex geometries and perform assessments of mesh geometry and resolution
effects.

Objectives
At the end of this tutorial you will know:
* the syntax and format of input meshes,
* how to input external files into a GEOS input XML file,
* how to run the same physical problem with two different meshes,
* how to use and visualize hexahedral and tetrahedral meshes.
Input Files

This tutorial uses an XML file containing the main input for GEOS and a separate file with all the mesh information.
As we will see later, the main XML file points to the external mesh file with an include statement. The XML input
file for this test case is located at:

[inputFi les/singlePhaseFlow/vtk/3D_10x10x10_compressible_hex_gravity_smoke.xml J

The mesh file format used in this tutorial is vtk. This format is a standard scientific meshing format not specific to
GEOS. vtk is a multi-purpose mesh format (structured, unstructured, serial, parallel, multi-block...) and contains a
compact and complete representation of the mesh geometry and of its properties. The mesh file used here is human-
readable ASCII, and there is a binary storage as well. It contains a list of nodes with their (x,y,z) coordinates, and a list
of elements that are constructed from these nodes.

Hexahedral elements

In the first part of the tutorial, we will run flow simulations on a mesh made of hexahedral elements. These types of
elements are used in classical cartesian grids (sugar cubes) or corner-point grids or pillar grids.

Brief discussion about hexahedral meshes in GEOS

Although closely related, the hexahedral grids that GEOS can process are slightly different than either structured grid
or corner-point grids. The differences are worth pointing out here. In GEOS:

¢ Hexahedra can have irregular shapes: no pillars are needed and vertices can be anywhere in space. This is
useful for grids that turn, fold, or are heavily bent. Hexahedral blocks should nevertheless have 8 distinct vertices
that are not coalesced. Some tolerance exists for degeneration to wedges in some solvers (finite element solvers),
but it is best to avoid such situations and label elements according to their actual shape. Butterfly cells, flat cells,
negative or zero volume cells will cause problems.

¢ The mesh needs to be conformal: in 3D, this means that neighboring grid blocks have to share exactly a
complete face. Note that corner-point grids do not have this requirement and neighboring blocks can be offset.
When importing grids from commonly-used geomodeling packages, this is an important consideration. This
problem is solved by splitting shifted grid blocks to restore conformity. While it may seem convenient to be able
to have offset grid blocks at first, the advantages of conformal grids used in GEOS are worth the extra meshing
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effort: by using conformal grids, GEOS can run finite element and finite volume simulations on the same mesh
without problems, going seamlessly from one numerical method to the other. This is key to enabling multiphysics
simulation.

There is no assumption of overall structure: GEOS does not need to know a number of block in the X, Y,
Z direction (no NX, NY, NZ) and does not assume that the mesh is a full cartesian domain that the interesting
parts of the reservoir must be carved out from. Blocks are numbered by indices that assume nothing about spatial
positioning and there is no concept of (i,j,k). This approach also implies that no “masks” are needed to remove
inactive or dead cells, as often done in cartesian grids to get the actual reservoir contours from a bounding box,

and here we only need to specify grid blocks that are active. For performance and flexibility, this lean approach
to meshes is important.

Importing an external mesh with VTK

In this first part of the tutorial, we use an hexahedral mesh provided to GEOS. This hexahedral mesh is strictly identical
to the grid used in the first tutorial (Tutorial 1: First Steps), but instead of using the internal grid generator GEOS, we
specify it with spatial node coordinates in vtk format. To import external grid into GEOS, we did develop a component
directly using the vtk library.

So here, our mesh consists of a simple sugar-cube stack of size 10x10x10. We inject fluid from one vertical face of a
cube (the face corresponding to x=0), and we let the pressure equilibrate in the closed domain. The displacement is
a single-phase, compressible fluid subject to gravity forces, so we expect the pressure to be constant on the injection

face, and to be close to hydrostatic on the opposite plane (x=10). We use GEOS to compute the pressure inside each
grid block over a period of time of 100 seconds.
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To see how to import such a mesh, we inspect the following XML file:

[inputFi les/singlePhaseFlow/vtk/3D_10x10x10_compressible_hex_gravity_smoke.xml

In the XML Mesh tag, instead of an InternalMesh tag, we have a VIKMesh tag. We see that a file called

)

cube_10x10x10_hex. vtk is imported using vtk, and this object is instantiated with a user-defined name value. The
file here contains geometric information in vtk format (it can also contain properties, as we will see in the next tutorial).

24
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<Mesh>
<VTKMesh
name="CubeHex"
file="cube_10x10x10_hex.vtk"/>
</Mesh>

Here is the vtk file :

Listing 1.1: cube_10x10x10_hex.vtk

# vtk DataFile Version 4.2
Cube structured points dataset
ASCII

DATASET STRUCTURED_POINTS
DIMENSIONS 11 11 11

ORIGIN 0.0 0.0 0.0

SPACING 1.0 1.0 1.0

GEOS can run different physical solvers on different regions of the mesh at different times. Here, to keep things simple,
we run one solver (single-phase flow) on the entire domain throughout the simulation. To do so, we need to define a
region encompassing the entire domain. We will name it Domain, as refered to in the single-phase flow solver (in its
targetRegions), and list its constitutive models in the materiallist, which are water and rock. Since we have
imported a mesh with only one region, we can set cel1Blocks to { * } (we have could also set cel1Blocks to {
hexahedra } as the mesh has only hexahedral cells).

<ElementRegions>
<CellElementRegion
name="Domain"
cellBlocks="{ hexahedra }"
materiallList="{ water, rock }"/>
</ElementRegions>

© Note

If you use a name that is not hexahedra or all for this attribute, or if the mesh is changed and have not-hexahedral
cells, GEOS will throw an error at the beginning of the simulation. See Meshes for more information.

Running GEOS

The command to run GEOS is

path/to/geosx -i ../../../../../inputFiles/singlePhaseFlow/vtk/3D_10x10x10_compressible_
—hex_gravity_smoke.xml

Note that all paths for files included in the XML file are relative to this XML file, not to the GEOS executable. When
running GEOS, console messages will provide indications regarding the status of the simulation.

In our case, the first lines are:

Adding Mesh: VTKMesh, CubeHex
Adding Event: PeriodicEvent, solverApplications
Adding Event: PeriodicEvent, outputs

Adding Event: PeriodicEvent, restarts
(continues on next page)
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(continued from previous page)

Adding Solver of type SinglePhaseFVM, named SinglePhaseFlow

Adding Geometric Object: Box, left

Adding Output: Silo, siloOutput

Adding Output: Restart, restartOutput

Adding Object CellElementRegion named Domain from ObjectManager::Catalog.

This indicates initialization of GEOS. The mesh preprocessing tool VTKMesh is launched next, with console messages
as follows.

VTKMesh 'CubeHex': reading mesh from /path/to/inputFiles/singlePhaseFlow/vtk/cube_
—10x10x10_hex.vtk
Generating global Ids from VTK mesh
VTKMesh 'CubeHex': generating GEOS mesh data structure
Number of nodes: 1331

Number of elems: 1000

C3D8: 1000

Load balancing: min avg max
(element/rank): 1000 1000 1000

Notice the specification of the number of nodes (1331), and hexahedra (1000). After the adjacency calculations, GEOS
starts the simulation itself. with the time-step increments specified in the XML file.

At the end of your simulation, you should see something like:

Time: 96s, dt:2s, Cycle: 48

Time: 98s, dt:2s, Cycle: 49

Cleaning up events

SinglePhaseFlow, number of time steps: 50

SinglePhaseFlow, number of successful nonlinear iterations: 50
SinglePhaseFlow, number of successful linear iterations: 450
SinglePhaseFlow, number of time step cuts: 0

SinglePhaseFlow, number of discarded nonlinear iterations: 0
SinglePhaseFlow, number of discarded linear iterations: 0

Umpire HOST sum across ranks: 2.6 MB
Umpire HOST rank max: 2.6 MB
total time 3.518s
initialization time 0.132s
run time 3.076s

Process finished with exit code ®

Once this is done, GEOS is finished and we can inspect the outcome.

Visualization of results in Vislt

All results are written in a format compatible with Vislt. To load the results, point Vislt to the database file written
in the Silo output folder.
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We see that the face x=0 shown here in the back of the illustration applies a constant pressure boundary condition (col-
ored in red), whereas the face across from it displays a pressure field under gravity effect, equilibrated and hydrostatic.
These results are consistent with what we expect.

Let us now see if a tetrahedral mesh, under the same exact physical conditions, can reproduce these results.

Externally Generated Tetrahedral Elements

In the second part of the tutorial, we discretize the same cubic domain but with tetrahedral elements. Tetrahedral
meshes are not yet common in geomodeling but offer tremendous flexibility in modeling fracture planes, faults, complex
reservoir horizons and boundaries. Just like for hexahedral meshes, and for the same reasons (compatibility with finite
volume and finite element methods), tetrahedral meshes in GEOS must be conformal.

As stated previously, the problem we wish to solve here is the exact same physical problem as with hexahedral grid
blocks. We apply a constant pressure condition (injection) from the x=0 vertical face of the domain, and we let pressure
equilibrate over time. We observe the opposite side of the cube and expect to see hydrostatic pressure profiles because
of the gravitational effect. The displacement is a single phase, compressible flow subject to gravity forces. We use
GEOS to compute the pressure inside each grid block.

The set-up for this problem is almost identical to the hexahedral mesh set-up. We simply point our Mesh tag to include
a tetrahedral grid. The interest of not relying on I,J,K indices for any property specification or well trajectory makes it
easy to try different meshes for the same physical problems with GEOS. Swapping out meshes without requiring
other modifications to the input files makes mesh refinement studies easy to perform with GEOS.

Like before, the XML file for this problem is the following:

[inputFiles/singlePhaseFlow/vtk/ 3D_10x10x10_compressible_tetra_gravity_smoke.xml ]

The only difference, is that now, the Mesh tag points GEOS to a different mesh file called cube_10x10x10_tet.vtk.
This file contains nodes and tetrahedral elements in vtk format, representing a different discretization of the exact same
10x10x10 cubic domain.

<Mesh>
<VTKMesh

(continues on next page)
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(continued from previous page)
name="CubeTetra"
file="cube_10x10x10_tet.vtk"/>
</Mesh>

The mesh now looks like this:

N/ 04
*Vm‘\» T
R

And the vtk file starts as follows (notice the tetrahedral point coordinates as real numbers):

Listing 1.2: cube_10x10x10_tet.vtk

# vtk DataFile Version 2.0
cube

ASCII

DATASET UNSTRUCTURED_GRID
POINTS 366 float

0 0 10

000

0 10 10

0 10 0

10 0 10

10 0 ©

10 10 10

10 10 ©

0 1.666666666666662
3.333333333333323
4.999999999999986
6.666666666666647
8.333333333333321
.666666666666662 10
.333333333333323 10

(= — I — R — R —
wrRrooeo e

Again, the entire field is one region called Domain which contains water and rock. Since we have imported a mesh
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with only one region, we can again set cel1Blocksto { * } (we have could also set cel1Blocks to { tetrahedra
} as the mesh has only tetrahedric cells).

<ElementRegions>
<CellElementRegion
name="Domain"
cellBlocks="{ tetrahedra }"
materiallList="{ water, rock }"/>
</ElementRegions>

Running GEOS

The command to run GEOS is

path/to/geosx -i ../../../../../inputFiles/singlePhaseFlow/vtk/3D_10x10x10_compressible_
—tetra_gravity_smoke.xml

Again, all paths for files included in the XML file are relative to this XML file, not to the GEOS executable. When
running GEOS, console messages will provide indications regarding the status of the simulation. In our case, the first
lines are:

Adding Mesh: VTKMesh, CubeTetra

Adding Event: PeriodicEvent, solverApplications

Adding Event: PeriodicEvent, outputs

Adding Event: PeriodicEvent, restarts

Adding Solver of type SinglePhaseFVM, named SinglePhaseFlow

Adding Geometric Object: Box, left

Adding Output: Silo, siloOutput

Adding Output: Restart, restartOutput

Adding Object CellElementRegion named Domain from ObjectManager::Catalog.

Followed by:

VTKMesh 'CubeTetra': reading mesh from /path/to/inputFiles/singlePhaseFlow/vtk/cube_
—10x10x10_tet.vtk
Generating global Ids from VTK mesh
VIKMesh 'CubeTetra': generating GEOS mesh data structure
Number of nodes: 366

Number of elems: 1153

C3D4: 1153

Load balancing: min avg max
(element/rank): 1153 1153 1153
regionQuadrature: meshBodyName, meshLevelName, regionName, subRegionName = CubeTetra,.
—Level®, Domain, tetrahedra
CubeTetra/Level®/Domain/tetrahedra/water allocated 1 quadrature points
CubeTetra/Level®/Domain/tetrahedra/rock allocated 1 quadrature points

We see that we have now 366 nodes and 1153 tetrahedral elements. And finally, when the simulation is successfully
done we see:

Time: Os, dt:1ls, Cycle:
Time: 1s, dt:ls, Cycle:
Time: 2s, dt:ls, Cycle:
Time: 3s, dt:ls, Cycle:

W N R~

(continues on next page)
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Time: 4s, dt:1ls, Cycle: 4
Time: 5s, dt:ls, Cycle: 5

Time: 95s, dt:1s, Cycle: 95

Time: 96s, dt:ls, Cycle: 96

Time: 97s, dt:ls, Cycle: 97

Time: 98s, dt:ls, Cycle: 98

Time: 99s, dt:1ls, Cycle: 99

Cleaning up events

SinglePhaseFlow, number of time steps: 100

SinglePhaseFlow, number of successful nonlinear iterations: 100
SinglePhaseFlow, number of successful linear iterations: 1000
SinglePhaseFlow, number of time step cuts: 0

SinglePhaseFlow, number of discarded nonlinear iterations: 0
SinglePhaseFlow, number of discarded linear iterations: 0

Umpire HOST sum across ranks: 1.9 MB
Umpire HOST rank max: 1.9 MB
total time 5.837s
initialization time 0.094s
run time 5.432s

Process finished with exit code ®

Visualization of results in Vislt

All results are written in a format compatible with VisIt by default. If we load into Vislt the .database file found in the
Silo folder, we observe the following results:

.104e+06
.078e+06
.053e+06
.027e+06

.002e+06

.761e+05

Here, we can see that despite the different mesh sizes and shapes, we are able to recover our pressure profile without
any problems, or degradation in runtime performance.
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To go further
Feedback on this tutorial

This concludes the single-phase external mesh tutorial. For any feedback on this tutorial, please submit a GitHub issue
on the project’s GitHub page.

For more details
* A complete description of the Internal Mesh generator is found here Meshes.
* vtk is extensively documented. You can start browsing here.

* GEOS can handle tetrahedra, hexahedra, pyramids, wedges, prisms, and any combination thereof in one mesh.

1.2.3 Tutorial 3: Regions and Property Specifications
Context

In this tutorial, we set up a simple field case for single-phase flow simulation (see Singlephase Flow Solver). We
demonstrate how to run a basic flow simulation in the reservoir layer. We do not consider any coupling with wells.
Injection and production will be specified by imposing a high pressure in the cells close to the injection area and a low
pressure in the cells close to the production area.

Objectives
At the end of this tutorial you will know:
* how to import external mesh information and properties,
* how to run a specific solver (here, flow) in a specific region only,
* the basic method of using boxes to set up boundary conditions,
* how to use TableFunction to import fields varying in time and/or space,
* how to control output frequency and export results for visualization.
Input file
The XML input file for this test case is located at:

[inputFi les/singlePhaseFlow/FieldCaseTutorial3_base.xml

[inputFi les/singlePhaseFlow/FieldCaseTutorial3_smoke.xml

We consider the following mesh as a numerical support to the simulations in this tutorial:
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This mesh contains three continuous regions:
* a Bottom region (underburden, elementary tag = Underburden, attribute = 1)
* a Middle region (reservoir layer, elementary tag = Reservoir, attribute = 2)
* a Top region (overburden, elementary tag = Overburden, attribute = 3)
-500.
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9
C
o)
O
=
c
o}
£
K0
[0}
-2000.

The mesh is defined using the VTK file format (see Meshes for more information on the supported mesh file format).
Each tetrahedron is associated to a unique tag.

The XML file considered here follows the typical structure of the GEOS input files:

1. Solver

32 Chapter 1. Table of Contents



GEOS Documentation

Mesh

Geometry

Events
NumericalMethods
ElementRegions
Constitutive

FieldSpecifications

© ® N kWD

Outputs

_.
e

Functions

Single-phase solver

Let us inspect the Solver XML tags.

<Solvers>
<SinglePhaseFVM
name="SinglePhaseFlow"
discretization="singlePhaseTPFA"
targetRegions="{ Reservoir }">
<NonlinearSolverParameters
newtonTol="1.0e-6"
newtonMaxIter="8"/>
<LinearSolverParameters
solverType="gmres"
preconditionerType="amg"
amgSmootherType="11jacobi"
krylovTol="1.0e-10"/>
</SinglePhaseFVlM>
</Solvers>

This node gathers all the information previously defined. We use a classical SinglePhaseFVM Finite Volume Method,
with the two-point flux approximation as will be defined in the NumericalMethods tag. The targetRegions refers

only to the Reservoir region because we only solve for flow in this region.

The NonlinearSolverParameters and LinearSolverParameters are used to set usual numerical solver parame-
ters such as the linear and nonlinear tolerances, the preconditioner and solver types or the maximum number of nonlinear

iterations.

Mesh

Here, we use the VTKMesh to load the mesh (see Importing the Mesh). The syntax to import external meshes is simple
: in the XML file, the mesh file is included with its relative or absolute path to the location of the GEOS XML file

and a user-specified name label for the mesh object.

<Mesh>
<VTKMesh name="SyntheticMesh"
file="synthetic.vtu" />
</Mesh>

1.2. Tutorials
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Geometry

Here, we are using definition of source and sink boxes in addition to the all box in order to flag sets of
nodes or cells which will act as injection or production.

<Geometry>
<Box
name="all"
xMin="{ -1e9, -1e9, -1e9 1}"
xMax="{ 1e9, 1e9, 1e9 }"/>

<Box
name="source"
xMin="{ 15500, 7000, -5000 }"
xMax="{ 16000, 7500, 0O }"/>

<Box
name="sink"
xMin="{ 6500, 1500, -5000 }"
xMax="{ 7000, 2000, 0 }"/>
</Geometry>

In order to define a box, the user defines xMax and xMin, two diagonally opposite nodes of the box.

Events

The events are used here to guide the simulation through time, and specify when outputs must be triggered.

<Events maxTime="100.0e6">
<PeriodicEvent name="solverApplications"
forceDt="10.0e6"
target="/Solvers/SinglePhaseFlow" />

(continues on next page)
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<PeriodicEvent name="outputs"
timeFrequency="10.0e6"
target="/0Outputs/reservoir_with_properties" />
</Events>

The Events tag is associated with the maxTime keyword defining the maximum time. If this time is ever reached or
exceeded, the simulation ends.

Two PeriodicEvent are defined. - The first one, solverApplications, is associated with the solver. The forceDt
keyword means that there will always be time-steps of 10e6 seconds. - The second, outputs, is associated with the
output. The timeFrequency keyword means that it will be executed every 10e6 seconds.

Numerical methods

Defining the numerical method used in the solver, we will provide information on how to discretize our equations. Here
a classical two-point flux approximation (TPFA) scheme is used to discretize water fluxes over faces.

<NumericalMethods>
<FiniteVolume>
<TwoPointFluxApproximation
name="singlePhaseTPFA"
/>
</FiniteVolume>
</NumericalMethods>

Regions
Assuming that the overburden and the underburden are impermeable, and flow only takes place in the reservoir, we

need to define regions.

We need to define all the Cel1ElementRegions according to the attribute values of the VTK file (which are
respectively 1, 2 and 3 for each region). As mentioned above, the solvers is only applied on the reservoir layer, (on
region 2). In this case, the ElementRegions tag is :

<ElementRegions>
<CellElementRegion
name="Reservoir"
cellBlocks="{ 2 }"
materiallList="{ water, rock }"/>

<CellElementRegion
name="Burden"
cellBlocks="{ 1, 3 }"
materiallList="{ water, rock }"/>
</ElementRegions>

© Note

This material list here is subject to change if the problem is not a single-phase flow problem.
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Constitutive models

We simulate a single-phase flow in the reservoir layer, hence with multiple types of materials, a fluid (water) and solid
(rock permeability and porosity).

<Constitutive>
<CompressibleSinglePhaseFluid

name="water"
defaultDensity="1000"
defaultViscosity="0.001"
referencePressure="0.0"
compressibility="1e-9"
viscosibility="0.0"/>

<CompressibleSolidConstantPermeability
name="rock"
solidModelName="nullSolid"
porosityModelName="rockPorosity"
permeabilityModelName="rockPerm"/>

<NullModel
name="nullSolid" />

<PressurePorosity
name="rockPorosity"
defaultReferencePorosity="0.05"
referencePressure="10e7"
compressibility="1.0e-9"/>

<ConstantPermeability
name="rockPerm"
permeabilityComponents="{ 1.0e-13, 1.0e-13, 1.0e-16 }"/>
</Constitutive>

The constitutive parameters such as the density, the viscosity, and the compressibility are specified in the International
System of Units.

O Note

To consider an incompressible fluid, the user has to set the compressibility to 0.

© Note

Currently GEOS handles permeability as a diagonal matrix, so the three values of the permeability tensor are set
individually using the component field. The ability for a full tensor permeability is planned for future releases.

Defining properties
The next step is to specify fields, including:
 The initial value (here, the pressure has to be initialized)

 The static properties (here, we have to define the permeability tensor and the porosity)
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* The boundary conditions (here, the injection and production pressure have to be set)

<FieldSpecifications>

<FieldSpecification
name="permx"
initialCondition="1"
component="0"
setNames="{ all }"
objectPath="ElementRegions/Reservoir"
fieldName="rockPerm_permeability"
scale="1e-15"
functionName="permxFunc" />

<FieldSpecification
name="permy"
initialCondition="1"
component="1"
setNames="{ all }"
objectPath="ElementRegions/Reservoir"
fieldName="rockPerm_permeability"
scale="1e-15"
functionName="permyFunc" />

<FieldSpecification
name="permz"
initialCondition="1"
component="2"
setNames="{ all }"
objectPath="ElementRegions/Reservoir"
fieldName="rockPerm_permeability"
scale="3e-15"
functionName="permzFunc"/>

<FieldSpecification
name="initialPressure"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/Reservoir/2_tetrahedra"
fieldName="pressure"
scale="1e7"

/>

<FieldSpecification
name="sourceTerm"
objectPath="ElementRegions/Reservoir/2_tetrahedra"
fieldName="pressure"
scale="15e7"
setNames="{ source }"

/>

<FieldSpecification
name="sinkTerm"

(continues on next page)
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objectPath="ElementRegions/Reservoir/2_tetrahedra"
fieldName="pressure"
scale="5e7"
setNames="{ sink }"/>
</FieldSpecifications>

You may note :
 All static parameters and initial value fields must have initialCondition field set to 1.
* The objectPath refers to the ElementRegion in which the field has its value,
* The setName field points to the box previously defined to apply the fields,

* name and fieldName have a different meaning: name is used to give a name to the XML block. This name must
be unique. fieldName is the name of the field registered in GEOS. This value has to be set according to the
expected input fields of each solver.

Output

The Outputs XML tag is used to trigger the writing of visualization files. Here, we write files in a format natively
readable by Paraview under the tag VTK:

<Outputs>
<VTK
name="reservoir_with_properties"/>
</Outputs>

© Note

The name keyword defines the name of the output directory.

Using functions to specify properties

Eventually, one can define varying properties using TableFunction (Functions) under the Functions tag:

<Functions>
<TableFunction
name="timeInj"
inputVarNames="{ time }"
coordinates="{ 1le6, 10e6, 50e6 }"
values="{ 1, 0.01, 0.00001 }"/>

<TableFunction
name="initialPressureFunc"
inputVarNames="{ elementCenter }"
coordinateFiles="{ tables_FieldCaseTuto/xlin.geos, tables_FieldCaseTuto/ylin.geos,.
—tables_FieldCaseTuto/zlin.geos }"
voxelFile="tables_FieldCaseTuto/pressure.geos"/>

<TableFunction
name="permxFunc"
inputVarNames="{ elementCenter }"

(continues on next page)
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coordinateFiles="{ tables_FieldCaseTuto/xlin.geos, tables_FieldCaseTuto/ylin.geos,.
—tables_FieldCaseTuto/zlin.geos }"

voxelFile="tables_FieldCaseTuto/permx.geos’

interpolation="nearest"/>

<TableFunction
name="permyFunc"
inputVarNames="{ elementCenter }"
coordinateFiles="{ tables_FieldCaseTuto/xlin.geos, tables_FieldCaseTuto/ylin.geos,.,
—tables_FieldCaseTuto/zlin.geos }"
voxelFile="tables_FieldCaseTuto/permy.geos"
interpolation="nearest"/>

<TableFunction
name="permzFunc"
inputVarNames="{ elementCenter }"
coordinateFiles="{ tables_FieldCaseTuto/xlin.geos, tables_FieldCaseTuto/ylin.geos,.
—tables_FieldCaseTuto/zlin.geos }"
voxelFile="tables_FieldCaseTuto/permz.geos"
interpolation="nearest"/>
</Functions>

Here, the injection pressure is set to vary with time. Attentive reader might have noticed that sourceTerm was bound
to a TableFunction named timelnj under FieldSpecifications tag definition. The initial pressure is set based on the
values contained in the table formed by the files which are specified. In particular, the files x/in.geos, ylin.geos and
zlin.geos define a regular meshing of the bounding box containing the reservoir. The pressure.geos file then defines the
values of the pressure at those points.

We proceed in a similar manner as for pressure.geos to map a heterogeneous permeability field (here the 5th layer of
the SPE 10 test case) onto our unstructured grid. This mapping will use a nearest point interpolation rule.
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O Note

The varying values imposed in values or passed through voxelFile are premultiplied by the scale attribute from
FieldSpecifications.

Running GEOS

The simulation can be launched with:

[geosx -i FieldCaseTutorial3_smoke.xml

One can notice the correct load of the field function among the starting output messages

Adding
Adding
Adding
Adding
Adding
Adding
Adding
Adding

Mesh: VTKMesh, SyntheticMesh

Event: PeriodicEvent, solverApplications

Event: PeriodicEvent, outputs

Solver of type SinglePhaseFVM, named SinglePhaseFlow
Geometric Object: Box, all

Geometric Object: Box, source

Geometric Object: Box, sink

Output: VTK, reservoir_with_properties

TableFunction: timeInj
TableFunction: initialPressureFunc
TableFunction: permxFunc
TableFunction: permyFunc
TableFunction: permzFunc
Adding Object CellElementRegion named Reservoir from ObjectManager::Catalog.
Adding Object CellElementRegion named Burden from ObjectManager::Catalog.

Visualization of results

We can open the file syntheticReservoirVizFile.pvd with Paraview to visualize the simulation results. In the event block,
we have asked for the output to be generated at regular intervals throughout the simulation, we can thus visualize the
pressure distribution at different simulation times, showing the variation in the injection control.
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To go further
Feedback on this tutorial
This concludes this tutorial. For any feedback, please submit a GitHub issue on the project’s GitHub page.
For more details
* More on meshes, please see Meshes.

* More on events, please see Event Management.
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1.2.4 Tutorial 4: Boundary Conditions and Time-Dependent Functions
Context

In this tutorial, we use a small strain linear elastic based solid mechanics solver (see Solid Mechanics Solver) from
GEOS to solve for the bending problem of a three-dimensional cantilever beam. The beam is fixed at one end, and
subjects to a traction force pointing to the y-positive direction on the other end. The beam is deformed in the x-y plane.

Objectives
At the end of this tutorial, you will know:
* how to use the solid mechanics solver to solve a quasistatic problem,
* how to set up displacement boundary condition at element nodes,
* how to set up traction boundary condition on element surfaces,
* how to use a table function to control time-dependent loading.
Input file

This tutorial uses no external input files and everything required is contained within a single GEOS input file. The xml
input file for this test case is located at:

inputFiles/solidMechanics/beamBending_base.xml
inputFiles/solidMechanics/beamBending_benchmark.xml

Discretized computational domain

The following mesh is used in this tutorial:

[v4
&
&
This mesh contains 80 x 8 x 4 eight-node brick elements in the x, y and z directions, respectively. Here, the

InternallMesh is used to generate a structured three-dimensional mesh with C3D8 as the elementTypes. This mesh
is defined as a cell block with the name cb1.

<Mesh>
<InternalMesh
name="mesh1"
elementTypes="{ C3D8 }"
xCoords="{ 0, 80 }"
yCoords="{ 0, 8 }"
zCoords="{ 0, 4 }"

nx="{ 160 }"
ny="{ 16 }"
nz="{ 8 }"

(continues on next page)

42 Chapter 1. Table of Contents




GEOS Documentation

(continued from previous page)

cellBlockNames="{ cbl }"/>
</Mesh>

Gravity

The gravity is turned off explicitly at the beginning of the input file:

<Solvers
gravityVector="{ 0.0, 0.0, 0.0 }">

Solid mechanics solver

The solid mechanics solver is based on the small strain Lagrangian finite element formulation. The problem is run
as QuasiStatic without considering the beam inertial. The computational domain is discretized by FE1, which is
defined in the NumericalMethods block. The material is designated as shale, whose properties are defined in the
Constitutive block.

<SolidMechanicsLagrangianFEM
name="1lagsolve"
timeIntegrationOption="QuasiStatic"
discretization="FE1"
targetRegions="{ Region2 }"
logLevel="1">

Finite element discretization

The computational domain is discretized by C3D8 elements with the first order interpolation functions at each direction

in the parent domain. The 2 x 2 x 2 Gauss quadrature rule is adopted to be compatible with the first order interpolation
functions.

<NumericalMethods>
<FiniteElements>
<FiniteElementSpace
name="FE1"
order="1"/>
</FiniteElements>
</NumericalMethods>

Constitutive model

Recall that in the SolidMechanicsLagrangianFEM block, shale is designated as the material in the computational
domain. Here, the material is defined as linear isotropic.

<ElasticIsotropic
name="shale"
defaultDensity="2700"
defaul tBulkModulus="5.5556e9"
defaultShearModulus="4.16667e9"/>
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Boundary conditions

As aforementioned, the beam is fixed on one end, and subjects to surface traction on the other end. These bound-
ary conditions are set up through the FieldSpecifications block. Here, nodeManager and faceManager in the
objectPath indicate that the boundary conditions are applied to the element nodes and faces, respectively. Compo-
nent 0, 1, and 2 refer to the x, y, and z direction, respectively. And the non-zero values given by Scale indicate the
magnitude of the loading. Some shorthands, such as xneg and xpos, are used as the locations where the boundary
conditions are applied in the computational domain. For instance, xneg means the portion of the computational do-
main located at the left-most in the x-axis, while xpos refers to the portion located at the right-most area in the x-axis.
Similar shorthands include ypos, yneg, zpos, and zneg. Particularly, the time-dependent loading applied at the beam
tip is defined through a function with the name timeFunction.

<FieldSpecifications>
<FieldSpecification

name="xnegconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"
scale="0.0"
setNames="{ xneg }"/>

<FieldSpecification
name="yconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"
scale="0.0"
setNames="{ xneg }"/>

<FieldSpecification
name="zconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="2"
scale="0.0"
setNames="{ zneg, zpos }"/>

<Traction

name="xposconstraint"

objectPath="faceManager"

scale="1.0e6"

direction="{ 0, 1, 0 }"

functionName="timeFunction"

setNames="{ xpos }"/>
</FieldSpecifications>

Table function

A table function is used to define the time-dependent loading at the beam tip. The coordinates and values form
a time-magnitude pair for the loading time history. In this case, the loading magnitude increases linearly as the time
evolves.

<Functions>
<TableFunction

(continues on next page)
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name="timeFunction"
inputVarNames="{ time }"
coordinates="{ 0.0, 10.0 }"
values="{ 0.0, 10.0 }"/>
</Functions>

Execution

Finally, the execution of the simulation is set up in the Events block, where target points to the solid mechanics
solver defined in the Solvers block, and the time increment forceDt is set as 1.0s.

<PeriodicEvent
name="solverApplications"
forceDt="1.0"
target="/Solvers/lagsolve"/>

Result

The deformed beam is shown as following (notice that the displacement is visually magnified):

AT

e

o
o«

To go further
Feedback on this tutorial

This concludes the solid mechanics for small-strain linear elasticity tutorial. For any feedback on this tutorial, please
submit a GitHub issue on the project’s GitHub page.

For more details
* More on meshes, please see Meshes.

* More on events, please see Event Management.
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1.3 Basic Examples

1.3.1 Multiphase Flow

Context

In this example, we set up a multiphase, multicomponent test case (see Compositional Multiphase Flow Solver). The
permeability field corresponds to the two bottom layers (layers 84 and 85) of the SPE10 test case. The thermody-
namic behavior of the fluid mixture is specified using a simple immiscible two-phase (Dead-Oil) model. Injection and
production are simulated using boundary conditions.

Objective

The main objective of this example is to review the main elements of a simple two-phase simulation in GEOS, including:
¢ the compositional multiphase flow solver,
* the multiphase constitutive models,
* the specifications of multiphase boundary conditions.

Input file

This example is based on the XML file located at

inputFiles/compositionalMultiphaseFlow/benchmarks/SPE10/dead0ilSpel0@Layers84_85_base_
—iterative.xml

The XML file considered here follows the typical structure of the GEOS input files:
1. Solver

Mesh

Geometry

Events

NumericalMethods

ElementRegions

Constitutive

FieldSpecifications

© ® N A » N

Outputs

Multiphase flow solver

In GEOS, the setup of a multiphase simulation starts in the Solvers XML block of the input file. This example relies on
a solver of type CompositionalMultiphaseFVM that implements a fully implicit finite-volume scheme based on the
standard two-point approximation of the flux (TPFA). More information on this solver can be found at Compositional
Multiphase Flow Solver.

Let us have a closer look at the Solvers XML block displayed below. The solver has a name (here, compflow) that can
be chosen by the user and is not imposed by GEOS. Note that this name is used in the Events XML block to trigger
the application of the solver. Using the targetRegions attribute, the solver defines the target regions on which it is
applied. In this example, there is only one region, named reservoir.

The CompositionalMultiphaseFVM block contains two important sub-blocks, namely NonlinearSolverParame-
ters and LinearSolverParameters. In NonlinearSolverParameters, one can finely tune the nonlinear tolerance,
the application of the linear search algorithm, and the heuristics used to increase the time step size. In Linear-
SolverParameters, the user can specify the linear tolerance, the type of (direct or iterative) linear solver, and the
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type of preconditioner, if any. For large multiphase flow problems, we recommend using an iterative linear solver
(solverType="gmres" or solverType="£fgmres") combined with the multigrid reduction (MGR) preconditioner
(preconditionerType="mgr"). More information about the MGR preconditioner can be found in Linear Solvers.

© Note

For non-trivial simulations, we recommend setting the initialDt attribute to a small value (relative to the time
scale of the problem) in seconds. If the simulation appears to be slow, use logLevel="1" in Compositional-
MultiphaseFVM to detect potential Newton convergence problems. If the Newton solver struggles, please set
lineSearchAction="Attempt" in NonlinearSolverParameters. If the Newton convergence is good, please add
logLevel="1" in the LinearSolverParameters block to detect linear solver problems, especially if an iterative
linear solver is used.

© Note

To use the linear solver options of this example, you need to ensure that GEOS is configured to use the Hypre linear
solver package.

<Solvers>

<CompositionalMultiphaseFVM
name="compflow"
logLevel="1"
discretization="fluidTPFA"
targetRegions="{ reservoir }
temperature="300"
useMass="1"
initialDt="1e3"
maxCompFractionChange="0.1">
<NonlinearSolverParameters
newtonTol="1.0e-4"
newtonMaxIter="40"
maxTimeStepCuts="10"
lineSearchAction="None"/>
<LinearSolverParameters
solverType="£fgmres"
preconditionerType="mgr"
krylovTol="1.0e-5"/>
</CompositionalMultiphaseFVM>

</Solvers>

Mesh

In this simulation, we define a simple mesh generated internally using the InternalMesh generator, as illustrated in
the first tutorial (Tutorial 1: First Steps). The mesh dimensions and cell sizes are chosen to be those specified in the
SPEI10 test case, but are limited to the two bottom layers. The mesh description must be done in meters.

<Mesh>
<InternalMesh

name="mesh"
(continues on next page)

1.3. Basic Examples 47




GEOS Documentation

(continued from previous page)

elementTypes="{ C3D8 }"

xCoords="{ 0, 365.76 }"

yCoords="{ 0, 670.56 }"

zCoords="{ 0, 1.22 }"

nx="{ 60 }"

ny="{ 220 }"

nz="{ 2 }"

cellBlockNames="{ block }"/>
</Mesh>

Geometry

As in the previous examples, the Geometry XML block is used to select the cells in which the boundary conditions
are applied. To mimic the setup of the original SPE10 test case, we place a source term in the middle of the domain,
and a sink term in each corner. The specification of the boundary conditions applied to the selected mesh cells is done
in the FieldSpecifications block of the XML file using the names of the boxes defined here.

<Geometry>

<Box

name="source"

xMin="{ 182.85, 335.25, -0.01 }"

xMax="{ 189.00, 338.35, 2.00 }"/>
<Box

name="sink1"

xMin="{ -0.01, -0.01, -0.01 }"

xMax="{ 6.126, 3.078, 2.00 }"/>
<Box

name="sink2"

xMin="{ -0.01, 667.482, -0.01 }"

xMax="{ 6.126, 670.60, 2.00 }"/>
<Box

name="sink3"

xMin="{ 359.634, -0.01, -0.01 }"

xMax="{ 365.8, 3.048, 2.00 }"/>
<Box

name="sink4"

xMin="{ 359.634, 667.482, -0.01 }"

xMax="{ 365.8, 670.60, 2.00 }"/>

</Geometry>

Events

In the Events XML block of this example, we specify two types of PeriodicEvents serving different purposes, namely
solver application and result output.

The periodic event named solverApplications triggers the application of the solver on its target region. This event
must point to the solver by name. In this example, the name of the solver is compflow and was defined in the Solvers
block. The time step is initialized using the initialDt attribute of the flow solver. Then, if the solver converges in
less than a certain number of nonlinear iterations (by default, 40% of the maximum number of nonlinear iterations),
the time step will be increased until it reaches the maximum time step size specified with maxEventDt. If the time step
fails, the time step will be cut. The parameters defining the time stepping strategy can be finely tuned by the user in the
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flow solver block. Note that all times are in seconds.

The output event forces GEOS to write out the results at the frequency specified by the attribute timeFrequency.
Here, we choose to output the results using the VTK format (see Tutorial 2: External Meshes for a tutorial that uses the
Silo output file format). Using targetExactTimestep=1 in this XML block forces GEOS to adapt the time stepping
to ensure that an output is generated exactly at the time frequency requested by the user. In the target attribute, we
must use the name defined in the VIK XML tag inside the Output XML section, as documented at the end of this
example (here, vtkOutput).

More information about events can be found at Event Management.

<Events
maxTime="2e6">

<PeriodicEvent
name="outputs"
timeFrequency="5e5"
targetExactTimestep="1"
target="/Outputs/vtkOutput"/>

<PeriodicEvent
name="solverApplications"
maxEventDt="5e5"
target="/Solvers/compflow"/>

<PeriodicEvent
name="restarts"
timeFrequency="1e6"
targetExactTimestep="0"
target="/Outputs/restartOutput"/>

</Events>

Numerical methods

In the NumericalMethods XML block, we select a two-point flux approximation (TPFA) finite-volume scheme to
discretize the governing equations on the reservoir mesh. TPFA is currently the only numerical scheme that can be
used with a flow solver of type CompositionalMultiphaseFVM.

<NumericalMethods>
<FiniteVolume>
<TwoPointFluxApproximation
name="f1uidTPFA" />
</FiniteVolume>
</NumericalMethods>

Reservoir region

In the ElementRegions XML block, we define a CellElementRegion named reservoir corresponding to the reser-
voir mesh. cellBlocks is setto { * } to automatically target every cells of the mesh.

The CellElementRegion must also point to the constitutive models that are used to update the dynamic rock and fluid
properties in the cells of the reservoir mesh. The names fluid, rock, and relperm used for this in the materialList
correspond to the Constitutive blocks with the coresponding names.
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<ElementRegions>
<CellElementRegion
name="reservoir"
cellBlocks="{ * }"
materiallList="{ fluid, rock, relperm }"/>
</ElementRegions>

Constitutive models

For a simulation performed with the CompositionalMultiphaseFVM physics solver, at least four types of constitutive
models must be specified in the Constitutive XML block:

¢ a fluid model describing the thermodynamics behavior of the fluid mixture,
* arelative permeability model,

* arock permeability model,

* arock porosity model.

All these models use SI units exclusively. A capillary pressure model can also be specified in this block but is omitted
here for simplicity.

Here, we introduce a fluid model describing a simplified mixture thermodynamic behavior. Specifically, we use an
immiscible two-phase (Dead Oil) model by placing the XML tag DeadQilFluid. Other fluid models can be used with
the CompositionalMultiphaseFVM solver, as explained in Fluid Models.

With the tag BrooksCoreyRelativePermeability, we define a relative permeability model. A list of available relative
permeability models can be found at Relative Permeability Models.

The properties are chosen to match those of the original SPE10 test case.

© Note

The names and order of the phases listed for the attribute phaseNames must be identical in the fluid model (here,
DeadOQilFluid) and the relative permeability model (here, BrooksCoreyRelativePermeability). Otherwise, GEOS
will throw an error and terminate.

We also introduce models to define rock compressibility and permeability. This step is similar to what is described in
the previous examples (see for instance Tutorial 1: First Steps).

We remind the reader that the attribute name of the constitutive models defined here must be used in the ElementRe-
gions and Solvers XML blocks to point the element regions and the physics solvers to their respective constitutive
models.

<Constitutive>

<Dead0ilFluid
name="fluid"
phaseNames="{ oil, water }"
surfaceDensities="{ 800.0, 1022.0 }"
componentMolarWeight="{ 114e-3, 18e-3 }"
hydrocarbonFormationVolFactorTableNames="{ B_o_table }
hydrocarbonViscosityTableNames="{ visc_o_table }"
waterReferencePressure="30600000.1"
waterFormationVolumeFactor="1.03"

(continues on next page)
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waterCompressibility="0.00000000041"
waterViscosity="0.0003"/>

<CompressibleSolidConstantPermeability
name="rock"
solidModelName="nullSolid"
porosityModelName="rockPorosity"
permeabilityModelName="rockPerm"/>

<NullModel
name="nullSolid"/>

<PressurePorosity
name="rockPorosity"
defaultReferencePorosity="0.1"
referencePressure="1.0e7"
compressibility="1e-10"/>

<BrooksCoreyRelativePermeability
name="relperm"
phaseNames="{ oil, water }"

phaseMinVolumeFraction="{ 0.0, 0.0 }"
phaseRelPermExponent="{ 2.0, 2.0 }"
phaseRelPermMaxValue="{ 1.0, 1.0 }"/>

<ConstantPermeability
name="rockPerm"
permeabilityComponents="{ 1.0e-14, 1.0e-14, 1.0e-18 }"/>

</Constitutive>

Initial and boundary conditions

In the FieldSpecifications section, we define the initial and boundary conditions as well as the geological properties
(porosity, permeability). All this is done using SI units. Here, we focus on the specification of the initial and boundary
conditions for a simulation performed with the CompositionalMultiphaseFVM solver. We refer to Tutorial 1: First
Steps for a more general discussion on the FieldSpecification XML blocks.

For a simulation performed with the CompositionalMultiphaseFVM solver, we have to set the initial pressure as
well as the initial global component fractions (in this case, the oil and water component fractions). The component
attribute of the FieldSpecification XML block must use the order in which the phaseNames have been defined
in the DeadQilFluid XML block. In other words, component=0 is used to initialize the oil global component
fraction and component=1 is used to initialize the water global component fraction, because we previously set
phaseNames="{0il, water}" in the DeadOilFluid XML block.

To specify the sink terms, we use the FieldSpecification mechanism in a similar fashion to impose the sink pressure
and composition. This is done to mimic a pressure-controlled well (before breakthrough). To specify the source term,
we use a SourceFlux block to impose a fixed mass injection rate of component 1 (water) to mimic a rate-controlled
well.

<FieldSpecifications>
<FieldSpecification
name="permx"

(continues on next page)
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component="0"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/reservoir/block"
fieldName="rockPerm_permeability"
functionName="permxFunc"
scale="9.869233e-16"/>

<FieldSpecification
name="permy"
component="1"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/reservoir/block"
fieldName="rockPerm_permeability"
functionName="permyFunc"
scale="9.869233e-16"/>

<FieldSpecification
name="permz"
component="2"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/reservoir/block"
fieldName="rockPerm_permeability"
functionName="permzFunc"
scale="9.869233e-16"/>

<FieldSpecification
name="referencePorosity"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/reservoir/block"
fieldName="rockPorosity_referencePorosity"
functionName="poroFunc"
scale="1.0"/>

<FieldSpecification
name="initialPressure"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/reservoir/block"
fieldName="pressure"
scale="4.1369e+7"/>

<FieldSpecification
name="initialComposition_oil"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/reservoir/block"
fieldName="globalCompFraction"
component="0"
scale="0.9995"/>

<FieldSpecification
name="initialComposition_water"

(continues on next page)
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initialCondition="1"

setNames="{ all }"
objectPath="ElementRegions/reservoir/block"
fieldName="globalCompFraction"
component="1"

scale="0.0005"/>

<SourceFlux
name="sourceTerm"
objectPath="ElementRegions/reservoir/block"
scale="-0.07279"
component="1"
setNames="{ source }"/>

<FieldSpecification
name="sinkPressure"
setNames="{ sinkl, sink2, sink3, sink4 }"
objectPath="ElementRegions/reservoir/block"
fieldName="pressure"
scale="2.7579e+7" />

<FieldSpecification
name="sinkComposition_oil"
setNames="{ sinkl, sink2, sink3, sink4 }"
objectPath="ElementRegions/reservoir/block"
fieldName="globalCompFraction"
component="0"
scale="0.9995"/>

<FieldSpecification
name="sinkComposition_water"
setNames="{ sinkl, sink2, sink3, sink4 }"
objectPath="ElementRegions/reservoir/block"
fieldName="globalCompFraction"
component="1"
scale="0.0005"/>

</FieldSpecifications>

(continued from previous page)

Output

In this section, we request an output of the results in VTK format. Note that the name defined here must match the

names used in the Events XML block to define the output frequency.

<Outputs>
<VTK
name="vtkOutput"/>

<Restart
name="restartOutput"/>

</Outputs>

All elements are now in place to run GEOS.
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Running GEOS

The first few lines appearing to the console are indicating that the XML elements are read and registered correctly:

Adding Solver of type CompositionalMultiphaseFVM, named compflow
Adding Mesh: InternalMesh, mesh

Adding Geometric Object: Box, source

Adding Geometric Object: Box, sinkl

Adding Geometric Object: Box, sink2

Adding Geometric Object: Box, sink3

Adding Geometric Object: Box, sink4

Adding Event: PeriodicEvent, outputs

Adding Event: PeriodicEvent, solverApplications

TableFunction: permxFunc

TableFunction: permyFunc

TableFunction: permzFunc

TableFunction: poroFunc

TableFunction: B_o_table

TableFunction: visc_o_table

Adding Output: VTK, vtkOutput

Adding Object CellElementRegion named region from ObjectManager::Catalog.
region/block/fluid is allocated with 1 quadrature points.
region/block/rock is allocated with 1 quadrature points.
aaregion/block/relperm is allocated with 1 quadrature points.

At this point, we are done with the case set-up and the code steps into the execution of the simulation itself:

Time: 0s, dt:1000s, Cycle: 0

Attempt: O, NewtonIter: 0

( Rfluid ) = (2.28e+00) ; (R) = ( 2.28e+00 ) ;
Attempt: O, NewtonIter: 1
( Rfluid ) = (8.83e-03) ; (R) = ( 8.83e-03 ) ;

Last LinSolve(iter,res) = ( 2, 2.74e-03 ) ;
Attempt: O, NewtonIter: 2

( Rfluid ) = (8.86e-05) ; (R) = ( 8.86e-05) ;
Last LinSolve(iter,res) = ( 2, 8.92e-03 ) ;

compflow: Max phase CFL number: 0.00399585

compflow: Max component CFL number: 0.152466

compflow: Newton solver converged in less than 16 iterations, time-step required will be.
—doubled.

Visualization

A file compatible with Paraview is produced in this example. It is found in the output folder, and usually has the
extension .pvd. More details about this file format can be found here. We can load this file into Paraview directly and
visualize results:
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To go further
Feedback on this example

This concludes the example on setting up an immiscible two-phase flow simulation in a channelized permeability field.
For any feedback on this example, please submit a GitHub issue on the project’s GitHub page.

For more details
* A complete description of the reservoir flow solver is found here: Compositional Multiphase Flow Solver.

¢ The available constitutive models are listed at Constitutive Models.

1.3.2 Multiphase Flow with Wells

Context

In this example, we build on the concepts presented in Multiphase Flow to show how to set up a multiphase water
injection problem with wells in the three-dimensional Egg model. The twelve wells (four producers and eight injectors)
are placed according to the description of the original test case.

Objectives

In this example, we re-use many GEOS features already presented in Multiphase Flow, but we now focus on:
* how to import an external mesh with embedded geological properties (permeability) in the VTK format (. vtu),
* how to set up the wells.

Input file

This example is based on the XML file located at

/../../../../inputFiles/compositionalMul tiphaseliell/benchmarks/Egg/dead0ilEgg_
—benchmark.xml

The mesh file corresponding to the Egg model is stored in the GEOSDATA repository. Therefore, you must first
download the GEOSDATA repository in the same folder as the GEOS repository to run this test case.

© Note

GEOSDATA is a separate repository in which we store large mesh files in order to keep the main GEOS repository
lightweight.

The XML file considered here follows the typical structure of the GEOS input files:
1. Solver
. Mesh
. Events
. NumericalMethods

. ElementRegions

. FieldSpecifications

2

3

4

5

6. Constitutive
7

8. Outputs

9

. Tasks
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Coupling the flow solver with wells

In GEOS, the simulation of reservoir flow with wells is set up by combining three solvers listed and parameterized in the
Solvers XML block of the input file. We introduce separately a flow solver and a well solver acting on different regions
of the domain—respectively, the reservoir region and the well regions. To drive the simulation and bind these single-
physics solvers, we also specify a coupling solver between the reservoir flow solver and the well solver. This coupling
of single-physics solvers is the generic approach used in GEOS to define multiphysics problems. It is illustrated in
Poromechanics for a poroelastic test case.

The three solvers employed in this example are:

e the single-physics reservoir flow solver, a solver of type CompositionalMultiphaseFVM named
compositionalMultiphaseFlow (more information on this solver at Compositional Multiphase Flow
Solver),

e the single-physics well solver, a solver of type CompositionalMultiphaseWell named
compositionalMultiphaseWell (more information on this solver at Compositional Multiphase Well
Solver),

* the coupling solver that binds the two single-physics solvers above, an object of type CompositionalMulti-
phaseReservoir named coupledFlowAndiells.

The Solvers XML block is shown below. The coupling solver points to the two single-physics solvers using the attributes
flowSolverName and wellSolverName. These names can be chosen by the user and are not imposed by GEOS.
The flow solver is applied to the reservoir and the well solver is applied to the wells, as specified by their respective
targetRegions attributes.

The simulation is fully coupled and driven by the coupled solver. Therefore, the time stepping information (here,
initialDt, but there may be other parameters used to fine-tune the time stepping strategy), the nonlinear solver
parameters, and the linear solver parameters must be specified at the level of the coupling solver. There is no need to
specify these parameters at the level of the single-physics solvers. Any solver information specified in the single-physics
XML blocks will not be taken into account.

© Note

It is worth repeating the logLevel="1" parameter at the level of the well solver to make sure that a notification is
issued when the well control is switched (from rate control to BHP control, for instance).

Here, we instruct GEOS to perform at most newtonMaxIter = "10" Newton iterations. GEOS will adjust the time
step size as follows:

« if the Newton solver converges in timeStepIncreaselterLimit x newtonMaxIter = 5 iterations or fewer,
GEOS will double the time step size for the next time step,

« if the Newton solver converges in timeStepDecreaselterLimit x newtonMaxIter = 8 iterations or more,
GEOS will reduce the time step size for the next time step by a factor timestepCutFactor = 0.1,

* if the Newton solver fails to converge in newtonMaxIter = 10, GEOS will cut the time step size by a factor
timestepCutFactor = 0.1 and restart from the previous converged time step.

The maximum number of time step cuts is specified by the attribute maxTimeStepCuts. Note that a backtracking line
search can be activated by setting the attribute 1ineSearchAction to Attempt or Require. If 1ineSearchAction
= "Attempt", we accept the nonlinear iteration even if the line search does not reduce the residual norm. If
lineSearchAction = "Require", we cut the time step if the line search does not reduce the residual norm.

© Note
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To use the linear solver options of this example, you need to ensure that GEOS is configured to use the Hypre linear
solver package.

<Solvers>

<CompositionalMultiphaseReservoir

name="coupledFlowAndWells"

flowSolverName="compositionalMultiphaseFlow"
wellSolverName="compositionalMultiphaseWell"

logLevel="1"

initialDt="1e4"

targetRegions="{ reservoir, wellRegionl, wellRegion2, wellRegion3, wellRegion4,..

—wellRegion5, wellRegion6, wellRegion7, wellRegion8, wellRegion9, wellRegionlO, ..
—wellRegionll, wellRegionl2 }">

<NonlinearSolverParameters
newtonTol="1.0e-4"
newtonMaxIter="25"
timeStepDecreaselterLimit="0.9"
timeStepIncreaselterLimit="0.6"
timeStepCutFactor="0.1"
maxTimeStepCuts="10"
lineSearchAction="None" />

<LinearSolverParameters
solverType="fgmres"
preconditionerType="mgr"
krylovTol="1e-4"
krylovAdaptiveTol="1"
krylovWleakestTol="1e-2"
logLevel="1"/>

</CompositionalMultiphaseReservoir>

<CompositionalMultiphaseFVM

name="compositionalMultiphaseFlow"
targetRegions="{ reservoir }"
discretization="£f1luidTPFA"
temperature="297.15"
maxCompFractionChange="0.3"
logLevel="1"

useMass="1"/>

<CompositionalMultiphaseWell

name="compositionalMultiphaseWell"
targetRegions="{ wellRegionl, wellRegion2, wellRegion3, wellRegion4, wellRegion5,..

—wellRegion6, wellRegion7, wellRegion8, wellRegion9, wellRegionl®, wellRegionll,.
—wellRegionl2 }"

maxCompFractionChange="0.5"
logLevel="1"
useMass="1">
<WellControls
name="wellControls1"
type="producer"
control="BHP"
referenceElevation="28"
(continues on next page)
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(continued from previous page)
targetBHP="3.9e7"
targetPhaseRate="1e6"
targetPhaseName="0il"/>

<WellControls
name="wellControls2"
type="producer"
control="BHP"
referenceElevation="28"
targetBHP="3.9e7"
targetPhaseRate="1e6"
targetPhaseName="0il"/>

Mesh definition and well geometry

In the presence of wells, the Mesh block of the XML input file includes two parts:
* asub-block VTKMesh defining the reservoir mesh (see Tutorial 2: External Meshes for more on this),
¢ acollection of sub-blocks defining the geometry of the wells.

The reservoir mesh is imported from a .vtu file that contains the mesh geometry and also includes the permeability
values in the X, y, and z directions. These quantities must be specified using the metric unit system, i.e., in meters for
the well geometry and square meters for the permeability field. We note that the mesh file only contains active cells,
so there is no keyword needed in the XML file to define them.

<Mesh>
<VTKMesh
name="mesh"
file="../../../../../GEOSDATA/DataSets/Egg/egg.vtu"
fieldsToImport="{ PERM }"
fieldNamesInGEOS="{ rockPerm_permeability }">

<InternalWell
name="wellProducerl"
wellRegionName="wellRegionl"

(continues on next page)

58 Chapter 1. Table of Contents




GEOS Documentation

wellControlsName="wellControls1"
polylineNodeCoords="{ { 124, 340, 28 },
{ 124, 340, 0 } }"
polylineSegmentConn="{ { 06, 1 } }"
radius="0.1"
numElementsPerSegment="7">
<Perforation
name="producerl_perf1"
distanceFromHead="2"/>
<Perforation
name="producerl_perf2"
distanceFromHead="6"/>
<Perforation
name="producerl_perf3"
distanceFromHead="10"/>
<Perforation
name="producerl_perf4"
distanceFromHead="14"/>
<Perforation
name="producerl_perf5"
distanceFromHead="18"/>
<Perforation
name="producerl_perf6"
distanceFromHead="22"/>
<Perforation
name="producerl_perf7"
distanceFromHead="26"/>
</InternalWell>

<InternalWell
name="wellProducer2"
wellRegionName="wellRegion2"
wellControlsName="wellControls2"
polylineNodeCoords="{ { 276, 316, 28 },
{ 276, 316, ® } }"
polylineSegmentConn="{ { O, 1 } }"
radius="0.1"
numElementsPerSegment="7">
<Perforation
name="producer2_perf1"
distanceFromHead="2"/>
<Perforation
name="producer2_perf2"
distanceFromHead="6"/>
<Perforation
name="producer2_perf3"
distanceFromHead="10"/>
<Perforation
name="producer2_perf4"
distanceFromHead="14"/>
<Perforation
name="producer2_perf5"

(continued from previous page)
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(continued from previous page)

distanceFromHead="18"/>

<Perforation
name="producer2_perf6"
distanceFromHead="22"/>

<Perforation
name="producer2_perf7"
distanceFromHead="26"/>

</InternalWell>

InternalWell sub-blocks

Each well is defined internally (i.e., not imported from a file) in a separate InternalWell XML sub-block. An Inter-
nalWell sub-block must point to the region corresponding to this well using the attribute wellRegionName, and to the
control of this well using the attribute wellControl.

Each well is defined using a vertical polyline going through the seven layers of the mesh with a perforation in each
layer. The well placement implemented here follows the pattern of the original test case. The well geometry must be
specified in meters.

The location of the perforations is found internally using the linear distance along the wellbore from the top of the
well specified by the attribute distanceFromHead. It is the responsibility of the user to make sure that there is a
perforation in the bottom cell of the well mesh otherwise an error will be thrown and the simulation will terminate. For
each perforation, the well transmissibility factors employed to compute the perforation rates are calculated internally
using the Peaceman formulation.

VTKWell sub-blocks

Each well is loaded from a file in a separate VI KWell XML sub-block. A VTKWell sub-block must point to the
region corresponding to this well using the attribute wel1RegionName, and to the control of this well using the attribute
wellControl.

Each well is defined using a vertical VTK polyline going through the seven layers of the mesh with a perforation in
each layer. The well placement implemented here follows the pattern of the original test case. The well geometry must
be specified in meters.

The location of perforations is found internally using the linear distance along the wellbore from the top of the well
specified by the attribute distanceFromHead. It is the responsibility of the user to make sure that there is a perforation
in the bottom cell of the well mesh otherwise an error will be thrown and the simulation will terminate. For each
perforation, the well transmissibility factors employed to compute the perforation rates are calculated internally using
the Peaceman formulation.

<Mesh>
<VTKMesh
name="mesh"
file="../../../../../GEOSDATA/DataSets/Egg/egg.vtu"
fieldsToImport="{ PERM }"
fieldNamesInGEOS="{ rockPerm_permeability }">

<VTKWell
name="wellProducerl"
wellRegionName="wellRegionl"
wellControlsName="wellControlsl"
file="../../../../../GEOSDATA/DataSets/Egg/wellProducerl.vtk"
radius="0.1"

(continues on next page)
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numElementsPerSegment="7">
<Perforation
name="producerl_perf1"
distanceFromHead="2"/>
<Perforation
name="producerl_perf2"
distanceFromHead="6"/>
<Perforation
name="producerl_perf3"
distanceFromHead="10"/>
<Perforation
name="producerl_perf4"
distanceFromHead="14"/>
<Perforation
name="producerl_perf5"
distanceFromHead="18"/>
<Perforation
name="producerl_perf6"
distanceFromHead="22"/>
<Perforation
name="producerl_perf7"
distanceFromHead="26"/>
</VTKWell>

<VTKWell
name="wellProducer2"
wellRegionName="wellRegion2"
wellControlsName="wellControls2"
file="../../../../../GEOSDATA/DataSets/Egg/wellProducer2.vtk"
radius="0.1"
numElementsPerSegment="7">
<Perforation
name="producer2_perf1"
distanceFromHead="2"/>
<Perforation
name="producer2_perf2"
distanceFromHead="6"/>
<Perforation
name="producer2_perf3"
distanceFromHead="10"/>
<Perforation
name="producer2_perf4"
distanceFromHead="14"/>
<Perforation
name="producer2_perf5"
distanceFromHead="18"/>
<Perforation
name="producer2_perf6"
distanceFromHead="22"/>
<Perforation
name="producer2_perf7"
distanceFromHead="26"/>

(continued from previous page)
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(continued from previous page)

</VIKWell>

Events
In the Events XML block, we specify four types of PeriodicEvents.

The periodic event named solverApplications notifies GEOS that the coupled solver coupledFlowAndiells
has to be applied to its target regions (here, reservoir and wells) at every time step. The time stepping strategy has
been fully defined in the CompositionalMultiphaseReservoir coupling block using the initialDt attribute and the
NonlinearSolverParameters nested block.

We also define an output event instructing GEOS to write out . vtk files at the time frequency specified by the attribute
timeFrequency. Here, we choose to output the results using the VTK format (see Tutorial 2: External Meshes for a
example that uses the Silo output file format). The target attribute must point to the VIK sub-block of the Outputs
block defined at the end of the XML file by its user-specified name (here, vtkOutput).

We define the events involved in the collection and output of well production rates following the procedure defined in
Tasks Manager. The time-history collection events trigger the collection of well rates at the desired frequency, while
the time-history output events trigger the output of HDFS5 files containing the time series. These events point by name
to the corresponding blocks of the Tasks and Outputs XML blocks. Here, these names are wellRateCollectionl
and timeHistoryOutputl.

<Events
maxTime="1.5e7">
<PeriodicEvent
name="vtk"
timeFrequency="2e6"
target="/Outputs/vtkOutput"/>

<PeriodicEvent
name="timeHistoryOutputl"
timeFrequency="1.5e7"
target="/Outputs/timeHistoryOutputl" />

<PeriodicEvent
name="timeHistoryOutput2"
timeFrequency="1.5e7"
target="/Outputs/timeHistoryOutput2" />

<PeriodicEvent
name="timeHistoryOutput3"
timeFrequency="1.5e7"
target="/Outputs/timeHistoryOutput3"/>

<PeriodicEvent
name="timeHistoryOutput4"
timeFrequency="1.5e7"
target="/Outputs/timeHistoryOutput4" />

<PeriodicEvent
name="solverApplications"
maxEventDt="5e5"
target="/Solvers/coupledFlowAndWells" />

(continues on next page)
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<PeriodicEvent
name="timeHistoryCollectionl"
timeFrequency="1e6"
target="/Tasks/wellRateCollectionl"/>

<PeriodicEvent
name="timeHistoryCollection2"
timeFrequency="1e6"
target="/Tasks/wellRateCollection2"/>

<PeriodicEvent
name="timeHistoryCollection3"
timeFrequency="1e6"
target="/Tasks/wellRateCollection3"/>

<PeriodicEvent
name="timeHistoryCollection4"
timeFrequency="1e6"
target="/Tasks/wellRateCollection4"/>

<PeriodicEvent
name="restarts"
timeFrequency="7.5e6"
targetExactTimestep="0"
target="/Outputs/restartOutput"/>

</Events>

Numerical methods

In the NumericalMethods XML block, we instruct GEOS to use a TPFA (Two-Point Flux Approximation) finite-
volume numerical scheme. This part is similar to the corresponding section of Multiphase Flow, and has been adapted
to match the specifications of the Egg model.

<NumericalMethods>
<FiniteVolume>
<TwoPointFluxApproximation
name="f1uidTPFA" />
</FiniteVolume>
</NumericalMethods>

Reservoir and well regions

In this section of the input file, we follow the procedure described in Multiphase Flow for the definition of the reservoir
region with multiphase constitutive models.

We associate a CellElementRegion named reservoir to the reservoir mesh. Since we have imported a mesh with
only one region, we can set cel1Blocks to { * } (we could also set cel1Blocks to { hexahedra } as the mesh
has only hexahedral cells).

We also associate a WellElementRegion to each well. As the CellElementRegion, it contains a materialList that
must point (by name) to the constitutive models defined in the Constitutive XML block.
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<ElementRegions>
<CellElementRegion
name="reservoir"
cellBlocks="{ * }"
materiallList="{ fluid, rock, relperm }"/>

<WellElementRegion
name="wellRegionl"
materialList="{ fluid }"/>

<WellElementRegion
name="wellRegion2"
materiallList="{ fluid }"/>

Constitutive models

The CompositionalMultiphaseFVM physics solver relies on at least four types of constitutive models listed in the
Constitutive XML block:

* a fluid model describing the thermodynamics behavior of the fluid mixture,
* arelative permeability model,
* arock permeability model,
¢ arock porosity model.
All the parameters must be provided using the SI unit system.

This part is identical to that of Multiphase Flow.

<Constitutive>
<Dead0ilFluid
name="fluid"
phaseNames="{ oil, water }"
surfaceDensities="{ 848.9, 1025.2 }"
componentMolarWeight="{ 114e-3, 18e-3 }"
tableFiles="{ pvdo.txt, pvtw.txt }"/>

<BrooksCoreyRelativePermeability
name="relperm"
phaseNames="{ oil, water }"

phaseMinVolumeFraction="{ 0.1, 0.2 }"
phaseRelPermExponent="{ 4.0, 3.0 }"
phaseRelPermMaxValue="{ 0.8, 0.75 }"/>

<CompressibleSolidConstantPermeability
name="rock"
solidModelName="nullSolid"
porosityModelName="rockPorosity"
permeabilityModelName="rockPerm"/>

<NullModel
name="nullSolid"/>

<PressurePorosity
(continues on next page)
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name="rockPorosity"
defaultReferencePorosity="0.2"
referencePressure="0.0"
compressibility="1.0e-13"/>

<ConstantPermeability
name="rockPerm"
permeabilityComponents="{ 1.0e-12, 1.0e-12, 1.0e-12 }"/>
</Constitutive>

Initial conditions

We are ready to specify the reservoir initial conditions of the problem in the FieldSpecifications XML block. The well
variables do not have to be initialized here since they will be defined internally.

The formulation of the CompositionalMultiphaseFVM physics solver (documented at Compositional Multiphase
Flow Solver) requires the definition of the initial pressure field and initial global component fractions. We define here
a uniform pressure field that does not satisfy the hydrostatic equilibrium, but a hydrostatic initialization of the pressure
field is possible using Functions:. For the initialization of the global component fractions, we remind the user that their
component attribute (here, 0 or 1) is used to point to a specific entry of the phaseNames attribute in the DeadQilFluid
block.

Note that we also define the uniform porosity field here since it is not included in the mesh file imported by the
VTKMesh.

<FieldSpecifications>
<FieldSpecification

name="initialPressure"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/reservoir/hexahedra"
fieldName="pressure"
scale="4e7"/>

<FieldSpecification
name="initialComposition_oil"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/reservoir/hexahedra"
fieldName="globalCompFraction"
component="0"
scale="0.9"/>

<FieldSpecification

name="initialComposition_water"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/reservoir/hexahedra"
fieldName="globalCompFraction"
component="1"
scale="0.1"/>

</FieldSpecifications>
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Outputs

In this section, we request an output of the results in VTK format and an output of the rates for each producing well.
Note that the name defined here must match the name used in the Events XML block to define the output frequency.

<Outputs>
<VTK
name="vtkOutput"/>

<TimeHistory
name="timeHistoryOutputl"
sources="{ /Tasks/wellRateCollectionl }"
filename="wellRateHistoryl"/>

<TimeHistory
name="timeHistoryOutput2"
sources="{ /Tasks/wellRateCollection2 }"
filename="wellRateHistory2"/>

<TimeHistory
name="timeHistoryOutput3"
sources="{ /Tasks/wellRateCollection3 }"
filename="wellRateHistory3"/>

<TimeHistory
name="timeHistoryOutput4"
sources="{ /Tasks/wellRateCollection4 }"
filename="wellRateHistory4"/>

<Restart
name="restartOutput"/>

</Outputs>

Tasks

In the Events block, we have defined four events requesting that a task periodically collects the rate for each producing
well. This task is defined here, in the PackCollection XML sub-block of the Tasks block. The task contains the path
to the object on which the field to collect is registered (here, a WellElementSubRegion) and the name of the field
(here, wellElementMixtureConnectionRate). The details of the history collection mechanism can be found in
Tasks Manager.

<Tasks>
<PackCollection
name="wellRateCollectionl"
objectPath="ElementRegions/wellRegionl/wellRegionlUniqueSubRegion"
fieldName="wellElementMixtureConnectionRate" />

<PackCollection
name="wellRateCollection2"
objectPath="ElementRegions/wellRegion2/wellRegion2UniqueSubRegion"
fieldName="wellElementMixtureConnectionRate" />

<PackCollection

(continues on next page)
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name="wellRateCollection3"
objectPath="ElementRegions/wellRegion3/wellRegion3UniqueSubRegion"

fieldName="wellElementMixtureConnectionRate" />

<PackCollection
name="wellRateCollection4"
objectPath="ElementRegions/wellRegion4/wellRegion4UniqueSubRegion"

fieldName="wellElementMixtureConnectionRate" />

</Tasks>

(continued from previous page)

All elements are now in place to run GEOS.

Running GEOS

The first few lines appearing to the console are indicating that the XML elements are read and registered correctly:

Adding Mesh: VTKMesh, mesh

Adding Mesh: InternalWell, wellProducerl
Adding Mesh: InternalWell, wellProducer2
Adding Mesh: InternalWell, wellProducer3
Adding Mesh: InternalWell, wellProducer4
Adding Mesh: InternalWell, wellInjectorl
Adding Mesh: InternalWell, wellInjector2
Adding Mesh: InternalWell, wellInjector3
Adding Mesh: InternalWell, wellInjector4
Adding Mesh: InternalWell, wellInjector5
Adding Mesh: InternalWell, wellInjector6
Adding Mesh: InternalWell, wellInjector?7
Adding Mesh: InternalWell, wellInjector8

Adding Solver of type CompositionalMultiphaseReservoir, named coupledFlowAndWells

Adding Solver of type CompositionalMultiphaseFVM, named compositionalMultiphaseFlow

Adding Solver of type CompositionalMultiphaseWell, named compositionalMultiphaseWell

Adding Event: PeriodicEvent, vtk

Adding Event: PeriodicEvent, timeHistoryOutputl

Adding Event: PeriodicEvent, timeHistoryOutput2

Adding Event: PeriodicEvent, timeHistoryOutput3

Adding Event: PeriodicEvent, timeHistoryOutput4

Adding Event: PeriodicEvent, solverApplications

Adding Event: PeriodicEvent, timeHistoryCollectionl

Adding Event: PeriodicEvent, timeHistoryCollection2

Adding Event: PeriodicEvent, timeHistoryCollection3

Adding Event: PeriodicEvent, timeHistoryCollection4

Adding Event: PeriodicEvent, restarts

Adding Output: VTK, vtkOutput

Adding Output: TimeHistory, timeHistoryOutputl

Adding Output: TimeHistory, timeHistoryOutput2

Adding Output: TimeHistory, timeHistoryOutput3

Adding Output: TimeHistory, timeHistoryOutput4

Adding Output: Restart, restartOutput

Adding Object CellElementRegion named reservoir from ObjectManager::Catalog.

Adding Object WellElementRegion named wellRegionl from ObjectManager::Catalog.

Adding Object WellElementRegion named wellRegion2 from ObjectManager::Catalog.
(continues on next page)

1.3. Basic Examples 67




GEOS Documentation

(continued from previous page)

Adding Object WellElementRegion named wellRegion3 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion4 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion5 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion6 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion7 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion8 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion9 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegionl® from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegionll from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegionl2 from ObjectManager::Catalog.

This is followed by the creation of the 18553 hexahedral cells of the imported mesh. At this point, we are done with
the case set-up and the code steps into the execution of the simulation itself:

Time: Os, dt:10000s, Cycle: 0
Attempt: 0, ConfigurationIter: O, NewtonIter: ©

( Rflow ) = ( 1.01e+01 ) ; ( Rwell ) = ( 4.96e+00 ) ; (R) =(1.13e+01 ) ;
Attempt: 0, ConfigurationIter: O, NewtonIter: 1

( Rflow ) = ( 1.96e+00 ) ; ( Rwell ) = ( 8.07e-01 ) ; (R) =( 2.12e+00 ) ;
Last LinSolve(iter,res) = ( 44, 8.96e-03 ) ;

Attempt: 0, ConfigurationIter: O, NewtonIter: 2

( Rflow ) = ( 4.14e-01 ) ; ( Rwell ) = ( 1.19e-01 ) ; (R) =(4.31e-01 ) ;
Last LinSolve(iter,res) = ( 44, 9.50e-03 ) ;

Attempt: O, ConfigurationIter: O, NewtonIter: 3

( Rflow ) = ( 1.77e-02 ) ; ( Rwell ) = ( 9.38e-03 ) ; (R) =(2.00e-02) ;
Last LinSolve(iter,res) = ( 47, 8.69e-03 ) ;

Attempt: 0, ConfigurationIter: O, NewtonIter: 4

( Rflow ) = ( 1.13e-04 ) ; ( Rwell ) = ( 5.09e-05 ) ; (R) =(1.24e-04 ) ;
Last LinSolve(iter,res) = ( 50, 9.54e-03 ) ;

Attempt: 0, ConfigurationIter: 0, NewtonIter: 5

( Rflow ) = ( 2.17e-08 ) ; ( Rwell ) = ( 1.15e-07 ) ; (R)=C(C1.17e-07 ) ;

Last LinSolve(iter,res) = ( 55, 2.71e-04 ) ;
coupledFlowAndiWiells: Newton solver converged in less than 15 iterations, time-step..
—required will be doubled.

Visualization

A file compatible with Paraview is produced in this example. It is found in the output folder, and usually has the
extension .pvd. More details about this file format can be found here. We can load this file into Paraview directly and
visualize results:

We have instructed GEOS to output the time series of rates for each producer. The data contained in the corresponding
HDFS5 files can be extracted and plotted as shown below.

To go further

Feedback on this example

This concludes the example on setting up a Dead-Oil simulation in the Egg model. For any feedback on this example,
please submit a GitHub issue on the project’s GitHub page.

For more details

* A complete description of the reservoir flow solver is found here: Compositional Multiphase Flow Solver.
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» The well solver is description at Compositional Multiphase Well Solver.

e The available constitutive models are listed at Constitutive Models.

1.3.3 CO , Injection
Context
In this example, we show how to set up a multiphase simulation of CO ; injection.
Objectives
At the end of this example you will know:
* how to set up a CO , injection scenario with a well,
* how to run a case using MPI-parallelism.
Input file

The XML file for this test case is located at :

[inputFi les/compositionalMultiphaseWell/simpleCo2InjTutorial_base.xml

[inputFi les/compositionalMultiphaseWell/simpleCo2InjTutorial_smoke.xml J

This mesh is a simple internally generated regular grid (50 x 1 x 150). A single CO , injection well is at the center of
the reservoir.

The XML file considered here follows the typical structure of the GEOS input files:
1. Solver

Mesh

Events

NumericalMethods

ElementRegions

Constitutive

FieldSpecifications

Outputs

o ® Nk w N

Tasks

Multiphase flow and well solvers

Let us inspect the Solver XML tags. They consist of three blocks CompositionalMultiphaseFVM, Compositional-
MultiphaseWell and CompositionalMultiphaseReservoir, which are respectively handling the solution from multi-
phase flow in the reservoir, multiphase flow in the wells, and coupling between those two parts.

<Solvers>
<CompositionalMultiphaseReservoir

name="coupledFlowAndWells"
flowSolverName="compositionalMultiphaseFlow"
wellSolverName="compositionalMultiphaseWell"
logLevel="1"
initialDt="1e2"
targetRegions="{ reservoir, wellRegion }">

(continues on next page)
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<NonlinearSolverParameters
newtonTol="1.0e-4"
lineSearchAction="None"
maxTimeStepCuts="10"
newtonMaxIter="40"/>
<LinearSolverParameters
solverType="fgmres"
preconditionerType="mgr"
krylovTol="1e-5"/>
</CompositionalMultiphaseReservoir>

<CompositionalMultiphaseFVM
name="compositionalMultiphaseFlow"
targetRegions="{ reservoir }"
discretization="£f1luidTPFA"
temperature="368.15"
maxCompFractionChange="0.2"
logLevel="1"
useMass="1"/>

<CompositionalMultiphaseWell

name="compositionalMultiphaseWell"

targetRegions="{ wellRegion }"

maxCompFractionChange="0.2"

logLevel="1"

useMass="1">

<WellControls
name="wellControls"
type="injector"
control="totalVolRate"
enableCrossflow="0"
referenceElevation="6650"
useSurfaceConditions="1"
surfacePressure="101325"
surfaceTemperature="288.71"
targetBHP="5e7"
targetTotalRate="1.5"
injectionTemperature="368.15"
injectionStream="{ 1, 0 }"/>

</CompositionalMultiphaseWell>
</Solvers>

In the CompositionalMultiphaseF VM (Compositional Multiphase Flow Solver), a classical multiphase compositional
solver with a TPFA discretization is described.

The CompositionalMultiphaseWell (Compositional Multiphase Well Solver) consists of wellbore specifications (see
Multiphase Flow with Wells for detailed example). As its reservoir counterpart, it includes references to fluid and
relative permeability models, but also defines a WellControls sub-tag. This sub-tag specifies the CO ; injector control
mode: the well is initially rate-controlled, with a rate specified in targetTotalRate and a maximum pressure specified
in targetBHP. The injector-specific attribute, injectionStream, describes the composition of the injected mixture
(here, pure CO »,).

The CompositionalMultiphaseReservoir coupling section describes the binding between those two previous elements
(see Poromechanics for detailed example on coupling physics in GEOS). In addition to being bound to the previously
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described blocks through flowSolverName and wellSolverName sub-tags, it contains the initialDt starting time-
step size value and defines the NonlinearSolverParameters and LinearSolverParameters that are used to control
Newton-loop and linear solver behaviors (see Linear Solvers for a detailed description of linear solver attributes).

© Note

To use the linear solver options of this example, you need to ensure that GEOS is configured to use the Hypre linear
solver package.

Mesh and well geometry

In this example, the Mesh tag is used to generate the reservoir mesh internally (7utorial 1: First Steps). The in-
ternal generation of well is defined with the InternalWell sub-tag. Apart from the name identifier attribute and their
wellRegionName (ElementRegions) and wellControlsName (Solver) binding attributes, polylineNodeCoords and
polylineSegmentConn attributes are used to define the path of the wellbore and connections between its nodes. The
numElementsPerSegment discretizes the wellbore segments while the radius attribute specifies the wellbore ra-
dius (Multiphase Flow with Wells for details on wells). Once the wellbore is defined and discretized, the position of
Perforations is defined using the linear distance from the head of the wellbore (distanceFromHead).

<Mesh>

<InternalMesh
name="cartesianMesh"
elementTypes="{ C3D8 }"
xCoords="{ 0, 1000 }"
yCoords="{ 450, 550 }"
zCoords="{ 6500, 7700 }"

nx="{ 50 }"
ny="{ 1 }"
nz="{ 150 }"

cellBlockNames="{ cellBlock }'">

<InternalWell
name="wellInjectorl"
wellRegionName="wellRegion"
wellControlsName="wellControls"
polylineNodeCoords="{ { 525.0, 525.0, 6650.00 },
{ 525.0, 525.0, 6600.00 } }"
polylineSegmentConn="{ { 0, 1 } }"
radius="0.1"
numElementsPerSegment="2">
<Perforation
name="injectorl_perfl"
distanceFromHead="45"/>
</InternalWell>
</InternalMesh>
</Mesh>

© Note

It is the responsibility of the user to make sure that there is a perforation in the bottom cell of the well mesh,
otherwise an error will be thrown and the simulation will terminate.
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Events

The solver is applied as a periodic event whose target is referred to as coupledFlowAndWells nametag. Using the
maxEventDt attribute, we specify a max time step size of 5 x 10° seconds.

The output event triggers a VTK output every 107 seconds, constraining the solver schedule to match exactly these
dates. The output path to data is specified as a target of this PeriodicEvent.

Another periodic event is defined under the name restarts. It consists of saved checkpoints every 5 x 107 seconds,
whose physical output folder name is defined under the Qutput tag.

Finally, the time history collection and output events are used to trigger the mechanisms involved in the generation of
a time series of well pressure (see the procedure outlined in 7asks Manager, and the example in Multiphase Flow with
Wells).

<Events
maxTime="5e8">

<PeriodicEvent
name="outputs"
timeFrequency="1e7"
targetExactTimestep="1"
target="/Outputs/simpleReservoirViz"/>

<PeriodicEvent
name="restarts"
timeFrequency="5e7"
targetExactTimestep="1"
target="/Outputs/restartOutput"/>

<PeriodicEvent
name="timeHistoryCollection"
timeFrequency="1e7"
targetExactTimestep="1"
target="/Tasks/wellPressureCollection" />

<PeriodicEvent
name="timeHistoryOutput"
timeFrequency="2e8"
targetExactTimestep="1"
target="/Outputs/timeHistoryOutput" />

<PeriodicEvent
name="solverApplications"
maxEventDt="5e5"
target="/Solvers/coupledFlowAndWells" />

</Events>

Numerical methods
The TwoPointFluxA pproximation is chosen for the fluid equation discretization. The tag specifies:
* A primary field to solve for as fieldName. For a flow problem, this field is pressure.

* A set of target regions in targetRegions.
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* A coefficientName pointing to the field used for TPFA transmissibilities construction.

* A coefficientModelNames used to specify the permeability constitutive model(s).

<NumericalMethods>
<FiniteVolume>
<TwoPointFluxApproximation
name="f1uidTPFA" />
</FiniteVolume>
</NumericalMethods>

Element regions

We define a CellElementRegion pointing to all reservoir mesh cells, and a WellElementRegion for the well. The two
regions contain a list of constitutive model names. The keyword “all” is used here to automatically select all cells of
the mesh.

<ElementRegions>
<CellElementRegion
name="reservoir"
cellBlocks="{ * }"
materiallList="{ fluid, rock, relperm }"/>

<WellElementRegion
name="wellRegion"
materiallList="{ fluid }"/>
</ElementRegions>

Constitutive laws
Under the Constitutive tag, four items can be found:

e CO2BrinePhillipsFluid : this tag defines phase names, component molar weights, and fluid behaviors such as
CO , solubility in brine and viscosity/density dependencies on pressure and temperature.

* PressurePorosity : this tag contains all the data needed to model rock compressibility.

* BrooksCoreyRelativePermeability : this tag defines the relative permeability model for each phase, its end-
point values, residual volume fractions (saturations), and the Corey exponents.

* ConstantPermeability : this tag defines the permeability model that is set to a simple constant diagonal ten-
sor, whose values are defined in permeabilityComponent. Note that these values will be overwritten by the
permeability field imported in FieldSpecifications.

<Constitutive>
<C02BrinePhillipsFluid

name="fluid"
phaseNames="{ gas, water }"
componentNames="{ co2, water }"
componentMolarWeight="{ 44e-3, 18e-3 }"
phasePVTParaFiles="{ pvtgas.txt, pvtliquid.txt }"
flashModelParaFile="co2flash.txt"/>

<CompressibleSolidConstantPermeability
name="rock"
solidModelName="nullSolid"

(continues on next page)
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porosityModelName="rockPorosity"

permeabilityModelName="rockPerm"/>

<NullModel
name="nullSolid"/>

<PressurePorosity
name="rockPorosity"
defaultReferencePorosity="0.05"
referencePressure="1.0e7"
compressibility="4.5e-10"/>

<BrooksCoreyRelativePermeability
name="relperm"
phaseNames="{ gas, water }"

phaseMinVolumeFraction="{ 0.05, 0.30 }"
phaseRelPermExponent="{ 2.0, 2.0 }
phaseRelPermMaxValue="{ 1.0, 1.0 }"/>

<ConstantPermeability
name="rockPerm"
permeabilityComponents="{ 1.0e-17,

</Constitutive>

1.0e-17,

3.0e-17 }"/>

(continued from previous page)

The PVT data specified by CO2BrinePhillipsFluid is set to model the behavior of the CO ,-brine system as a function
of pressure, temperature, and salinity. We currently rely on a two-phase, two-component (CO , and H , O) model in
which salinity is a constant parameter in space and in time. The model is described in detail in CO2-brine model. The

model definition requires three text files:

In co2flash.txt, we define the CO , solubility model used to compute the amount of CO , dissolved in the brine phase
as a function of pressure (in Pascal), temperature (in Kelvin), and salinity (in units of molality):

[FlashModel C02Solubility 1.0e5 7.5e7 1le5 285.15 395.15 5 0

The first keyword is an identifier for the model type (here, a flash model). It is followed by the model name. Then,
the lower, upper, and step increment values for pressure and temperature ranges are specified. The trailing O defines a
zero-salinity in the model. Note that the water component is not allowed to evaporate into the CO ; -rich phase.

The pvigas.txt and pvtliquid.txt files define the models used to compute the density and viscosity of the two phases, as

follows:

DensityFun SpanWagnerCO2Density 1.0e5 7.5e7 1le5 285.15 395.15 5
ViscosityFun FenghourCO2Viscosity 1.0e5 7.5e7 1le5 285.15 395.15 5

DensityFun PhillipsBrineDensity 1.0e5 7.5e7 1le5 285.15 395.15 5 0

ViscosityFun PhillipsBrineViscosity 0

In these files, the first keyword of each line is an identifier for the model type (either a density or a viscosity model). It
is followed by the model name. Then, the lower, upper, and step increment values for pressure and temperature ranges
are specified. The trailing O for PhillipsBrineDensity and PhillipsBrineViscosity entry is the salinity of the

brine, set to zero.
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p
O Note

It is the responsibility of the user to make sure that the pressure and temperature values encountered in the simulation
(in the reservoir and in the well) are within the bounds specified in the PVT files. GEOS will not throw an error if
a value outside these bounds is encountered, but the (nonlinear) behavior of the simulation and the quality of the
results will likely be negatively impacted.

Property specification

The FieldSpecifications tag is used to declare fields such as directional permeability, reference porosity, initial pressure,
and compositions. Here, these fields are homogeneous, except for the permeability field that is taken as an heteroge-
neous log-normally distributed field and specified in Functions as in Tutorial 3: Regions and Property Specifications.

<FieldSpecifications>

<FieldSpecification
name="permx"
initialCondition="1"
component="0"
setNames="{ all }"
objectPath="ElementRegions/reservoir"
fieldName="rockPerm_permeability"
scale="1e-15"
functionName="permxFunc" />

<FieldSpecification
name="permy"
initialCondition="1"
component="1"
setNames="{ all }"
objectPath="ElementRegions/reservoir"
fieldName="rockPerm_permeability"
scale="1e-15"
functionName="permyFunc" />

<FieldSpecification
name="permz"
initialCondition="1"
component="2"
setNames="{ all }"
objectPath="ElementRegions/reservoir"
fieldName="rockPerm_permeability"
scale="1.5e-15"
functionName="permzFunc" />

<FieldSpecification
name="initialPressure"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/reservoir"
fieldName="pressure"
scale="1.25e7"/>

<FieldSpecification

(continues on next page)
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name="initialComposition_co2"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/reservoir"
fieldName="globalCompFraction"
component="0"
scale="0.0"/>

<FieldSpecification

name="initialComposition_water"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/reservoir"
fieldName="globalCompFraction"
component="1"
scale="1.0"/>

</FieldSpecifications>

O Note

In this case, we are using the same permeability field (perm.geos) for all the directions. Note also that the
fieldName values are set to rockPerm_permeability to access the permeability field handled as a Constitutive
law. These permeability values will overwrite the values already set in the Constitutive block.

A Warning

This XML file example does not take into account elevation when imposing the intial pressure with
initialPressure. Consider using a “HydrostraticEquilibrium” for a closer answer to modeled physical pro-
cesses.

Output
The Outputs XML tag is used to write visualization, restart, and time history files.

Here, we write visualization files in a format natively readable by Paraview under the tag VTK. A Restart tag is also be
specified. In conjunction with a PeriodicEvent, a restart file allows to resume computations from a set of checkpoints
in time. Finally, we require an output of the well pressure history using the TimeHistory tag.

<Outputs>
<VTK
name="simpleReservoirViz"/>

<Restart
name="restartOutput"/>

<TimeHistory
name="timeHistoryOutput"
sources="{/Tasks/wellPressureCollection}"
filename="wellPressureHistory" />

(continues on next page)
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{ </Outputs>

Tasks

In the Events block, we have defined an event requesting that a task periodically collects the pressure at the well. This
task is defined here, in the PackCollection XML sub-block of the Tasks block. The task contains the path to the
object on which the field to collect is registered (here, a WellElementSubRegion) and the name of the field (here,
pressure). The details of the history collection mechanism can be found in 7asks Manager.

<Tasks>
<PackCollection
name="wellPressureCollection"
objectPath="ElementRegions/wellRegion/wellRegionUniqueSubRegion"
fieldName="pressure" />

</Tasks>

Running GEOS

The simulation can be launched with 4 cores using MPI-parallelism:

[mpirun -np 4 geosx -i simpleCo2InjTutorial_smoke.xml -x 1 -y 1 -z 4

)

A restart from a checkpoint file simple Co2InjTutorial_restart_000000024.root is always available thanks to the follow-
ing command line :

mpirun -np 4 geosx -i simpleCo2InjTutorial_smoke.xml -r simpleCo2InjTutorial_restart_
000000024 -x 1 -y 1 -z 4

The output then shows the loading of HDFS5 restart files by each core.

Loading restart file simpleCo2InjTutorial_restart_000000024

Rank 0: rankFilePattern = simpleCo2InjTutorial_restart_000000024/rank_%07d.hdf5

Rank 0: Reading in restart file at simpleCo2InjTutorial_restart_000000024/rank_0000000.
—hd£f5

Rank 1: Reading in restart file at simpleCo2InjTutorial_restart_000000024/rank_0000001.
—hdf5

Rank 3: Reading in restart file at simpleCo2InjTutorial_restart_000000024/rank_0000003.
—hdf5

Rank 2: Reading in restart file at simpleCo2InjTutorial_restart_000000024/rank_0000002.
—hdf5

and the simulation restarts from this point in time.

Visualization

Using Paraview, we can observe the CO , plume moving upward under buoyancy effects and forming a gas cap at the
top of the domain,
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The heterogeneous values of the permeability field can also be visualized in Paraview as shown below:

Vertical permeability (mA2)
2.1e-15 5e-15 le-14 2e-14 5e-14 le-13 2.5e-13

b
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To go further
Feedback on this example

This concludes the CO , injection field case example. For any feedback on this example, please submit a GitHub issue
on the project’s GitHub page.

For more details
* A complete description of the reservoir flow solver is found here: Compositional Multiphase Flow Solver.
* The well solver is described at Compositional Multiphase Well Solver.

e The available fluid constitutive models are listed at Fluid Models.

1.3.4 Poromechanics
Context

In this example, we use a coupled solver to solve a poroelastic Terzaghi-type problem, a classic benchmark in poroe-
lasticity. We do so by coupling a single phase flow solver with a small-strain Lagrangian mechanics solver.

Objectives
At the end of this example you will know:
* how to use multiple solvers for poromechanical problems,

¢ how to define finite elements and finite volume numerical methods.

Input file

This example uses no external input files and everything required is contained within two GEOS input files located at:
[inputFi1es/poromechanics/PoroElastic_Terzaghi_base_direct .xml }
[inputFi1es/poromechanics/PoroElastic_Terzaghi_smoke .xml ]

Description of the case

We simulate the consolidation of a poroelastic fluid-saturated column of height L having unit cross-section. The column
is instantaneously loaded at time ¢ = 0 s with a constant compressive traction w applied on the face highlighted in red
in the figure below. Only the loaded face if permeable to fluid flow, with the remaining parts of the boundary subject
to roller constraints and impervious.

Fig. 1.1: Sketch of the setup for Terzaghi’s problem.

GEOS will calculate displacement and pressure fields along the column as a function of time. We will use the analytical
solution for pressure to check the accuracy of the solution obtained with GEOS, namely

R 1 (2m + 1)%72%c.t (2m+ V)mx
t)=— - i
p(x,t) WpOmZ::o om 1eXp [ 172 sin oL ;

o b . s _ k K. . .
Where Po = K.5.% |w] ’1s the 1n1t1'f11 presspre, constant throughout the column, and ¢, = " oo e i the consolida-
tion coeflicient (or diffusion coefficient), with

¢ b Biot’s coeflicient

e K, = % the uniaxial bulk modulus, £ Young’s modulus, and v Poisson’s ratio
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e S = W + ¢cy the constrained specific storage coefficient, ¢ porosity, K =
and cy the fluid compressibility

ﬁ the bulk modulus,

* x the isotropic permeability

* u the fluid viscosity

2
The characteristic consolidation time of the system is defined as ¢, = ﬁ— Knowledge of ¢, is useful for choosing
appropriately the timestep sizes that are used in the discrete model.

Coupled solvers

GEOS is a multi-physics tool. Different combinations of physics solvers available in the code can be applied in different
regions of the mesh at different moments of the simulation. The XML Solvers tag is used to list and parameterize
these solvers.

We define and characterize each single-physics solver separately. Then, we define a coupling solver between these
single-physics solvers as another, separate, solver. This approach allows for generality and flexibility in our multi-
physics resolutions. The order in which these solver specifications is done is not important. It is important, though, to
instantiate each single-physics solver with meaningful names. The names given to these single-physics solver instances
will be used to recognize them and create the coupling.

To define a poromechanical coupling, we will effectively define three solvers:

* the single-physics flow solver, a solver of type SinglePhaseFVM called here SinglePhaseFlowSolver (more
information on these solvers at Singlephase Flow Solver),

* the small-stress Lagrangian mechanics solver, a solver of type SolidMechanicsLagrangianFENM called here
LinearElasticitySolver (more information here: Solid Mechanics Solver),

e the coupling solver that will bind the two single-physics solvers above, an object of type
SinglePhasePoromechanics called here PoroelasticitySolver (more information at Poromechan-
ics Solver).

Note that the name attribute of these solvers is chosen by the user and is not imposed by GEOS.
The two single-physics solvers are parameterized as explained in their respective documentation.

Let us focus our attention on the coupling solver. This solver (PoroelasticitySolver) uses a set of attributes that
specifically describe the coupling for a poromechanical framework. For instance, we must point this solver to the correct
fluid solver (here: SinglePhaseFlowSolver), the correct solid solver (here: LinearElasticitySolver). Now that
these two solvers are tied together inside the coupling solver, we have a coupled multiphysics problem defined. More
parameters are required to characterize a coupling. Here, we specify the discretization method (FE1, defined further in
the input file), and the target regions (here, we only have one, Domain).

<SinglePhasePoromechanics
name="PoroelasticitySolver"
solidSolverName="LinearElasticitySolver"
flowSolverName="SinglePhaseFlowSolver"
logLevel="1"
targetRegions="{ Domain }'">
<LinearSolverParameters

directParallel="0"/>
</SinglePhasePoromechanics>

<SolidMechanicsLagrangianFEM
name="LinearElasticitySolver"
timeIntegrationOption="QuasiStatic"
logLevel="1"

(continues on next page)
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discretization="FE1"
targetRegions="{ Domain }"/>

<SinglePhaseFVM
name="SinglePhaseFlowSolver"
logLevel="1"
discretization="singlePhaseTPFA"
targetRegions="{ Domain }"/>
</Solvers>

Multiphysics numerical methods

Numerical methods in multiphysics settings are similar to single physics numerical methods. All can be defined under
the same NumericalMethods XML tag. In this problem, we use finite volume for flow and finite elements for solid
mechanics. Both methods require additional parameterization attributes to be defined here.

As we have seen before, the coupling solver and the solid mechanics solver require the specification of a discretization
method called FE1. This discretization method is defined here as a finite element method using linear basis functions
and Gaussian quadrature rules. For more information on defining finite elements numerical schemes, please see the
dedicated FiniteElement section.

The finite volume method requires the specification of a discretization scheme. Here, we use a two-point flux approxi-
mation as described in the dedicated documentation (found here: FiniteVolume).

<NumericalMethods>
<FiniteElements>
<FiniteElementSpace
name="FE1"
order="1"/>
</FiniteElements>

<FiniteVolume>
<TwoPointFluxApproximation
name="singlePhaseTPFA" />
</FiniteVolume>
</NumericalMethods>

Mesh, material properties, and boundary conditions

Last, let us take a closer look at the geometry of this simple problem. We use the internal mesh generator to create a
beam-like mesh, with one single element along the Y and Z axes, and 21 elements along the X axis. All the elements
are hexahedral elements (C3DS) of the same dimension (1x1x1 meters).

<Mesh>

<InternalMesh
name="mesh1"
elementTypes="{ C3D8 }"
xCoords="{ 0, 10 }"
yCoords="{ 0, 1 }
zCoords="{ 0, 1 }"
nx="{ 400 }"
ny="{ 16 }"
nz="{ 16 }"

(continues on next page)
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cellBlockNames="{ cbl }"/>
</Mesh>

The parameters used in the simulation are summarized in the following table.

Symbol Parameter Units Value
E Young’s modulus [Pa] 10*
v Poisson’s ratio [-1 0.2
b Biot’s coeflicient [-] 1.0
10) Porosity [-] 0.3
Py Fluid density [kg/m] 1.0
cs Fluid compressibility ~ [Pa™'] 0.0
K Permeability [m?] 10*
W Fluid viscosity [Pa s] 1.0
|w] Applied compression  [Pa] 1.0
L Column length [m] 10.0

Material properties and boundary conditions are specified in the Constitutive and FieldSpecifications sections.
For such set of parameters we have py = 1.0 Pa, ¢, = 1.111 m? s!, and ¢. = 90 s. Therefore, as shown in the Events
section, we run this simulation for 90 seconds.

Running GEOS

To run the case, use the following command:

path/to/geosx -i inputFiles/poromechanics/PoroElastic_Terzaghi_smoke.xml

Here, we see for instance the RSolid and RFluid at a representative timestep (residual values for solid and fluid
mechanics solvers, respectively)

Attempt: O, NewtonIter: O

( RSolid ) = (5.00e-01) ; ( Rsolid, Rfluid ) = ( 5.00e-01, 0.00e+00 )
(R) =(C5.00e-01) ;

Attempt: 0, NewtonIter: 1

( RSolid ) = (4.26e-16) ; ( Rsolid, Rfluid )
(R) = ( 4.28e-16 ) ;

( 4.26e-16, 4.22e-17 )

As expected, since we are dealing with a linear problem, the fully implicit solver converges in a single iteration.

Inspecting results

This plot compares the analytical pressure solution (continuous lines) at selected times with the numerical solution
(markers).

To go further

Feedback on this example

This concludes the poroelastic example. For any feedback on this example, please submit a GitHub issue on the project’s
GitHub page.

For more details
* More on poroelastic multiphysics solvers, please see Poromechanics Solver.

* More on numerical methods, please see Numerical Methods.
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* More on functions, please see Functions.

1.3.5 Hydraulic Fracturing
Context

In this example, we use a fully coupled hydrofracture solver from GEOS to solve for the propagation of a single fracture
within a reservoir with heterogeneous in-situ properties. Advanced xml features will be used throughout the example.

Objectives
At the end of this example you will know:
* how to use multiple solvers for hydraulic fracturing problems,
* how to specify pre-existing fractures and where new fractures can develop,
¢ how to construct a mesh with bias,
* how to specify heterogeneous in-situ properties and initial conditions,
* how to use parameters, symbolic math, and units in xml files.
Input files

This example uses a set of input files and table files located at:

[inputFi1es/hydraulicFracturing J

Because the input files use the advanced xml features, they must be preprocessed using the geosx_xml_tools package.
If you have not already done so, setup these features by following the instructions here: Advanced XML Features .
Description of the case

Here, our goal is to demonstrate how hydraulic fractures are modeled in a typical environment. The in-situ properties
and initial conditions are based upon a randomly generated, fractal, 1D layer-cake model.
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The inputs for this case are contained inside a case-specific (heterogeneousInSitu_benchmark.xml) and base
(heterogeneousInSitu_base.xml) XML files. The tables directory contains the pre-constructed geologic model.
This example will first focus on the case-specific input file, which contains the key parameter definitions, then consider
the base xml file.

Included: including external xml files

At the head of the case-specific xml file is a block that will instruct GEOS to include an external file. In our case, this
points to the base hydraulic fracturing input file.

<Included>
<File
name=". /heterogeneousInSitu_base.xml"/>
</Included>

Parameters: defining variables to be used throughout the file

The Parameters block defines a series of variables that can be used throughout the input file. These variables allow a
given input file to be easily understood and/or modified for a specific environment, even by non-expert users. Parameters
are specified in pairs of names and values. The names should only contain alphanumeric characters and underlines.
The values can contain any type (strings, doubles, etc.).

Parameters can be used throughout the input file (or an included input file) by placing them in-between dollar signs.
Barring any circular-definition errors, parameters can be used within other parameters. For example, see the parameter
mu_upscaled. The value of this parameter is a symbolic expression, which is denoted by the surrounding back-ticks,
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and is dependent upon two other parameters. During pre-processing, geosx_xml_tools will substitute the parameter
definitions, and evaluate the symbolic expression using a python-derived syntax.

A number of the input parameters include optional unit definitions, which are denoted by the square brackets following
a value. For example, the parameter t_max is used to set the maximum time for the simulation to 20 minutes.

<Parameters>
<!-- Use the swarm upscaling law -->
<Parameter
name="Nperf"
value="5"/>

<Parameter
name="Nswarm"
value="5"/>

<Parameter
name="mu_init"
value="0.001"/>

<Parameter
name="K_init"
value="1e6"/>

<Parameter
name="mu_upscaled"
value=""$mu_init$* ($Nswarm$**2)""/>

<Parameter
name="K_upscaled"
value=""$K_init$* ($Nswarm$**0.5) "/>

<Parameter
name="ContactStiffness"
value="1e10"/>

<!-- Event timing -->

<Parameter
name="pump_start"
value="1 [min]"/>

<Parameter
name="pump_ramp"
value="5 [s]"/>

<Parameter
name="pump_ramp_dt_limit"
value="0.2 [s]"/>

<Parameter
name="dt_max"
value="30 [s]"/>

<Parameter

(continues on next page)
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name="t_max"
value="20 [min]"/>

<!l-- Etc. -->

<Parameter
name="table_root"
value="./tables"/>

<Parameter
name="t_allocation"
value="28 [min]"/>
</Parameters>

Mesh with biased boundaries

The mesh block for this example uses a biased mesh along the simulation boundaries to reduce the size of the problem,
while maintaining the desired spatial extents. For a given element region with bias, the left-hand element will be x%
smaller and the right-hand element will be x% larger than the average element size. Along the x-axis of the mesh, we
select a value of zero for the first region to indicate that we want a uniform-sized mesh, and we select a bias of -0.6 for
the second region to indicate that we want the element size to smoothly increase in size as it moves in the +x direction.
The other dimensions of the mesh follow a similar pattern.

<Mesh>
<InternalMesh

name="mesh1"
xCoords="{ 0, 200, 250 }"
yCoords="{ -100, 0, 100 }"
zCoords="{ -150, -100, 0, 100, 150 }"
nx="{ 50, 5 }"
ny="{ 10, 10 }"
nz="{ 5, 25, 25, 5 }"
xBias="{ 0, -0.6 }"
yBias="{ 0.6, -0.6 }"
zBias="{ 0.6, 0, 0, -0.6 }"
cellBlockNames="{ cbl }"
elementTypes="{ C3D8 }"/>

</Mesh>

Defining a fracture nodeset

For this example, we want to propagate a single hydraulic fracture along the plane defined by y = 0. To achieve this,
we need to define three nodesets:

 source_a: The location where we want to inject fluid. Typically, we want this to be a single face in the x-z plane.

e perf_a: This is the initial fracture for the simulation. This nodeset needs to be at least two-faces wide in the x-z
plane (to represent the fracture at least one internal node needs to be open).

* fracturable_a: This is the set of faces where we will allow the fracture to grow. For a problem where we expect
the fracture to curve out of the plane defined by y = 0, this could be replaced.

<Geometry>
<Box
(continues on next page)
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name="source_a"
xMin="{ -0.1, -0.1, -0.1 }"
xMax="{ 4.1, 0.1, 4.1 }"/>

<Box
name="perf_a"
xMin="{ -4.1, -0.1, -4.1 }"
xMax="{ 4.1, 0.1, 4.1 }"/>

<ThickPlane
name="fracturable_a"
normal="{ 0, 1, 0 }"
origin="{ 0, 0, 0 }"
thickness="0.1"/>
</Geometry>

(continued from previous page)

Boundary conditions

The boundary conditions for this problem are defined in the case-specific and the base xml files. The case specific

block includes four instructions:

e frac: this marks the initial perforation.

* separableFace: this marks the set of faces that are allowed to break during the simulation.

» waterDensity: this initializes the fluid in the perforation.

* sourceTerm: this instructs the code to inject fluid into the source_a nodeset. Note the usage of the symbolic
expression and parameters in the scale. This boundary condition is also driven by a function, which we will

define later.

<FieldSpecifications>

<!-- Fracture-related nodesets -->

<FieldSpecification
name="frac"
fieldName="ruptureState"
initialCondition="1"
objectPath="faceManager"
scale="1"
setNames="{ perf_a }"/>

<FieldSpecification
name="separableFace"
fieldName="1isFaceSeparable"
initialCondition="1"
objectPath="faceManager"
scale="1"

setNames="{ fracturable_a }"/>

<!-- Fluid Initial Conditions -->

<FieldSpecification
name="waterDensity"
fieldName="water_density"
initialCondition="1"

(continues on next page)
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objectPath="ElementRegions"
scale="1000"
setNames="{ perf_a }"/>

<!-- Fluid BC's -->
<!-- Note: the units of the source flux BC are in kg/s not m3/s -->
<SourceFlux
name="sourceTerm"
objectPath="ElementRegions/Fracture"
scale=""-1000.0/$Nperf$ "
functionName="flow_rate"
setNames="{ source_a }"/>
</FieldSpecifications>

The base block includes instructions to set the initial in-situ properties and stresses. It is also used to specify the
external mechanical boundaries on the system. In this example, we are using roller-boundary conditions (zero normal-
displacement). Depending upon how close they are to the fracture, they can significantly affect its growth. Therefore,
it is important to test whether the size of the model is large enough to avoid this.

<FieldSpecifications>
<FieldSpecification

name="bulk_modulus"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions"
fieldName="rock_bulkModulus"
functionName="bulk_modulus"
scale="1.0"/>

<FieldSpecification
name="shear_modulus"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions"
fieldName="rock_shearModulus"
functionName="shear_modulus"
scale="1.0"/>

<FieldSpecification
name="sigma_xx"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions"
fieldName="rock_stress"
component="0"
functionName="sigma_xx"
scale="1.0"/>

<FieldSpecification
name="sigma_yy"
initialCondition="1"
setNames="{ all }"

(continues on next page)
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objectPath="ElementRegions"
fieldName="rock_stress"
component="1"
functionName="sigma_yy"
scale="1.0"/>

<FieldSpecification
name="sigma_zz"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions"
fieldName="rock_stress"
component="2"
functionName="sigma_zz"
scale="1.0"/>

<!-- Mechanical BC's -->

<FieldSpecification
name="x_constraint"
component="0"
fieldName="totalDisplacement"
objectPath="nodeManager"
scale="0.0"
setNames="{ xneg, xpos }"/>

<FieldSpecification
name="y_constraint"
component="1"
fieldName="totalDisplacement"
objectPath="nodeManager"
scale="0.0"
setNames="{ yneg, ypos }"/>

<FieldSpecification

name="z_constraint"

component="2"

fieldName="totalDisplacement"

objectPath="nodeManager"

scale="0.0"

setNames="{ zneg, zpos }"/>
</FieldSpecifications>

Coupled hydraulic fracturing solver

The Solvers block is located in the base xml file. Note that the gravityVector attribute indicates that we are applying
gravity in the z-direction in this problem.

Similar to other coupled physics solvers, the Hydrofracture solver is specified in three parts:

* Hydrofracture: this is the primary solver, which will be called by the event manager. Two of its key attributes
are the names of the dependent solid and fluid solvers.

* SolidMechanicsLagrangianFEM: this is the solid mechanics solver.

* SinglePhaseFVM: this is the fluid solver.
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The final solver present in this example is the SurfaceGenerator, which manages how faces in the model break.

<Solvers
gravityVector="{ 0.0, 0.0, -9.81 }'">
<Hydrofracture
name="hydrofracture"
solidSolverName="1lagsolve"
flowSolverName="SinglePhaseFlow"
surfaceGeneratorName="SurfaceGen"
logLevel="1"
targetRegions="{ Fracture }"
maxNumResolves="2">
<NonlinearSolverParameters
newtonTol="1.0e-5"
newtonMaxIter="40"
lineSearchMaxCuts="3"/>
<LinearSolverParameters
logLevel="1"
solverType="gmres"
preconditionerType="mgr" />
</Hydrofracture>

<SolidMechanicsLagrangianFEM
name="1lagsolve"
logLevel="1"
timeIntegrationOption="QuasiStatic"
discretization="FE1"
targetRegions="{ Domain, Fracture }"
contactRelationName="fractureContact
contactPenaltyStiffness="1e12">
<NonlinearSolverParameters
newtonTol="1.0e-6"/>
<LinearSolverParameters
solverType="gmres"
krylovTol="1.0e-10"/>
</SolidMechanicsLagrangianFEM>

<SinglePhaseFVM
name="SinglePhaseFlow"
logLevel="1"
discretization="singlePhaseTPFA"
targetRegions="{ Fracture }">
<NonlinearSolverParameters
newtonTol="1.0e-5"
newtonMaxIter="10"/>
<LinearSolverParameters
solverType="gmres"
krylovTol="1.0e-12"/>
</SinglePhaseFVM>

<SurfaceGenerator
name="SurfaceGen"
targetRegions="{ Domain }"

(continues on next page)
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initialRockToughness="$K_upscaled$"
nodeBasedSIF="1"
mpiCommOrder="1"/>
</Solvers>

Events

Rather than explicitly specify the desired timestep behavior, this example uses a flexible approach for timestepping.
The hydrofracture solver is applied in the solverApplications event, which request a maxEventDt = 30 s. To
maintain stability during the critical early phase of the model, we delay turning on the pump by pump_start. We then
use the pumpStart event to limit the further limit the timestep to pump_ramp_dt_limit as the fracture experiences
rapid development (pump_start to pump_start + pump_ramp). Note that while this event does not have a target,
it can still influence the time step behavior. After this period, the hydraulic fracture solver will attempt to increase /
decrease the requested timestep to maintain stability.

Other key events in this problem include:
* preFracture: this calls the surface generator at the beginning of the problem and helps to initialize the fracture.
* outputs_vtk and outputs_silo: these produces output vtk and silo files.

* restarts (inactive): this is a HaltEvent, which tracks the external clock. When the runtime exceeds the specified
value (here $t_allocation$=28 minutes), the code will call the target (which writes a restart file) and instruct the
code to exit.

<Events
maxTime="$t_max$"
logLevel="1">
<!-- Generate the initial fractures -->
<SoloEvent
name="preFracture"
target="/Solvers/SurfaceGen" />

<!-- Primary outputs -->

<PeriodicEvent
name="outputs_vtk"
timeFrequency="1 [min]"
targetExactTimestep="0"
target="/Outputs/vtkOutput"/>

<PeriodicEvent
name="outputs_silo"
timeFrequency="1 [min]"
targetExactTimestep="0"
target="/Outputs/siloOutput"/>

<!-- Apply the hydrofracture solver -->

<PeriodicEvent
name="solverApplications"
maxEventDt="$dt_max$"
target="/Solvers/hydrofracture"/>

<!-- Limit dt during the pump ramp-up -->
<PeriodicEvent

(continues on next page)
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name="pumpStart"
beginTime=""3$pump_start$"
endTime=""$pump_start$+$pump_ramp$ "
maxEventDt="$pump_ramp_dt_limit$"/>

<!-- Watch the wall-clock, write a restart, and exit gracefully if necessary -->
<!-- <HaltEvent
name="restarts"
maxRuntime="$t_allocation$"
target="/Outputs/restartOutput"/> -->
</Events>

Functions to set in-situ properties

The function definitions are in the base xml file, and rely upon the files in the tables directory. The functions in this
example include the flow rate over time, the in-situ principal stress, and the bulk/shear moduli of the rock. Note the
use of the table_root parameter, which contains the root path to the table files.

The flow_rate TableFunction is an example of a 1D function. It has a single input, which is time. The table is defined
using a single coordinateFile:

0.00000e+00
6.00000e+01
1.20000e+02
.72000e+03
.78000e+03
.00000e+09

= W w

And a single voxelFile:

0.00000e+00
0.00000e+00
5.00000e-02
5.00000e-02
0.00000e+00
0.00000e+00

Given the specified linear interpolation method, these values define a simple trapezoidal function. Note: since this is a
1D table, these values could alternately be given within the xml file using the coordinates and values attributes.

The sigma_xx TableFunction is an example of a 3D function. It uses elementCenter as its input, which is a vector. It
is specified using a set of three coordinate files (one for each axis), and a single voxel file. The geologic model in this
example is a layer-cake, which was randomly generated, so the size of the x and y axes are 1. The interpolation method
used here is upper, so the values in the table indicate those at the top of each layer.

<Functions>
<!-- Pumping Schedule -->
<TableFunction
name="flow_rate"
inputVarNames="{ time }"
coordinateFiles="{ $table_root$/flowRate_time.csv }"
voxelFile="$table_root$/flowRate.csv"/>

(continues on next page)
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<!-- Geologic Model -->
<TableFunction

name="sigma_xx"

inputVarNames="{ elementCenter }"

coordinateFiles="{ $table_root$/x.csv, $table_root$/y.csv, $table_root$/z.csv }"

voxelFile="$table_root$/sigma_xx.csv"

interpolation="upper"/>

<TableFunction
name="sigma_yy"
inputVarNames="{ elementCenter }"
coordinateFiles="{ $table_root$/x.csv, $table_root$/y.csv, $table_root$/z.csv }"
voxelFile="$table_root$/sigma_yy.csv"
interpolation="upper"/>

<TableFunction
name="sigma_zz"
inputVarNames="{ elementCenter }"
coordinateFiles="{ $table_root$/x.csv, $table_root$/y.csv, $table_root$/z.csv }"
voxelFile="$table_root$/sigma_zz.csv"
interpolation="upper"/>

<TableFunction
name="init_pressure"
inputVarNames="{ elementCenter }"
coordinateFiles="{ $table_root$/x.csv, $table_root$/y.csv, $table_root$/z.csv }"
voxelFile="$table_root$/porePressure.csv"
interpolation="upper"/>

<TableFunction
name="bulk_modulus"
inputVarNames="{ elementCenter }"
coordinateFiles="{ $table_root$/x.csv, $table_root$/y.csv, $table_root$/z.csv }"
voxelFile="$table_root$/bulkModulus.csv"
interpolation="upper"/>

<TableFunction
name="shear_modulus"
inputVarNames="{ elementCenter }"
coordinateFiles="{ $table_root$/x.csv, $table_root$/y.csv, $table_root$/z.csv }"
voxelFile="$table_root$/shearModulus.csv"
interpolation="upper"/>

<TableFunction
name="apertureTable"
coordinates="{ -1.0e-3, 0.0 }"
values="{ 1.0e-6, 1.0e-4 }"/>

</Functions>
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Running GEOS

Assuming that the preprocessing tools have been correctly installed (see Advanced XML Features ), there will be a
script in the GEOS build/bin directory called geosx_preprocessed. Replacing geosx with geosx_preprocessed in an
input command will automatically apply the preprocessor and send the results to GEOS.

Before beginning, we reccomend that you make a local copy of the example and its tables. Because we are using
advanced xml features in this example, the input file must be pre-processed before running. For example, this will run
the code on a debug partition using a total of 36 cores.

cp -r examples/hydraulicFracturing ./hf_example

cd hf_example

srun -n 36 -ppdebug geosx_preprocessed -i heterogeneousInSitu_benchmark.xml -x 6 -y 2 -z,
3 -0 hf_results

Note that as part of the automatic preprocessing step a compiled xml file is written to the disk (by default ‘[in-
put_name].preprocessed’). When developing an xml with advanced features, we reccomend that you check this file
to ensure its accuracy.

Inspecting results

In the above example, we requested vtk- and silo-format output files every minute. We can therefore import these into
Vislt, Paraview, or python and visualize the outcome. The following figure shows the extents of the generated fracture
over time:
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Notes for visualization tools:
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1) In Visit, we currently recommend that you look at the silo-format files (due to a compatibility issue with vtk)

2) In Paraview, you may need to use the Multi-block Inspector (on the right-hand side of the screen by default) to
limit the visualization to the fracture. In addition, the Properties inspector (on the left-hand side of the sceen by
default) may not include some of the parameters present on the fracture. Instead, we recommend that you use
the property dropdown box at the top of the screen.

Because we did not explicitly specify any fracture barriers in this example, the fracture dimensions are controlled by
the in-situ stresses. During the first couple of minutes of growth, the fracture quickly reaches its maximum/minimum
height, which corresponds to a region of low in-situ minimum stress.

The following figures show the aperture and pressure of the hydraulic fracture (near the source) over time:
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Modifying Parameters Via the Command-Line

The advanced xml feature preprocessor allows parameters to be set or overriden by specifying any number of -p name
value arguments on the command-line. Note that if the parameter value has spaces, it needs to be enclosed by quotation

marks.

To illustrate this feature, we can re-run the previous analysis with viscosity increased from 1 cP to 5 cP:

srun -n 36 -ppdebug geosx_preprocessed -i heterogeneousInSitu_benchmark.xml -p mu 0.005 -
X 6 -y 2 -z 3 -0 hf_results_lower_mu

To go further

Feedback on this example

This concludes the hydraulic fracturing example. For any feedback on this example, please submit a GitHub issue on
the project’s GitHub page.

For more details
* More on advanced xml features, please see Advanced XML Features.
* More on functions, please see Functions.

* More on biased meshes, please see Mesh Bias.
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1.3.6 Triaxial Driver: Extended Drucker-Prager Elasto-Plastic Model
Context

In this example, we use the TriaxialDriver inside GEOS to simulate rock mechanics experiments, such as triaxial
tests. The triaxial driver allows to calibrate properties and model parameters against experimental data before using
them in field-scale simulations.

Objectives
At the end of this example, you will know:
* how to set up a triaxial test scenario with the TriaxialDriver,
¢ how to define a material model,
* how to specify loading conditions with TableFunction,
* how to save and postprocess simulation results.
Input file
The XML file for this test case is located at:

[inputFi les/triaxialDriver/triaxialDriver_ExtendedDruckerPrager_basicExample.xml

This example also uses a set of table files located at:

[inputFi1es/triaxialDriver/tables/

Last, a Python script for post-processing the results is provided:

[src/doc s/sphinx/basicExamples/triaxialDriver/triaxialDriverFigure.py

Description of the case

Instead of launching a full finite-element simulation to mimic experimental loading conditions, GEOS provides a
TriaxialDriver to investigate constitutive behaviors and simulate laboratory tests. The triaxial driver makes it easy
to interpret the mechanical response and calibrate the constitutive models against experimental data.

In this example, the Extended Drucker-Prager model (see Model: Extended Drucker-Prager) is used to solve elasto-
plastic deformations of rock samples when subject to controlled loading conditions. The strain-hardening Extended
Drucker-Prager model with an associated plastic flow rule is tested in this example. To replicate a typical triaxial test,
we use a table function to specify loading conditions in axial and radial directions. The resulting strains and stresses
in both directions are numerically calculated and saved into a simple ASCII output file.

For this example, we focus on the Task, the Constitutive, and the Functions tags.

Task

In GEOS, the TriaxialDriver is defined with a dedicated XML structure. The TriaxialDriver is added to a
standard XML input deck as a solo task to the Tasks queue and added as a SoloEvent to the event queue.

For this example, we simulate the elastoplastic deformation of a confined specimen caused by external load. A ho-
mogeneous domain with one solid material is assumed. The material is named ExtendedDruckerPrager, and its
mechanical properties are specified in the Constitutive section.

Different testing modes are available in the TriaxialDriver to mimic different laboratory loading conditions:
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mode axial loading radial loading initial stress

strainContr axial strain controlled with radial strain controlled with isotropic  stress  using
axialControl radialControl initialStress

stressContr axial stress controlled with radial stress controlled with isotropic  stress  using
axialControl radialControl initialStress

mixedContrc axial strain controlled with radial stress controlled with isotropic stress  using
axialControl radialControl initialStress

A triaxial test is usually conducted on a confined rock sample to determine material properties. As shown, a conven-
tional triaxial test is described using the mode="mixedControl" testing mode in the TriaxialDriver.

In a triaxial test, the testing sample is under confining pressure (radial stresses) and subject to increased axial load.
Therefore, a stress control radialControl="stressFunction" is defined in the radial direction to impose confining
pressure. A strain control axialControl="strainFunction" is applied in the axial direction to represent axial
compression.

The initial stress is specified by initialStress="-10.e6". To ensure static equilibrium at the first timestep, its value
should be consistent with the initial set of applied stresses defined in axial or radial loading functions. This stress has
a negative value due to the negative sign convention for compressive stress in GEOS.

Then, steps="200" defines the number of load steps and output="simulationResults.txt" specifies an output
file to which the simulation results will be written.

<Tasks>
<TriaxialDriver

name="triaxialDriver"
material="ExtendedDruckerPrager"
mode="mixedControl"
axialControl="strainFunction"
radialControl="stressFunction"
initialStress="-10.e6"

steps="200"
output="simulationResults.txt" />
</Tasks>

In addition to triaxial tests, volumetric and oedometer tests can be simulated by changing the strainControl mode,
and by defining loading controls in axial and radial direction accordingly. A volumetric test can be modelled by setting
the axial and radial control functions to the same strain function, whereas an oedometer test runs by setting the radial
strain to zero (see Triaxial Driver).

Constitutive laws
Any solid material model implemented in GEOS can be called by the TriaxialDriver.

For this problem, Extended Drucker Prager model ExtendedDruckerPrager is used to describe the mechan-
ical behavior of an isotropic material, when subject to external loading. As for the material parameters,
defaultInitialFrictionAngle, defaultResidualFrictionAngle and defaultCohesion denote the ini-
tial friction angle, the residual friction angle, and cohesion, respectively, as defined by the Mohr-Coulomb
failure envelope. As the residual friction angle defaultResidualFrictionAngle is larger than the initial
one defaultInitialFrictionAngle, a strain hardening model is adopted, whose hardening rate is given as
defaultHardening="0.0001". If the residual friction angle is set to be less than the initial one, strain weakening
will take place. Setting defaultDilationRatio="1.0" corresponds to an associated flow rule.

100 Chapter 1. Table of Contents




GEOS Documentation

<Constitutive>

<ExtendedDruckerPrager
name="ExtendedDruckerPrager"
defaultDensity="2700"
defaultBulkModulus="10.0e9"
defaultShearModulus="6.0e9"
defaultCohesion="6.0e6"
defaultInitialFrictionAngle="16.0"
defaultResidualFrictionAngle="20.0"
defaultDilationRatio="1.0"
defaultHardening="0.0001"

/>

</Constitutive>

All constitutive parameters such as density, viscosity, bulk modulus, and shear modulus are specified in the International
System of Units.

Functions

The TriaxialDriver uses a simple form of time-stepping to advance through the loading steps, allowing for simu-
lating both rate-dependent and rate-independent models.

In this case, users should define two different time history functions (strainFunction and stressFunction) to
describe loading conditions in axial and radial direction respectively. More specifically, the table functions in this
example include the temporal variations of radial stress and axial strain, which rely upon the external files in the table
directory (see Functions). Note that for standard tests with simple loading history, functions can be embedded directly
in the XML file without using external tables.

<Functions>
<TableFunction
name="strainFunction"
inputVarNames="{ time }"
coordinateFiles="{ tables/time.geos }"
voxelFile="tables/axialStrain.geos"/>

<TableFunction
name="stressFunction"
inputVarNames="{ time }"
coordinateFiles="{ tables/time.geos }"
voxelFile="tables/radialStress.geos"/>
</Functions>

The strainFunction TableFunction is an example of a 1D interpolated function, which describes the strain as a
function of time inputVarNames="{ time }". This table is defined using a single coordinate file:

v WN RS

And a single voxel file:
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0.0

-0.004
-0.002
-0.005
-0.003
-0.006

Similarly, the correlation between the confining stress and time is given through the stressFunction defined using
the same coordinate file:

v WN R

And a different voxel file:

-10.0e6
-10.0e6
-10.0e6
-10.0e6
-10.0e6
-10.0e6

For this specific test, the confining stress is kept constant and equal to the initialStress. Instead of monotonic
changing the axial load, two loading/unloading cycles are specified in the strainFunction. This way, both plastic
loading and elastic unloading can be modeled.

Note that by convention in GEOS, stressFunction and strainFunction have negative values for a compressive
test.

Mesh

Even if discretization is not required for the TriaxialDriver, a dummy mesh should be defined to pass all the nec-
essary checks when initializing GEOS and running the module. A dummy mesh should be created in the Mesh section
and assigned to the cel1Blocks in the ElementRegions section.

<Mesh>
<InternalMesh

name="mesh1"
elementTypes="{ C3D8 }"
xCoords="{ O,
yCoords="{ O,
zCoords="{ 0
nx="{ 1 }"
ny="{ 1 }"
nz="{ 1 }"
cellBlockNames="{ cellBlock®1 }"/>

</Mesh>

<ElementRegions>
<CellElementRegion
(continues on next page)
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name=""dummy"
cellBlocks="{ * }"
materiallList="{ dummy }"/>
</ElementRegions>

Once calibrated, the testing constitutive models can be easily used in full field-scale simulation by adding solver, dis-
cretization, and boundary condition blocks to the xml file. Also, it is possible to run a full GEOS model and generate
identical results as those provided by the TriaxialDriver.

Running TriaxialDriver

The TriaxialDriver is launched like any other GEOS simulation by using the following command:

[path/to/g eosx -i triaxialDriver_ExtendedDruckerPrager_basicExample.xml

The running log appears to the console to indicate if the case can be successfully executed or not:

Max threads: 32
MKL max threads: 16
GEOS version 0.2.0 (HEAD, shal: bbl6d72)
Adding Event: SoloEvent, triaxialDriver

TableFunction: strainFunction

TableFunction: stressFunction
Adding Mesh: InternalMesh, meshl
Adding Object CellElementRegion named dummy from ObjectManager::Catalog.
Total number of nodes:8
Total number of elems:1
Rank 0: Total number of nodes:8

dummy/cellBlock0®1 does not have a discretization associated with it.

Time: 0s, dt:1s, Cycle: 0
Cleaning up events

Umpire HOST sum across ranks: 23.2 KB
Umpire HOST rank max: 23.2 KB
total time 0.435s
initialization time 0.053s
run time 0.004s

Inspecting results

The simulation results are saved in a text file, named simulationResults.txt. This output file has a brief header
explaining the meaning of each column. Each row corresponds to one timestep of the driver, starting from initial
conditions in the first row.

# column 1 = time

# column 2 = axial_strain

# column 3 = radial_strain_1

# column 4 = radial_strain_ 2

# column 5 = axial_stress

# column 6 = radial_stress_1

# column 7 = radial_stress_2

# column 8 = newton_iter

# column 9 = residual_norm

0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+07 -1.0000e+07 -1.0000e+07 0.

(continues on next page)
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—0000e+00 0.0000e+00
2.5000e-02 -1.0000e-04 2.5000e-05 2.5000e-05 -1.1500e+07 -1.0000e+07 -1.0000e+07 1.
—0000e+00 0.0000e+00
5.0000e-02 -2.0000e-04 5.0000e-05 5.0000e-05 -1.3000e+07 -1.0000e+07 -1.0000e+07 1.
—0000e+00 0.0000e+00
7.5000e-02 -3.0000e-04 7.5000e-05 7.5000e-05 -1.4500e+07 -1.0000e+07 -1.0000e+07 1.
—0000e+00 0.0000e+00
1.0000e-01 -4.0000e-04 1.0000e-04 1.0000e-04 -1.6000e+07 -1.0000e+07 -1.0000e+07 1.
—0000e+00 0.0000e+00

Note that the file contains two columns for radial strains (radial_strain_1and radial_strain_2)and two columns
for radial stresses (radial_stress_1 and radial_stress_2). For isotropic materials, the stresses and strains along
the two radial axes would be the same. However, the stresses and strains in the radial directions can differ for cases
with anisotropic materials and true-triaxial loading conditions.

This output file can be processed and visualized using any tool. As an example here, with the provided python script,
the simulated stress-strain curve, p-q diagram and relationship between volumetric strain and axial strain are plotted,
and used to validate results against experimental observations:

To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page.

1.4 Advanced Examples

1.4.1 Validation and Verification Studies

Carbon Storage

Verification of CO2 Core Flood Experiment with Buckley-Leverett Solution

Context

In this example, we simulate a CO2 core flood experiment representing immiscible transport of two-phase flow (CO2
and water) through porous media (Ekechukwu et al., 2022). This problem is solved using the multiphase flow solver in
GEOS to obtain the temporal evolution of saturation along the flow direction, and verified against the Buckley-Leverett
analytical solutions (Buckley and Leverett, 1942; Arabzai and Honma, 2013).

Input file

The xml input files for the test case are located at:

inputFiles/compositionalMultiphaseFlow/benchmarks/buckleylLeverettProblem/buckleylLeverett_
—base.xml

inputFiles/compositionalMultiphaseFlow/benchmarks/buckleylLeverettProblem/buckleylLeverett_
—benchmark.xml

Table files and a Python script for post-processing the simulation results are provided:

inputFiles/compositionalMultiphaseFlow/benchmarks/buckleylLeverettProblem/buckleylLeverett_
—table
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src/docs/sphinx/advancedExamples/validationStudies/carbonStorage/buckleylLeverett/
—buckleylLeverettFigure.py

Description of the case

We model the immiscible displacement of brine by CO2 in a quasi one-dimensional domain that mimics a CO2 core
flood experiment, as shown below. The domain is horizontal, homogeneous, isotropic and isothermal. Prior to injection,
the domain is fully saturated with brine. To match the analytical example configuration, supercritical CO2 is injected
from the inlet and a constant flow rate is imposed. To meet the requirements of immiscible transport in one-dimensional
domain, we assume linear and horizontal flow, incompressible and immiscible phases, negligible capillary pressure
and gravitational forces, and no poromechanical effects. Upon injection, the saturation front of the injected phase
(supercritical CO2) forms a sharp leading edge and advances with time.

I 0.002 m

Fig. 1.2: Sketch of the problem

We set up and solve a multiphase flow model to obtain the spatial and temporal solutions of phase saturations and pore
pressures across the domain upon injection. Saturation profiles along the flow direction are evaluated and compared
with their corresponding analytical solutions (Arabzai and Honma, 2013).

A power-law Brooks-Corey relation is used here to describe gas k.4 and water k,, relative permeabilities:
krg = krgO(Sg*>ng

krw = ker(Sw*)nw

where kTgo and k,," are the maximum relative permeability of gas and water phase respectively; ny and n,, are the
Corey exponents; dimensionless volume fraction (saturation) of gas phase S,* and water phase S,,” are given as:

S, — S,
S*: g gr
g ]-_Sgr_su)r
* Sw_Swr
Sw _1_Sgr_Swr

where Sy, and Sy, are the residual gas and water saturation;

According to the Buckley—Leverett theory with constant fluid viscosity, the fractional flow of gas phase f, can be
expressed as:

Frg
o
fg: .

k_Ti krw
Hg Hw

where 14 and pi,, represent the viscosity of gas and water phase respectively, assumed to be constant in this study.
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The position of a particular saturation is given as a function of the injection time ¢ and the value of the derivative %
g

e — Qrt [ dfy
5 7 A¢ \ dS,
where Q7 is the total flow rate, A is the area of the cross-section in the core sample, ¢ is the rock porosity. In addition,
the abrupt saturation front is determined based on the tangent point on the fractional flow curve.

at that saturation:

For this example, we focus on the Mesh, the Constitutive, and the FieldSpecifications tags.

Mesh

The mesh was created with the internal mesh generator and parametrized in the InternalMesh XML tag. It contains
1000x1x1 eight-node brick elements in the X, y, and z directions respectively. Such eight-node hexahedral elements are
defined as C3D8 elementTypes, and their collection forms a mesh with one group of cell blocks named here cel1Block.
The width of the domain should be large enough to ensure the formation of a one-dimension flow.

<Mesh>
<InternalMesh

name="mesh"
elementTypes="{ C3D8 }"
xCoords="{ 0, 0.1 }"
yCoords="{ 0, 0.00202683 }"
zCoords="{ 0, 1 }"
nx="{ 1000 }"
ny="{ 1 }"
nz="{ 1 }"
cellBlockNames="{ cellBlock }"/>

</Mesh>

Flow solver

The isothermal immiscible simulation is performed using the GEOS general-purpose multiphase flow solver. The
multiphase flow solver, a solver of type CompositionalMultiphaseFVNM called here compflow (more information on
these solvers at Compositional Multiphase Flow Solver) is defined in the XML block CompositionalMultiphaseFVM:

<Solvers>
<CompositionalMultiphaseFVM
name="compflow"
logLevel="1"
discretization="£fluidTPFA"
temperature="300"
initialDt="0.001"
useMass="1"
targetRegions="{ region }">
<NonlinearSolverParameters
newtonTol="1.0e-6"
newtonMaxIter="50"
maxTimeStepCuts="2"
lineSearchMaxCuts="2"/>
<LinearSolverParameters
solverType="direct"
directParallel="0"

(continues on next page)
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logLevel="0"/>
</CompositionalMultiphaseFVM>
</Solvers>

We use the targetRegions attribute to define the regions where the flow solver is applied. Here, we only simu-
late fluid flow in one region named as region. We specify the discretization method (£luidTPFA, defined in the
NumericalMethods section), and the initial reservoir temperature (temperature="300").

Constitutive laws

This benchmark example involves an immiscible, incompressible, two-phase model, whose fluid rheology and perme-
ability are specified in the Constitutive section. The best approach to represent this fluid behavior in GEOS is to
use the DeadOilFluid model in GEOS.

<Constitutive>
<CompressibleSolidConstantPermeability
name="rock"
solidModelName="nullSolid"
porosityModelName="rockPorosity"
permeabilityModelName="rockPerm"/>

<NullModel
name="nullSolid" />

<PressurePorosity
name="rockPorosity"
defaultReferencePorosity="0.2"
referencePressure="1e7"
compressibility="1.0e-15"/>

<ConstantPermeability
name="rockPerm"
permeabilityComponents="{ 9.0e-13, 9.0e-13, 9.0e-13}"/>

<BrooksCoreyRelativePermeability
name="relperm"
phaseNames="{ gas, water }"

phaseMinVolumeFraction="{ 0.0, 0.0 }"
phaseRelPermExponent="{ 3.5, 3.5 }"
phaseRelPermMaxValue="{ 1.0, 1.0 }"/>

<Dead0ilFluid
name="fluid"
phaseNames="{ gas, water }"
surfaceDensities="{ 280.0, 992.0 }"
componentMolarWeight="{ 44e-3, 18e-3 }"
tableFiles="{ buckleyLeverett_table/pvdg.txt, buckleyLeverett_table/pvtw.txt }"/>
</Constitutive>

Constant fluid densities and viscosities are given in the external tables for both phases. The formation volume factors are
setto 1 for incompressible fluids. The relative permeability for both phases are modeled with the power-law correlations
BrooksCoreyRelativePermeability (more information at Brooks-Corey relative permeability model), as shown
below. Capillary pressure is assumed to be negligible.
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Fig. 1.3: Relative permeabilities of both phases

All constitutive parameters such as density, viscosity, and permeability are specified in the International System of
Units.

Time history function

In the Tasks section, PackCollection tasks are defined to collect time history information from fields.
Either the entire field or specified named sets of indices in the field can be collected. In this ex-
ample, phaseVolumeFractionCollection is specified to output the time history of phase saturations
fieldName="phaseVolumeFraction" across the computational domain.

<Tasks>
<PackCollection
name="phaseVolumeFractionCollection"
objectPath="ElementRegions/region/cellBlock"
fieldName="phaseVolumeFraction"/>
</Tasks>

This task is triggered using the Event manager with a PeriodicEvent defined for the recurring tasks. GEOS writes
one file named after the string defined in the filename keyword, formatted as a HDFS5 file (saturationHistory.hdf5).
The TimeHistory file contains the collected time history information from the specified time history collector. This file
includes datasets for the simulation time, element center, and the time history information for both phases. A Python
script is prepared to read and plot any specified subset of the time history data for verification and visualization.

Initial and boundary conditions

The next step is to specify fields, including:
 The initial value (the pore pressure and phase saturations have to be initialized)
* The boundary conditions (fluid injection rates and controls on the fluid outlet have to be set)

In this example, the domain is initially saturated with brine in a uniform pressure field. The component attribute of the
FieldSpecification XML block must use the order in which the phaseNames have been defined in the DeadOilFluid
XML block. In other words, component=0 is used to initialize the gas global component fraction and component=1
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is used to initialize the water global component fraction, because we previously set phaseNames="{gas, water}"

in the DeadOilFluid XML block.

A mass injection rate SourceFlux (scale="-0.00007") of pure CO2 (component="0") is applied at the fluid inlet,
named source. The value given for scale is )7 p4. Pressure and composition controls at the fluid outlet (sink) are
also specified. The setNames="{ source } and setNames="{ sink }" are defined using the Box XML tags of

the Geometry section.

These boundary conditions are set up through the FieldSpecifications section.

<FieldSpecifications>
<FieldSpecification
name="initialPressure"
initialCondition="1"
setNames="{ all }"

objectPath="ElementRegions"

fieldName="pressure"
scale="1e7"/>

<FieldSpecification

name="initialComposition_gas"

initialCondition="1"
setNames="{ all }"

objectPath="ElementRegions"
fieldName="globalCompFraction"

component="0"
scale="0.001"/>

<FieldSpecification

name="initialComposition_water"

initialCondition="1"
setNames="{ all }"

objectPath="ElementRegions"
fieldName="globalCompFraction"

component="1"
scale="0.999"/>

<SourceFlux
name="sourceTerm"

objectPath="ElementRegions"

scale="-0.00007"
component="0"
setNames="{ source }"/>

<FieldSpecification
name="sinkTermPressure"
objectPath="faceManager"
fieldName="pressure"
scale="1e7"
setNames="{ sink }"/>

<FieldSpecification

name="sinkTermTemperature"

objectPath="faceManager"

(continues on next page)
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(continued from previous page)

fieldName="temperature"
scale="300"
setNames="{ sink }"/>

<FieldSpecification
name="sinkTermComposition_gas
setNames="{ sink }"
objectPath="faceManager"
fieldName="globalCompFraction'
component="0"
scale="0.001"/>

<FieldSpecification

name="sinkTermComposition_water"
setNames="{ sink }"
objectPath="faceManager"
fieldName="globalCompFraction"
component="1"
scale="0.999"/>

</FieldSpecifications>

The parameters used in the simulation are summarized in the following table, and specified in the Constitutive and
FieldSpecifications sections.

Symbol Parameter Unit Value
kTQO Max Relative Permeability of Gas [-] 1.0
k,,wo Max Relative Permeability of Water  [-] 1.0

Ng Corey Exponent of Gas [-] 3.5

Nw Corey Exponent of Water [-] 3.5

S Residual Gas Saturation [-] 0.0

Swr Residual Water Saturation [-] 0.0

¢ Porosity [-] 0.2

K Matrix Permeability [m?]  9.0%1013
Lhg Gas Viscosity [Pas] 2.3*107
Lo Water Viscosity [Pas] 5.5%10*
Qr Total Flow Rate [m3/s] 2.5%107
Dy, Domain Length [m] 0.1

Dw Domain Width [m] 1.0

Dr Domain Thickness [m] 0.002

Inspecting results

We request VTK-format output files and use Paraview to visualize the results. The following figure shows the distribu-
tion of phase saturations and pore pressures in the computational domain at ¢t = 70s.

Two following dimensionless terms are defined when comparing the numerical solution with the analytical solutions:

- Qrt
ADr¢
— xs-‘?

Tqg = DL
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Fig. 1.4: Simulation results of phase saturations and pore pressure
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The figure below compares the results from GEOS (dashed curves) and the corresponding analytical solution (solid
curves) for the change of gas saturation (S,) and water saturation (S,,) along the flow direction.

GEOS reliably captures the immiscible transport of two phase flow (CO2 and water). GEOS matches the analytical
solutions in the formation and the progress of abrupt fronts in the saturation profiles.
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To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page.

CO2 Plume Evolution and Leakage Through an Abandoned Well

Context

We consider a benchmark problem used in (Class et al., 2009) to compare a number of numerical models applied to
CO2 storage in geological formations. Using a simplified isothermal and immiscible two-phase setup, this test case
addresses the simulation of the advective spreading of CO2 injected into an aquifer and the leakage of CO2 from the
aquifer through an abandoned, leaky well.

Our goal is to review the different sections of the XML file reproducing the benchmark configuration and to demonstrate
that the GEOS results (i.e., arrival time of the CO2 plume at the leaky well and leakage rate through the abandoned
well) are in agreement with the reference results published in (Class et al., 2009).

The GEOS results obtained for the non-isothermal version of this test case (referred to as Problem 1.2 in (Class et al.,
2009)) are presented in a separate documentation page.

Input file
This benchmark test is based on the XML file located below:

inputFiles/compositionalMultiphaseFlow/benchmarks/isothermalLeakyWell/
—.isothermalLeakyWell_benchmark.xml
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Problem description

The following text is adapted from the detailed description of the benchmark test case presented in (Ebigbo, Class,

Helmig, 2007) and (Class et al., 2009).

The leakage scenario considered here involves one CO2 injection well, one leaky well, two aquifers and an aquitard.
The setup is illustrated in the figure below. The leaky well connects the two aquifers. CO2 is injected into in the lower
aquifer, comes in contact with the leaky well and rises to the higher aquifer. The advective flow (including the buoyancy
effects) of CO2 in the initially brine-saturated aquifers and through the leaky well is the most important process in this

problem.

The model domain is located 2840 to 3000 m below the surface and has the following dimensions: 1000 x 1000 x 160
m. The distance between the injection and the leaky well is 100 m, and the injection rate of CO2 into the lower aquifer
is constant (equal to 8.87 kg/s). The wells are described as cylinders with a 0.15 m radius and are treated as a porous

medium with a higher permeability than the aquifers (i.e., this problem does not require a well model).

..... e A i
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|
|

aguifer 30m
injection well ©| teaky well | [}/
' %
3 .'.aqjlta-rd.""'l:' 100 m
— e
~ - -
4
\\ — -
A o v aquifer

= CO2 plume ’ 30m

Fig. 1.5: Leakage scenario (image taken from (Ebigbo, Class, Helmig, 2007)).

The authors have used the following simplifying assumptions:

¢ The formation is isotropic.

» All processes are isothermal.

e CO2 and brine are two separate and immiscible phases. Mutual dissolution is neglected.

* Fluid properties such as density and viscosity are constant.

* The pressure conditions at the lateral boundaries are constant over time, and equal to the initial hydrostatic

condition.

* Relative permeabilities are linear functions of saturation.

* Capillary pressure is negligible.
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Mesh and element regions

The structured mesh is generated using the internal mesh generator as parameterized in the InternalMesh block of the
XML file. The mesh contains 112 x 101 x 60 hexahedral elements (C3D8 element type) in the X, y, and z directions
respectively.

The attributes nx, ny, nz, and cel1BlockNames are used to define 5 x 3 x 3 = 45 cell blocks. Note that the cell block
names listed in cel1BlockNames are mapped to their corresponding cell block using an k-j-i logic in which the k index
is the fastest index, and the i index is the slowest index.

<Mesh>
<InternalMesh
name="mesh"
elementTypes="{ C3D8 }"
xCoords="{ -500, -0.1329, 0.1329, 99.8671, 100.1329, 500 }"
yCoords="{ -500, -0.1329, 0.1329, 500 }"
zCoords="{ -3000, -2970, -2870, -2840 }"
nx="{ 50, 1, 20, 1, 40 }"
ny="{ 50, 1, 50 }"
nz="{ 20, 30, 10 }"
cellBlockNames="{ aquiferBottom®0®, aquiferBottoml®, aquiferBottom20,.
—aquiferBottom30, aquiferBottom40,
aquiferBottom®1, aquiferBottomll, aquiferBottom21,.,
—aquiferBottom31, aquiferBottom4l,
aquiferBottom®2, aquiferBottoml2, aquiferBottom22,.
—aquiferBottom32, aquiferBottom42,

aquitard®o®, aquitardl0, aquitard20, o
—aquitard30, aquitard40,
aquitard®1, aquitardll, aquitard2l, o
—aquitard3l, aquitard4l,
aquitard02, aquitardl2, aquitard22, w
—aquitard32, aquitard42,
aquiferTop00, aquiferTopl®, aquiferTop20, >
—aquiferTop30, aquiferTop40,
aquiferTop®1, aquiferTopll, aquiferTop21, ar
—aquiferTop31, aquiferTop4l,
aquiferTop02, aquiferTopl2, aquiferTop22, -
—aquiferTop32, aquiferTop42 }"/>
</Mesh>
© Note

In the GEOS input file, the two wells are defined as columns of hexahedral elements of individual size 0.2658 x
0.2658 x 1 m. The coefficient 0.2858 is chosen to ensure that the cross-section of the wells is equal to the one
defined in the benchmark, in which wells are defined as cylinders with a radius of 0.15 m.

The cell block names are used in the ElementRegions block to define element regions in the aquifers and in the wells.
In the benchmark definition, the wells are treated as a porous medium with a higher permeability and therefore the
rock models are not the same in the aquifers (rock) and in the wells (rockWell). These names are defined in the
Constitutive block.

<ElementRegions>
<CellElementRegion
(continues on next page)
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(continued from previous page)

name="aquiferBottom"
cellBlocks="{ aquiferBottom0®0, aquiferBottoml®, aquiferBottom2®, aquiferBottom30,..
—aquiferBottom40,
aquiferBottom01, aquiferBottom21, o
—aquiferBottom41,
aquiferBottom02, aquiferBottoml2, aquiferBottom22, aquiferBottom32,..
—»aquiferBottom42 }"
materiallList="{ fluid, rock, relperm }"/>
<CellElementRegion
name="aquiferTop"
cellBlocks="{ aquiferTop®0, aquiferTopl®, aquiferTop20, aquiferTop30®, aquiferTop4l,
aquiferTop01, aquiferTop21, aquiferTop4l,
aquiferTop®2, aquiferTopl2, aquiferTop22, aquiferTop32, aquiferTop42.
3"
materiallList="{ fluid, rock, relperm }"/>
<CellElementRegion
name="injectionWell"
cellBlocks="{ aquiferBottom31 }"
materialList="{ fluid, rockWell, relperm }"/>
<CellElementRegion
name="1eakyWell"
cellBlocks="{ aquiferBottomll, aquitardll, aquiferTopll }"
materialList="{ fluid, rockWell, relperm }"/>
<CellElementRegion
name="barrier"
cellBlocks="{ aquitard®®, aquitardl®, aquitard20, aquitard3®, aquitard4®,
aquitard®1, aquitard21l, aquitard3l, aquitard4l,
aquitard®2, aquitardl2, aquitard22, aquitard32, aquitard42,
aquiferTop31 }"
materiallList="{ }"/>
</ElementRegions>

Defining these element regions allows the flow solver to be applied only to the top and bottom aquifers (and wells),
since we follow the approach of (Class et al., 2009) and do not simulate flow in the aquitard, as we will see in the next
section.

© Note

Since the two aquifer regions share the same material properties, they could have been defined as a single
CellElementRegion for a more concise XML file producing the same results. The same is true for the two
well regions.

Flow solver

The isothermal immiscible simulation is performed by the GEOS general-purpose multiphase flow solver based on a
TPFA discretization defined in the XML block CompositionalMultiphaseFVM:

<Solvers>
<CompositionalMultiphaseFVM
name="compflow"
logLevel="1"

(continues on next page)
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discretization="£f1luidTPFA"

temperature="313.15"

initialDt="0.001"

useMass="1"

targetRegions="{ aquiferTop, aquiferBottom, injectionWell, leakyWell }">

<NonlinearSolverParameters
newtonTol="1.0e-3"
newtonMaxIter="100"
maxTimeStepCuts="5"
lineSearchAction="Attempt"/>

<LinearSolverParameters
solverType="fgmres"
preconditionerType="mgr"
krylovTol="1e-4"/>

</CompositionalMultiphaseFVM>
</Solvers>

We use the targetRegions attribute to define the regions where the flow solver is applied. Here, we follow the
approach described in (Class et al., 2009) and do not simulate flow in the aquitard, considered as impermeable to flow.
We only simulate flow in the two aquifers (aquiferTop and aquiferBottom), in the bottom part of the injection well
(injectionWell), and in the leaky well connecting the two aquifers (leakyWell).

Constitutive laws

This benchmark test involves an immiscible, incompressible, two-phase model. The best approach to represent this fluid
behavior in GEOS is to use the DeadQilFluid model, although this model was initially developed for simple isothermal
oil-water or oil-gas systems (note that this is also the approach used for the Eclipse simulator, as documented in (Class
et al., 2009)).

<Dead0ilFluid
name="fluid"
phaseNames="{ oil, water }"
surfaceDensities="{ 479.0, 1045.0 }"
componentMolarWeight="{ 114e-3, 18e-3 }"
hydrocarbonFormationVolFactorTableNames="{ B_o_table }"
hydrocarbonViscosityTableNames="{ visc_o_table }"
waterReferencePressure="1e7"
waterFormationVolumeFactor="1.0"
waterCompressibility="1e-15"
waterViscosity="2.535e-4"/>

The fluid properties (constant densities and constant viscosities) are those given in the article documenting the bench-
mark. To define an incompressible fluid, we set all the formation volume factors to 1.

The rock model defines an incompressible porous medium with a porosity equal to 0.15. The relative permeability
model is linear. Capillary pressure is neglected.

Initial and boundary conditions

The domain is initially saturated with brine with a hydrostatic pressure field. This is specified using the Hydrostat-
icEquilibrium XML tag in the FieldSpecifications block. The datum pressure and elevation used below are defined
in (Class et al., 2009)).
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<HydrostaticEquilibrium
name="equil"
objectPath="ElementRegions"
datumElevation="-3000"
datumPressure="3.086e7"
initialPhaseName="water"
componentNames="{ oil, water }"
componentFractionVsElevationTableNames="{ initOilCompFracTable,
initWaterCompFracTable }"
temperatureVsElevationTableName="initTempTable"/>

In the Functions block, the TableFunction s named initOilCompFracTable and initWaterCompFracTable de-
fine the brine-saturated initial state, while the TableFunction named initTempTable defines the homogeneous tem-
perature field (temperature is not used in this benchmark).

Since the fluid densities are constant for this simple incompressible fluid model, the same result could have been
achieved using a simpler table in a FieldSpecification tag, as explained in Hydrostatic Equilibrium Initial Condition.
To impose the Dirichlet boundary conditions on the four sides of the aquifers, we use this simple table-based approach
as shown below:

<FieldSpecification
name="bcPressureAquiferBottom"
objectPath="ElementRegions/aquiferBottom"
setNames="{ east, west, south, north }"
fieldName="pressure"
functionName="pressureFunction"
scale="1"/>

<FieldSpecification
name="bcPressureAquiferTop"
objectPath="ElementRegions/aquiferTop"
setNames="{ east, west, south, north }"
fieldName="pressure"
functionName="pressureFunction"
scale="1"/>

<FieldSpecification
name="bcCompositionOilAquiferBottom"
setNames="{ east, west, south, north }"
objectPath="ElementRegions/aquiferBottom"
fieldName="globalCompFraction"
component="0"
scale="0.000001"/>

<FieldSpecification
name="bcCompositionOilAquiferTop"
setNames="{ east, west, south, north }"
objectPath="ElementRegions/aquiferTop"
fieldName="globalCompFraction"
component="0"
scale="0.000001"/>

<FieldSpecification
name="bcCompositionWaterAquiferBottom"
setNames="{ east, west, south, north }"
objectPath="ElementRegions/aquiferBottom"
fieldName="globalCompFraction"

(continues on next page)
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component="1"
scale="0.999999"/>
<FieldSpecification
name="bcCompositionWaterAquiferTop"
setNames="{ east, west, south, north }"
objectPath="ElementRegions/aquiferTop"
fieldName="globalCompFraction"
component="1"
scale="0.999999"/>

where the setNames = "{ east, west, south, north }" aredefined using the Box XML tags of the Geometry
section, and where the tables are defined as TableFunction in the Functions section.

To reproduce the behavior of a rate-controlled well, we use the SourceFlux tag on the source set (located in the
injectionWell cell element region), with the injection rate specified in the benchmark description (8.87 kg/s):

<SourceFlux
name="sourceTerm"
objectPath="ElementRegions/injectionWell"
component="0"
scale="-8.87"
setNames="{ source }"/>

O Note

If the setNames attribute of SourceFlux contains multiple cells (which is the case here), then the amount injected
in each cell is equal to the total injection rate (specified with scale) divided by the number of cells.

Inspecting results

We request VTK-format output files and use Paraview to visualize the results. The following figure shows the distribu-
tion of CO2 saturation and pressure along the slice defined by x = 0 at t = 200 days.

To validate the GEOS results, we consider the metrics used in (Class et al., 2009).

First, we consider the arrival time of the CO2 plume at the leaky well. As in (Class et al., 2009), we use the leakage rate
threshold of 0.005% to detect the arrival time. Although the arrival time is highly dependent on the degree of spatial
refinement in the vicinity of the wells (not documented in (Class et al., 2009)), the next table shows that the GEOS
arrival time at the leaky well (9.6 days) is in agreement with the values published in (Class et al., 2009).
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Fig. 1.6: CO2 saturation after 200 days
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Fig. 1.7: Pressure after 200 days
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Code Arrival time [day]
GEOSX 9.6
COORES 8
DuMux 6
ECLIPSE 8
FEHM 4
IPARS-CO2 10
MUFTE 8
RockFlow 19
ELSA 14
TOUGH2/ECO2N 4
TOUGH2/ECO2N (2) 10
TOUGH2 (3) 9
VESA 7

© Note

The time-stepping strategy used by the codes considered in (Class et al., 2009), as well as the meshes that have
been used, are not documented in the benchmark description. Therefore, even on this simple test case, we cannot

expect to obtain an exact match with the published results.

Next, we measure the CO2 leakage rate through the leaky well, defined by the authors as the CO2 mass flow at midway
between top and bottom aquifers divided by the injection rate (8.87 kg/s), in percent. The GEOS leakage rate is shown

in the figure below:

The leakage rates computed by the codes considered in (Class et al., 2009) are shown in the figure below.

The comparison between the previous two figures shows that GEOS can successfully reproduce the trend in leakage
rate observed in the published benchmark results. To further validate the GEOS results, we reproduce below Table 8
of (Class et al., 2009) to compare the maximum leakage rate, the time at which this maximum leakage rate is attained,

and the leakage rate at 1000 days.

Code Max leakage [%] Time at max leakage [day] Leakage at 1000 days [%]
GEOSX 0.219 50.6 0.1172
COORES 0.219 50 0.146
DuMux 0.220 61 0.128
ECLIPSE 0.225 48 0.118
FEHM 0.216 53 0.119
IPARS-CO2 0.242 80 0.120
MUFTE 0.222 58 0.126
RockFlow 0.220 74 0.132
ELSA 0.231 63 0.109
TOUGH2/ECO2N 0.226 93 0.110
TOUGH2/ECO2N (2) 0.212 46 0.115
TOUGH?2 (3) 0.227 89 0.112
VESA 0.227 41 0.120

This table confirms the agreement between GEOS and the results of (Class et al., 2009). A particularly good match is

obtained with Eclipse, FEHM, and TOUGH2/ECO2N (2).

1.4. Advanced Examples

121


https://link.springer.com/article/10.1007/s10596-009-9146-x
https://link.springer.com/article/10.1007/s10596-009-9146-x
https://link.springer.com/article/10.1007/s10596-009-9146-x
https://link.springer.com/article/10.1007/s10596-009-9146-x

GEOS Documentation

0.25
——- ECLIPSE
. ——- TOUGH2
—— GEOSX
0.20 -
9 |
v 0.15
3 |
o
>
Q
o))
S 0.101
©
()]
|
0.05 -
o.ooaJ

200 400 600 800 1000
Time [days]

o

122 Chapter 1. Table of Contents



GEOS Documentation

0.25

0.2

o
-
4]

= COORES (IFP Rueil-Malmaison)
= = = DuMux (Uni Stuttgart)

= = = ECLIPSE (Schlumberger Paris) T
= = = FEHM (Los Alamos NL) B
e |PARS-CO2 (Uni Texas/Austin)
——— MUFTE (Uni Stuttgart)
—— RockFlow (BGR Hannover)
= Semi-anal. sol., ELSA (Uni Bergen/Princeton Uni) -
= = = TOUGH2 (BRGM Orleans) N
. TOUGH2 (RWTH Aachen)

TOUGH2 (CO2CRC/CSIRO Melbourne)
TOUGH2 (CO2CRC/CSIRO Melbourne), fine grid variation 7
VESA (Princeton Uni) -
ok (R R NN N T [N SN S AN NN N SR MU N S N

200 400 600 800 1000
time [days]

leakage value [%]
o

Fig. 1.8: Leakage rates [%] obtained with the simulators considered in (Class et al., 2009).
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To go further

The more complex, non-isothermal version of this test is in Non-isothermal CO2 Plume Evolution and Leakage Through
an Abandoned Well.

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page.

Non-isothermal CO2 Plume Evolution and Leakage Through an Abandoned Well

Context

This validation case is a more complex version of the benchmark problem presented in CO2 Plume Evolution and
Leakage Through an Abandoned Well. While the latter is based on simple isothermal and immiscible fluid properties,
the present validation case relies on a more realistic fluid behavior accounting for thermal effects and mass exchange
between phases. This non-isothermal benchmark test has been used in (Class et al., 2009) to compare different imple-
mentations of CO2-brine fluid properties in the context of CO2 injection and storage in saline aquifers.

Our goal is to review the sections of the XML file that are used to parameterize the CO2-brine fluid behavior, and to
demonstrate that GEOS produces similar results as those presented in (Class et al., 2009).

Input file
This benchmark test is based on the XML file located below:

inputFiles/compositionalMultiphaseFlow/benchmarks/thermalleakyWell/thermallLeakyWell_
< benchmark . xml

Problem description

Some of the text below is adapted from (Ebigbo, Class, Helmig, 2007).

The benchmark scenario remains the same as in CO2 Plume Evolution and Leakage Through an Abandoned Well. CO2
is injected into an aquifer, spreads within the aquifer, and, upon reaching a leaky well, rises up to a shallower aquifer.
The model domain still has the dimensions: 1000 x 1000 x 160 m, but it is now assumed to be shallower, between 640
m and 800 m of depth.

The figure below shows the pressure and temperature in the formation at the mentioned depths (assuming a geothermal
gradient of 0.03 K/m). The conditions in the aquifer at the considered depths range from supercritical to liquid to
gaseous. The figure also shows the CO2 density at the conditions of the formation. There is a large change in density at
a certain depth. This depth corresponds to the point where the line depicting the formation conditions crosses the CO2
saturation vapor curve, that is, the boundary between liquid and gaseous CO2. Other fluid properties such as viscosity
also change abruptly at that depth.

Therefore, as explained later, we use a more sophisticated fluid model in which the CO2 and brine fluid properties are
now a function of the aquifer conditions, such as pressure, temperature, and salinity. Specifically:

¢ The CO2 component is present in the CO2-rich phase but can also dissolve in the brine phase. The amount of
dissolved CO2 depends on pressure, temperature, and salinity. For now, in GEOS, the water component cannot
be present in the CO2-rich phase.

» Densities and viscosities depend nonlinearly on pressure, temperature, and salinity.

* The hydrostatic initial condition accounts for the geothermal gradient of 0.03 K/m specified in the benchmark
description.

We plan to use two types of physical models in this benchmark:

* A model simulating flow and mass transfer, but not heat transfer (i.e., no energy balance is used). The geothermal
gradient is constant in time, and is taken into account in the calculation of temperature-dependent properties.
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Fig. 1.9: Aquifer conditions (image taken from (Ebigbo, Class, Helmig, 2007)).

¢ A fully thermal model simulating flow as well as mass and heat transfer. The results obtained with this more
complex model are not available yet and will be added to this page later.

Mesh and element regions

As illustrated by the ECLIPSE results in (Class et al., 2009), the leakage rate exhibits a high dependence on the degree
of spatial refinement (particularly between the two wells in our observations). Therefore, we consider two meshes in
this test case:

* A “coarse” mesh with 206070 cells, whose spatial resolution is similar to that used by most codes based on the
information provided by Table 13 of (Class et al., 2009).

* A “fine” mesh with 339390 cells, whose spatial resolution is finer between the two wells.

These structured meshes are defined as in CO2 Plume Evolution and Leakage Through an Abandoned Well, as shown
next for the “fine”” mesh.

<Mesh>
<InternalMesh

name="mesh"

elementTypes="{ C3D8 }"

xCoords="{ -500, -0.1329, 0.1329, 99.8671, 100.1329, 500 }"

yCoords="{ -500, -0.1329, 0.1329, 500 }"

zCoords="{ -800, -770, -670, -640 }"

nx="{ 50, 1, 20, 1, 40 }"

ny="{ 50, 1, 50 }"

nz="{ 20, 30, 10 }"

cellBlockNames="{ aquiferBottom®®, aquiferBottoml®, aquiferBottom20,.
—aquiferBottom30, aquiferBottom40,

aquiferBottom®1, aquiferBottomll, aquiferBottom21l,.,
—aquiferBottom31, aquiferBottom4l,
aquiferBottom®2, aquiferBottoml2, aquiferBottom22,.,
—aquiferBottom32, aquiferBottom42,
aquitard0o, aquitardlo®, aquitard20, oo
—aquitard30, aquitard4o,
aquitard®l, aquitardll, aquitard2l, o
—aquitard3l, aquitard4l,
(continues on next page)
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(continued from previous page)

aquitard02, aquitardl2, aquitard22, o

—aquitard32, aquitard42,

aquiferTop00, aquiferTopl®, aquiferTop20, o
—aquiferTop30, aquiferTop40,

aquiferTop01, aquiferTopll, aquiferTop21, -
—aquiferTop31, aquiferTop4l,

aquiferTop02, aquiferTopl2, o

—aquiferTop22, aquiferTop32, aquiferTop42 }"/>

</Mesh>

As in the previous benchmark, we define four element regions whose material list now includes the name of the cap-
illary pressure constitutive model (cappres). We refer the reader to CO2 Plume Evolution and Leakage Through an
Abandoned Well for an example of this procedure.

Flow solver

Although the fluid behavior is significantly different from that of the previous benchmark, we still use the GEOS
general-purpose multiphase flow solver defined in the XML block CompositionalMultiphaseFVM:

<Solvers>
<CompositionalMultiphaseFVM

name=""compflow"

logLevel="1"

discretization="fluidTPFA"

temperature="307.15"

initialDt="1"

useMass="1"

targetRegions="{ aquiferTop, aquiferBottom, injectionWell, leakyWell }">

<NonlinearSolverParameters
newtonTol="1.0e-3"
newtonMaxIter="20"
timeStepIncreaselterLimit="0.5"
timeStepDecreaselterLimit="0.9"
maxTimeStepCuts="5"
lineSearchAction="Attempt"/>

<LinearSolverParameters
solverType="fgmres"
preconditionerType="mgr"
krylovTol="1e-4"/>

</CompositionalMultiphaseFVM>
</Solvers>

© Note

The attribute temperature listed above is mandatory, but are overridden by GEOS to impose a non-uniform
geothermal gradient along the z-axis, as we will see later.
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Constitutive models

The Brooks-Corey relative permeabilities and capillary pressure are described using tables constructed from the pa-
rameters values provided in the benchmark description, with a wetting-phase saturation range between 0.2 and 0.95,
an entry pressure of 10000 Pa, and a Brooks-Corey parameter of 2. We refer the reader to the files used in the Table-
Function listed below for the exact values that we have used:

<TableRelativePermeability

name="relperm"

phaseNames="{ gas, water }"

wettingNonWettingRelPermTableNames="{ waterRelativePermeabilityTable,

gasRelativePermeabilityTable }"/>

<TableCapillaryPressure

name="cappres"

phaseNames="{ gas, water }"

wettingNonWettingCapPressureTableName="waterCapillaryPressureTable"/>

The two-phase, two-component CO2-brine model implemented in GEOS is parameterized in the CO2BrinePhillips
XML block:

<CO2BrinePhillipsFluid
name="fluid"
phaseNames="{ gas, water }"
componentNames="{ co2, water }"
componentMolarWeight="{ 44e-3, 18e-3 }"
phasePVTParaFiles="{ pvtgas.txt, pvtliquid.txt }"
flashModelParaFile="co2flash.txt"/>

The components of this fluid model are described in detail in the CO2-brine model and are briefly summarized below.
They are parameterized using three parameter files that must be written carefully to obtain the desired behavior, as
explained next.

CO2 density and viscosity

These properties are obtained using the models proposed by Span and Wagner (1996) and Fenghour and Wakeham
(1998) for density and viscosity, respectively. The density and viscosity values are internally tabulated by GEOS at the
beginning of the simulation by solving the Helmholtz energy equation for each pair (p, T').

The tables size and spacing are specified in the file pvzgas.txt. Here, for both quantities, the values are tabulated between
6.6e6 Pa and 4e7 Pa, with a pressure spacing of 1e6 Pa, and between 302 K and 312 K, with a temperature increment
of 5 K. These values have been chosen using the initial condition and an upper bound on the expected pressure increase
during the simulation.

DensityFun SpanWagnerCO2Density 6.6e6 4e7 le6 302.0 312.0 5
ViscosityFun FenghourCO2Viscosity 6.6e6 4e7 le6 302.0 312.0 5

© Note

If pressure or temperature go outside the values specified in this parameter file, constant extrapolation is used to
obtain the density and viscosity values. Note that for now, no warning is issued by GEOS when this happens. We
plan to add a warning message to document this behavior in the near future.
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Brine density and viscosity

These properties depend on pressure, temperature, composition, and salinity via the models proposed by Phillips et
al. (1981). The brine density is modified to account for the presence of dissolved CO2 using the method proposed by
Garcia (2001). The values of (pure) brine density are also tabulated at a function of pressure and temperature, and we
use the same range as for the CO2 properties to construct this table:

DensityFun PhillipsBrineDensity 6.6e6 4e7 le6 302.0 312.0 5 1.901285269
ViscosityFun PhillipsBrineViscosity 1.901285269

Importantly, the last value on each line in the file pvtliquid.txt defines the salinity in the domain. In our model, salinity
is constant in space and in time (i.e., unlike water and CO2, it is not tracked as a component in GEOS). In our model,
salinity is specified as a molal concentration in mole of NaCl per kg of solvent (brine). The value used here (1000 x 10
/(58.44x (100 -10)) = 1.901285269 moles/kg) is chosen to match the value specified in the benchmark (weight%
of 10%).

CO2 solubility in brine

As explained in CO2-brine model, we use the highly nonlinear model proposed by Duan and Sun (2004) to compute
the CO2 solubility as a function of pressure, temperature, composition, and salinity. In co2flash.txt, we use the same
parameters as above to construct the pressure-temperature tables of precomputed CO2 solubility in brine.

[Flashl"[odel C02Solubility 6.6e6 4e7 le6 302.0 312.0 5 1.901285269 J

Initial and boundary conditions

The domain is initially saturated with brine with a hydrostatic pressure field and a geothermal gradient of 0.03 K/m.
This is specified using the HydrostaticEquilibrium XML tag in the FieldSpecifications block:

<HydrostaticEquilibrium
name="equil"
objectPath="ElementRegions"
datumElevation="-800"
datumPressure="8.499e6"
initialPhaseName="water"
componentNames="{ co2, water }"
componentFractionVsElevationTableNames="{ initCO2CompFracTable,
initWaterCompFracTable }"
temperatureVsElevationTableName="initTempTable"/>

Although this is the same block as in CO2 Plume Evolution and Leakage Through an Abandoned Well, GEOS is now
enforcing the geothermal gradient specified in the TableFunction named initTempTable, and is also accounting for
the nonlinear temperature dependence of brine density to equilibrate the pressure field.

We use the simple table-based approach shown below to impose the Dirichlet boundary conditions on the four sides of
the domain.

<FieldSpecification
name="bcPressureAquiferBottom"
objectPath="ElementRegions/aquiferBottom"
setNames="{ east, west, south, north }"
fieldName="pressure"
functionName="pressureFunction"
scale="1"/>

(continues on next page)
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<FieldSpecification
name="bcTemperatureAquiferBottom"
objectPath="ElementRegions/aquiferBottom"
setNames="{ east, west, south, north }"
fieldName="temperature"
functionName="initTempTable"
scale="1"/>

<FieldSpecification
name="bcCompositionCO2AquiferBottom"
setNames="{ east, west, south, north }"
objectPath="ElementRegions/aquiferBottom"
fieldName="globalCompFraction"
component="0"
scale="0.000001"/>

<FieldSpecification
name="bcCompositionWaterAquiferBottom"
setNames="{ east, west, south, north }"
objectPath="ElementRegions/aquiferBottom"
fieldName="globalCompFraction"
component="1"
scale="0.999999"/>

<FieldSpecification
name="bcPressureAquiferTop"
objectPath="ElementRegions/aquiferTop"
setNames="{ east, west, south, north }"
fieldName="pressure"
functionName="pressureFunction"
scale="1"/>

<FieldSpecification
name="bcTemperatureAquiferTop"
objectPath="ElementRegions/aquiferTop"
setNames="{ east, west, south, north }"
fieldName="temperature"
functionName="initTempTable"
scale="1"/>

<FieldSpecification
name="bcCompositionC02AquiferTop"
setNames="{ east, west, south, north }"
objectPath="ElementRegions/aquiferTop"
fieldName="globalCompFraction"
component="0"
scale="0.000001"/>

<FieldSpecification
name="bcCompositionWaterAquiferTop"
setNames="{ east, west, south, north }"
objectPath="ElementRegions/aquiferTop"
fieldName="globalCompFraction"
component="1"
scale="0.999999"/>

<FieldSpecification

(continues on next page)
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name="bcPressureLeakyWell"
objectPath="ElementRegions/leakylell"
setNames="{ east, west, south, north }"
fieldName="pressure"
functionName="pressureFunction"
scale="1"/>

<FieldSpecification

name="bcTemperaturelLeakyWell"
objectPath="ElementRegions/leakyWell"
setNames="{ east, west, south, north }"
fieldName="temperature"
functionName="initTempTable"
scale="1"/>

<FieldSpecification

name="bcCompositionCO2LeakyWell"
setNames="{ east, west, south, north }"
objectPath="ElementRegions/leakylell"
fieldName="globalCompFraction"
component="0"

scale="0.000001"/>

<FieldSpecification

name="bcCompositionWaterLeakyWell"
setNames="{ east, west, south, north }"
objectPath="ElementRegions/leakyiell"
fieldName="globalCompFraction"
component="1"

scale="0.999999"/>

<FieldSpecification

name="bcPressureInjectionWell"
objectPath="ElementRegions/injectionWell"
setNames="{ east, west, south, north }"
fieldName="pressure"
functionName="pressureFunction"
scale="1"/>

<FieldSpecification

name="bcTemperatureInjectionWell"
objectPath="ElementRegions/injectionWell"
setNames="{ east, west, south, north }"
fieldName="temperature"
functionName="initTempTable"

scale="1"/>

<FieldSpecification

name="bcCompositionCO2InjectionWell"
setNames="{ east, west, south, north }"
objectPath="ElementRegions/injectionWell"
fieldName="globalCompFraction"
component="0"

scale="0.000001"/>

<FieldSpecification

name="bcCompositionWaterInjectionWell"
setNames="{ east, west, south, north }"

(continued from previous page)

(continues on next page)
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(continued from previous page)

objectPath="ElementRegions/injectionWell"
fieldName="globalCompFraction"
component="1"

scale="0.999999"/>

where the setNames = "{ east, west, south, north }" aredefined using the Box XML tags of the Geometry
section, and where the tables are defined as TableFunction in the Functions section.

O Note

Due to the nonlinear dependence of brine density on temperature, this block does not exactly impose a Dirichlet
pressure equal to the initial condition. Instead, here, we impose a linear pressure gradient along the z-axis, whose
minimum and maximum values are the same as in the initial state. We could have imposed Dirichlet boundary
conditions preserving the initial condition using as many points in zlin.geos as there are cells along the z-axis
(instead of just two points).

The SourceFlux is the same as in the previous benchmark case (see CO2 Plume Evolution and Leakage Through an
Abandoned Well).

Inspecting results

We request VTK-format output files and use Paraview to visualize the results. The following figures show the distribu-
tion of CO2 saturation and pressure along the slice defined by x = 0 at t = 1,000 days.

CO2 saturation
0.0e+00 0.2 0.3 0.4 0506 0.7 0.8 1.0e+00

- e B R \-

Fig. 1.10: CO2 saturation after 1,000 days

To validate the GEOS results, we consider the metrics used in (Class et al., 2009) as previously done in CO2 Plume
Evolution and Leakage Through an Abandoned Well.

First, we consider the arrival time of the CO2 plume at the leaky well. As in (Class et al., 2009), we use the leakage rate
threshold of 0.005% to detect the arrival time. In our numerical tests, the arrival time is highly dependent on the degree
of spatial refinement in the vicinity of the wells and on the time step size, but these parameters are not documented in
(Class et al., 2009). The next table reports the GEOS arrival time at the leaky well and compares it with the values
published in (Class et al., 2009).
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Fig. 1.11: Pressure after 1,000 days

Code Arrival time [day]
GEOSX COARSE 36.8

GEOSX FINE 46.7

COORES 31

ECLIPSE HW 42

ECLIPSE SCHLUMBERGER COARSE 24

ECLIPSE SCHLUMBERGER FINE 34

RockFlow 30

TOUGH2 46

O Note

In the table above, we only included the values obtained with the codes that do not solve an energy balance equation.
The values obtained with the fully thermal codes (FEHM, MUFTE, and RTAFF2) are omitted for now.

Next, we measure the CO2 leakage rate through the leaky well, defined by the authors as the CO2 mass flow at midway
between top and bottom aquifers divided by the injection rate (8.87 kg/s), in percent. The GEOS leakage rate is shown
in the figure below:

We see that GEOS produces a reasonable match with the numerical codes considered in the study. Although it is not
possible to exactly match the published results (due to the lack of information on the problem, such as mesh refinement
and time step size), GEOS reproduces well the trend exhibited by the other codes.

For reference, we include below the original figure from (Class et al., 2009) containing all the results, including those
obtained with the codes solving an energy equation.

To further validate the GEOS results, we reproduce below Table 9 of (Class et al., 2009) (only considering codes that
do not solve an energy equation) to compare the maximum leakage rate, the time at which this maximum leakage rate is
attained, and the leakage rate at 2000 days. We observe that the GEOS values are in the same range as those considered
in the benchmark.
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Fig. 1.12: Leakage rates [%] obtained with the simulators considered in (Class et al., 2009).
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Code Max leakage Time at max leakage Leakage at 2000 days
[%] [day] [%]
GEOSX COARSE 0.102 438.5 0.075
GEOSX FINE 0.115 425.0 0.085
COORES 0.105 300 0.076
ECLIPSE HW 0.074 600 0.067
ECLIPSE SCHLUMBERGER 0.109 437 0.086
COARSE
ECLIPSE SCHLUMBERGER FINE 0.123 465 0.094
RockFlow 0.11 279 0.09
TOUGH2 0.096 400 0.067

This table confirms the agreement between GEOS and the results of (Class et al., 2009).

To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page.

CO2 Plume Evolution With Hysteresis Effect on Relative Permeability

Context

We consider a benchmark problem used in (Class et al., 2009) to compare a number of numerical models applied to CO2
storage in geological formations. Using a simplified miscible two-phase setup, this test case illustrates the modeling of
solubility trapping (with CO2 dissolution in brine) and residual trapping (with gas relative permeability hysteresis) in
CO2-brine systems.

Our goal is to review the different sections of the XML file reproducing the benchmark configuration and to demonstrate
that the GEOS results (i.e., mass of CO2 dissolved and mobile for both hysteretic and non-hysteretic configurations)
are in agreement with the reference results published in (Class et al., 2009) Problems 3.1 and 3.2.

Input file
This benchmark test is based on the XML file located below:

S/ e/ oo/ /. /. . /inputFiles/compositionalMultiphaseWell /benchmarks/Class®9Pb3/
—»class09_pb3_smoke_3d.xml

oSS/ /o /. /.. /inputFiles/compositionalMultiphaseWell/benchmarks/Class®9Ph3/
—class09_pb3_drainageOnly_iterative_base.xml

Problem description

The following text is adapted from the detailed description of the benchmark test case presented in (Class et al., 2009).

The setup is illustrated in the figure below. The mesh can be found in GEOSDATA and was provided for the benchmark.
It discretizes the widely-used Johansen reservoir, which consists in a tilted reservoir with a main fault. The model
domain has the following dimensions: 9600 x 8900 x [90-140] m. Both porosity and permeability are heterogeneous
and given at vertices. A single CO2 injection well is located at (x,y) = (5440,3300) m with perforations only in the
bottom 50 m of the reservoir. The injection takes place during the first 25 years of the 50-year simulation at the constant
rate of 15 kg/s. A hydrostatic pressure gradient is imposed on the boundary faces as well as a constant geothermal
gradient of 0.03 K/m.
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The authors have used the following simplifying assumptions:
* The formation is isotropic.
* The temperature is constant in time.

* The pressure conditions at the lateral boundaries are constant over time, and equal to the initial hydrostatic
condition.

Mesh and element regions

The proposed conforming discretization is fully hexahedral. A VTK filter PointToCell is used to map properties from
vertices to cells, which by default builds a uniform average of values over the cell. The structured mesh is generated
using some helpers python scripts from the formatted Point/Cells list provided. It is then imported using meshImport

<Mesh>
<InternalMesh
name="mesh1"
elementTypes="{ C3D8 }"
xCoords="{ 5240, 5640 }"
yCoords="{ 3100, 3500 }"
zCoords="{ -3000, -2950 }"
nx="{ 5 }"
ny="{ 5 }"
nz="{ 5 }"
cellBlockNames="{ 1_hexahedra }">
<InternalWell
name="wellInjectorl”
wellRegionName="wellRegion"
wellControlsName="wellControls"
logLevel="1"
polylineNodeCoords="{ { 5440.0, 3300.0, -2950.0 },
{ 5440.0, 3300.0, -3000.00 } }"
polylineSegmentConn="{ { O, 1 } }"
radius="0.1"
numElementsPerSegment="5">
<Perforation
name="injectorl_perfl"
distanceFromHead="45"/>
<Perforation
name="injectorl_perf2"
distanceFromHead="35"/>
<Perforation
name="injectorl_perf3"
distanceFromHead="25"/>
<Perforation
name="injectorl_perf4"
distanceFromHead="15"/>
<Perforation
name="injectorl_perf5"
distanceFromHead="5"/>
</InternalWell>
</InternalMesh>
</Mesh>

The central wellbore is discretized internally by GEOS (see CO 2 Injection). It includes five segments with a perfo-

136 Chapter 1. Table of Contents



GEOS Documentation

ration in each segment. It has its own region wellRegion and control labeled wellControls defined and detailed
respectively in ElementRegions and Solvers (see below). In the ElementRegions block,

<ElementRegions>
<CellElementRegion
name="reservoir"
cellBlocks="{ * }"
materiallList="{ fluid, rock, relperm, cappres }"/>

<WellElementRegion
name="wellRegion"
materialList="{ fluid }"/>
</ElementRegions>

one single reservoir region labeled reservoir. A second region wellRegion is associated with the well. All those
regions define materials to be specified inside the Constitutive block.

Coupled solver

The simulation is performed by the GEOS coupled solver for multiphase flow and well defined in the XML block
CompositionalMultiphaseReservoir:

<CompositionalMultiphaseFVM
name="compositionalMultiphaseFlow"
targetRegions="{ reservoir }"
discretization="f1uidTPFA"
temperature="363"
maxCompFractionChange="0.2"
logLevel="1"
useMass="1"/>

It references the two coupled solvers under the tags flowSolverName and wellSolverName. These are defined inside
the same Solvers block following this coupled solver. It also defined non-linear, NonlinearSolverParameters and and
linear, LinearSolverParameters, strategies.

The next two blocks are used to define our two coupled physics solvers compositionalMultiphaseFlow (of type
CompositionalMultiphaseFVM) and compositionalMultiphaseWell (of type CompositionalMultiphaseWell).

Flow solver

We use the targetRegions attribute to define the regions where the flow solver is applied.

<CompositionalMultiphaseReservoir
name="coupledFlowAndWells"
flowSolverName="compositionalMultiphaseFlow"
wellSolverName="compositionalMultiphaseWell"
logLevel="1"
initialDt="1e2"
targetRegions="{ reservoir, wellRegion }">
<NonlinearSolverParameters
newtonTol="1.0e-5"
newtonMaxIter="40"/>
<LinearSolverParameters
solverType="£fgmres"

(continues on next page)
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(continued from previous page)
preconditionerType="mgr"
krylovTol="1e-6"
logLevel="1"/>
</CompositionalMultiphaseReservoir>

The FV scheme discretization used is TPFA (which definition can be found nested in NumericalMeth-
ods/FiniteVolume) and some parameter values.

Well solver

The well solver is applied on its own region wellRegion which consists of the five discretized segments. It is also
the place where the WellControls are set thanks to type, control, injectionStream, injectionTemperature,
targetTotalRateTableName and, targetBHP for instance if we consider an injection well.

For more details on the wellbore modeling please refer to Compositional Multiphase Well Solver.

<CompositionalMultiphaseWell
name="compositionalMultiphaseWell"
targetRegions="{ wellRegion }"
logLevel="1"
useMass="1">
<WellControls
name="wellControls"
logLevel="1"
type="injector"
control="totalVolRate"
referenceElevation="-3000"
targetBHP="1e8"
enableCrossflow="0"
useSurfaceConditions="1"
surfacePressure="101325"
surfaceTemperature="288.71"
targetTotalRateTableName="totalRateTable"
injectionTemperature="353.15"
injectionStream="{ 1.0, 0.0 }"/>
<WellControls
name="MAX_MASS_INJ"
logLevel="1"
type="injector"
control="massRate"
referenceElevation="-3000"
targetBHP="1e8"
enableCrossflow="0"
useSurfaceConditions="1"
surfacePressure="101325"
surfaceTemperature="288.71"
targetMassRate="15"
injectionTemperature="353.15"
injectionStream="{ 1.0, 0.0 }"/>
<WellControls
name="MAX_MASS_INJ_TABLE"
logLevel="1"
type="injector"
(continues on next page)
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(continued from previous page)
control="massRate"
referenceElevation="-3000"
targetBHP="1e8"
enableCrossflow="0"
useSurfaceConditions="1"
surfacePressure="101325"
surfaceTemperature="288.71"
targetMassRateTableName="totalMassTable"
injectionTemperature="353.15"
injectionStream="{ 1.0, 0.0 }"/>

</CompositionalMultiphaseWell>

Constitutive laws

This benchmark test involves a compositional mixture that defines two phases (CO2-rich and aqueous) labeled as gas
and water which contain two components co2 and water. The miscibility of CO2 results in the presence of CO2 in
the aqueous phase. The vaporization of H20 in the CO2-rich phase is not considered here.

<CO2BrineEzrokhiFluid
name="fluid"
phaseNames="{ gas, water }"
componentNames="{ co2, water }"
componentMolarWeight="{ 44e-3, 18e-3 }"
phasePVTParaFiles="{ tables/pvtgas.txt, tables/pvtliquid_ez.txt }"
flashModelParaFile="tables/co2flash.txt"/>

The brine properties are modeled using Ezrokhi correlation, hence the block name CO2BrineEzrokhiFluid. The
external PVT files tables/pvtgas.txt and tables/pvtliquid_ex.txt give access to the models considered respectively for
the computation of gas density and viscosity and the brine density and viscosity, along with pressure, temperature,
salinity discretization of the parameter space. The external file tables/co2flash.txt gives the same type of information
for the CO2Solubility model (see CO2-brine model for details).

The rock model defines a slightly compressible porous medium with a reference porosity equal to 0.1.

<CompressibleSolidConstantPermeability
name="rock"
solidModelName="nullSolid"
porosityModelName="rockPorosity"
permeabilityModelName="rockPerm"/>
<NullModel
name="nullSolid"/>
<PressurePorosity
name="rockPorosity"
defaultReferencePorosity="0.1"
referencePressure="1.0e7"
compressibility="4.5e-10"/>
<ConstantPermeability
name="rockPerm"
permeabilityComponents="{ 1.0e-12, 1.0e-12, 1.0e-12 }"/>

The relative permeability model is input through tables thanks to TableRelativePermeability block.
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<TableRelativePermeability
name="relperm"
phaseNames="{ gas, water }"
wettingNonWettingRelPermTableNames="{ waterRelativePermeabilityTable,
gasRelativePermeabilityTable }"/>

As this benchmark is testing the sensitivity of the plume dynamics to the relative permeability hysteresis model-
ing, in commented block the TableRelativePermeabilityHysteresis block sets up bounding curves for imbibition
and drainage under imbibitionNonWettingRelPermTableName, imbibitionWettingRelPermTableName and,
drainageWettingNonWettingRelPermTableNames compared to the wettingNonWWettingRelPermTableNames
label of the drainage only TableRelativePermeability blocks. Those link to TableFunction blocks in Functions,
which define sample points for piecewise linear interpolation. This feature is used and explained in more details in the
following section dedicated to Initial and Boundary conditions.

See,

oSS/ /o). /../inputFiles/compositionalMultiphaseWell/benchmarks/Class®9Pb3/
—class09_pb3_hystRelperm_iterative_base.xml

for the input base with relative permeability hysteresis setup.

<TableRelativePermeabilityHysteresis

name="relperm"

phaseNames="{ gas, water }"

drainageWettingNonWettingRelPermTableNames="{.
—»drainageWaterRelativePermeabilityTable,

drainageGasRelativePermeabilityTable }"

imbibitionNonWettingRelPermTableName="imbibitionGasRelativePermeabilityTable"
imbibitionWettingRelPermTableName="imbibitionWaterRelativePermeabilityTable"/>

O Note

wettingNonWettingRelPermTableNames in TableRelativePermeability and
drainageWettingNonWettingRelPermTableNames in TableRelativePermeabilityHysteresis are identi-
cal.

Capillary pressure is also tabulated and defined in TableCapillaryPressure. No hysteresis is modeled yet on the
capillary pressure.

<TableCapillaryPressure
name="cappres"
phaseNames="{ gas, water }"
wettingNonWettingCapPressureTableName="waterCapillaryPressureTable"/>

Initial and boundary conditions

The domain is initially saturated with brine with a hydrostatic pressure field. This is specified using the Hydrostat-
icEquilibrium XML tag in the FieldSpecifications block. The datum pressure and elevation used below are defined
in (Class et al., 2009)).

<HydrostaticEquilibrium
name="equil"

(continues on next page)
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(continued from previous page)
objectPath="ElementRegions"
datumElevation="-3000"
datumPressure="3.0e7"
initialPhaseName="water"
componentNames="{ co2, water }"
componentFractionVsElevationTableNames="{ initCO2CompFracTable,

initWaterCompFracTable }"
temperatureVsElevationTableName="initTempTable"/>

In the Functions block, the TableFunction s named initCO02CompFracTable and initWaterCompFracTable de-
fine the brine-saturated initial state, while the TableFunction named initTempTable defines the temperature field as
a function of depth to impose the geothermal gradient.

The boundaries are set to have a constant 0.03 K/m temperature gradient as well as the hydrostatic pressure gradient.
We supplement that with water dominant content. Each block is linking a fieldName to a TableFunction tagged

as the value of functionName. In order to have those imposed on the boundary faces, we provide faceManager as
objectPath.

<FieldSpecification
name="bcPressure"
objectPath="faceManager"
setNames="{3}"
fieldName="pressure"
functionName="pressureFunction"
scale="1"/>
<FieldSpecification
name="bcTemperature"
objectPath="faceManager"
setNames="{3}"
fieldName="temperature"
functionName="temperatureFunction"
scale="1"/>
<FieldSpecification
name="bcCompositionC02"
objectPath="faceManager"
setNames="{3}"
fieldName="globalCompFraction"
component="0"
scale="0.000001"/>
<FieldSpecification
name="bcCompositionWater"
objectPath="faceManager"
setNames="{3}"
fieldName="globalCompFraction"
component="1"
scale="0.999999"/>

Outputing reservoir statistics

In order to output partitioning of CO2 mass, we use reservoir statistics implemented in GEOS. This is done by defining
a Task, with flowSolverName pointing to the dedicated solver and computeRegionStatistics setto 1 to compute
statistics by regions. The setNames field is set to 3 as it is its attribute tag in the input vfu mesh.
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<CompositionalMultiphaseStatistics
name="compflowStatistics"
flowSolverName="compositionalMultiphaseFlow"
logLevel="1"
computeCFLNumbers="1"
computeRegionStatistics="1"/>

and an Event for this to occur recursively with a forceDt argument for the period over which statistics are output and
target pointing towards the aforementioned Task.

<PeriodicEvent
name="statistics"
timeFrequency="1e5"
target="/Tasks/compflowStatistics"/>

This is a sample of the output we will have in the log file.

compflowStatistics, reservoir: Pressure (min, average, max): 2.5139e+07, 2.93668e+07, 3.
—23145e+07 Pa

compflowStatistics, reservoir: Delta pressure (min, max): -12157, 158134 Pa
compflowStatistics, reservoir: Temperature (min, average, max): 293.15, 371.199, 379.828.
K

compflowStatistics, reservoir: Total dynamic pore volume: 1.57994e+09 rmA3
compflowStatistics, reservoir: Phase dynamic pore volumes: { 1.00239e+06, 1.57894e+09 }.
—rmA3

compflowStatistics, reservoir: Phase mass (including both trapped and non-trapped): { 7.
-,24891e+08, 1.6245e+12 } kg

compflowStatistics, reservoir: Trapped phase mass: { 5.3075e+08, 3.2511le+11 } kg
compflowStatistics, reservoir: Dissolved component mass: { { 7.13794e+08, 4.53966e+06 },
—{ 1.6338e+08, 1.62433e+12 } } kg

compflowStatistics: Max phase CFL number: 65.1284

compflowStatistics: Max component CFL number: 2.32854

© Note

The log file mentioned above could be an explicit printout of the stdio from MPI launch or the autogenerated output
from a SLURM job slurm.out or similar

Inspecting results

We request VTK-format output files and use Paraview to visualize the results under the Outputs block.

The following figure shows the distribution of CO2 saturation thresholded above a significant value (here 0.001). The
displayed cells are colored with respect to the CO2 mass they contain. If the relative permeability for the gas phase
drops below 10e-7, the cell is displayed in black.

Fig. 1.13: Plume of CO2 saturation for significant value where immobile CO?2 is colored in black.

We observe the importance of hysteresis modeling in CO2 plume migration. Indeed, during the migration phase, the
cells at the tail of the plume are switching from drainage to imbibition and the residual CO2 is trapped. This results in
a slower migration and expansion of the plume.
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To validate the GEOS results, we consider the metrics used in (Class et al., 2009). The reporting values are the dis-
solved and gaseous CO2 with respect to time using only the drainage relative permeability and using hysteretic relative
permeabilities.

=== C02 mass in agqueous phase —— reference{ GEM )
—— CO02 mass in CO2-rich phase —— reference{ GPRS )
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Fig. 1.14: CO2 mass in aqueous and CO2-rich phases as a function of without relative permeability hysteresis

We can see that at the end of the injection period the mass of CO2 in the gaseous phase stops increasing and starts
decreasing due to dissolution of CO2 in the brine phase. These curves confirm the agreement between GEOS and the
results of (Class et al., 2009).

To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page.

Faults & fractures

Sneddon’s Problem

Objectives
At the end of this example you will know:

* how to define fractures in a porous medium,
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Fig. 1.15: CO2 mass in aqueous and CO2-rich phases as a function of time with relative permeability hysteresis
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* how to use various solvers (EmbeddedFractures, LagrangianContact and HydroFracture) to solve the mechanics
problems with fractures.

Input file
This example uses no external input files and everything required is contained within GEOS input files.

The xml input files for the case with EmbeddedFractures solver are located at:

inputFiles/efemFractureMechanics/Sneddon_embeddedFrac_base.xml
inputFiles/efemFractureMechanics/Sneddon_embeddedFrac_verification.xml

The xml input files for the case with LagrangianContact solver are located at:

inputFiles/lagrangianContactMechanics/Sneddon_base.xml
inputFiles/lagrangianContactMechanics/Sneddon_benchmark.xml
inputFiles/lagrangianContactMechanics/ContactMechanics_Sneddon_benchmark.xml

The xml input files for the case with HydroFracture solver are located at:

inputFiles/hydraulicFracturing/Sneddon_hydroFrac_base.xml
inputFiles/hydraulicFracturing/Sneddon_hydroFrac_benchmark.xml

Description of the case

‘We compute the displacement field induced by the presence of a pressurized fracture, of length L ¢, in a porous medium.

GEOS will calculate the displacement field in the porous matrix and the displacement jump at the fracture surface. We
will use the analytical solution for the fracture aperture, w,, (normal component of the jump), to verify the numerical
results

41—y | L3
wn(s): ( V)pj 4752

E 4

where - I is the Young’s modulus - v is the Poisson’s ratio - p is the fracture pressure - s is the local fracture coordinate

. Ly L
mn [_Tfa Tf]

In this example, we focus our attention on the Solvers, the ElementRegions, and the Geometry tags.

Mechanics solver

To define a mechanics solver capable of including embedded fractures, we will define two solvers:
¢ a SolidMechanicsEmbeddedFractures solver, called mechSolve

e a small-strain Lagrangian mechanics solver, of type SolidMechanicsLagrangianFEM called here
matrixSolver (see: Solid Mechanics Solver)

Note that the name attribute of these solvers is chosen by the user and is not imposed by GEOS. It is important to make
sure that the solidSolverName specified in the embedded fractures solver corresponds to the small-strain Lagrangian
solver used in the matrix.

The two single-physics solvers are parameterized as explained in their respective documentation, each with their own
tolerances, verbosity levels, target regions, and other solver-specific attributes.

Additionally, we need to specify another solver of type, EmbeddedSurfaceGenerator, which is used to discretize the
fracture planes.
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<SolidMechanicsEmbeddedFractures

name="mechSolve"

targetRegions="{ Domain, Fracture }"

initialDt="10"

timeIntegrationOption="QuasiStatic"

discretization="FE1"

logLevel="1"

contactPenaltyStiffness="0.0e8">

<NonlinearSolverParameters
newtonTol="1.0e-6"
newtonMaxIter="2"
maxTimeStepCuts="1"/>

<LinearSolverParameters
solverType="gmres"
preconditionerType="mgr"
logLevel="0"/>

</SolidMechanicsEmbeddedFractures>

<EmbeddedSurfaceGenerator

name="SurfaceGenerator"
discretization="FE1"
targetRegions="{ Domain, Fracture }"
fractureRegion="Fracture"
targetObjects="{ FracturePlane }"
logLevel="1"

mpiCommOrder="1"/>

</Solvers>

To setup a coupling between rock and fracture deformations in LagrangianContact solver, we define three different
solvers:

* For solving the frictional contact, we define a Lagrangian contact solver, called here lagrangiancontact. In

this solver, we specify targetRegions that include both the continuum region Region and the discontinuum
region Fracture where the solver is applied to couple rock and fracture deformations. The contact constitutive
law used for the fracture elements is named fractureMaterial, and is defined later in the Constitutive
section.

Rock deformations are handled by a solid mechanics solver SolidMechanicsLagrangianFEM. The problem
runs in QuasiStatic mode without inertial effects. The computational domain is discretized by FE1, which is
defined in the NumericalMethods section. The solid material is named rock and its mechanical properties are
specified later in the Constitutive section

* The solver SurfaceGenerator defines the fracture region and rock toughness.

<SolidMechanicsLagrangeContact

name="1lagrangiancontact"
timeIntegrationOption="QuasiStatic"
stabilizationName="TPFAstabilization"
logLevel="1"
discretization="FE1"
targetRegions="{ Region, Fracture }">
<NonlinearSolverParameters
newtonTol="1.0e-8"
logLevel="2"

(continues on next page)
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newtonMaxIter="10"
maxNumConfigurationAttempts="10"
lineSearchAction="Require"
lineSearchMaxCuts="2"
maxTimeStepCuts="2"/>
<LinearSolverParameters
solverType="direct"
directParallel="0"
logLevel="0"/>
</SolidMechanicsLagrangeContact>
</Solvers>

(continued from previous page)

Three elementary solvers are combined in the solver Hydrofracture to model the coupling between fluid flow within

the fracture, rock deformation, fracture opening/closure and propagation:

* Rock and fracture deformation are modeled by the solid mechanics solver SolidMechanicsLagrangianFEM.
In this solver, we define targetRegions that includes both the continuum region and the fracture region. The
name of the contact constitutive behavior is also specified in this solver by the contactRelationName, besides

the solidMaterialNames.

* The single phase fluid flow inside the fracture is solved by the finite volume method in the solver

SinglePhaseFVM.

* The solver SurfaceGenerator defines the fracture region and rock toughness.

<Hydrofracture
name="hydrofracture"
solidSolverName="1lagsolve"
flowSolverName="SinglePhaseFlow"
surfaceGeneratorName="SurfaceGen"
logLevel="1"
targetRegions="{ Fracture }"
maxNumResolves="2">
<NonlinearSolverParameters
newtonTol="1.0e-5"
newtonMaxIter="20"
lineSearchMaxCuts="3"/>
<LinearSolverParameters
directParallel="0"/>
</Hydrofracture>

<SolidMechanicsLagrangianFEM
name="1lagsolve"
timeIntegrationOption="QuasiStatic"
discretization="FE1"
targetRegions="{ Domain, Fracture }"
contactRelationName="fractureContact
contactPenaltyStiffness="1.0e0"/>

<SinglePhaseFVM
name="SinglePhaseFlow"
discretization="singlePhaseTPFA"
targetRegions="{ Fracture }"/>

(continues on next page)
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(continued from previous page)
<SurfaceGenerator
name="SurfaceGen"
targetRegions="{ Domain }"
nodeBasedSIF="1"
initialRockToughness="10.0e6"
mpiCommOrder="1"/>

Events

For the case with EmbeddedFractures solver, we add multiple events defining solver applications:
* an event specifying the execution of the EmbeddedSurfaceGenerator to generate the fracture elements.
* aperiodic event specifying the execution of the embedded fractures solver.

* three periodic events specifying the output of simulations results.

<Events
maxTime="1.0">
<SoloEvent

name="preFracture"
target="/Solvers/SurfaceGenerator"/>

<PeriodicEvent
name="solverApplications"
beginTime="0.0"
endTime="1.0"
forceDt="1.0"
target="/Solvers/mechSolve" />

<PeriodicEvent
name="outputs"
targetExactTimestep="0"
target="/Outputs/vtkOutput"/>

<PeriodicEvent
name="timeHistoryCollection"
timeFrequency="1.0"
targetExactTimestep="0"
target="/Tasks/displacementJumpCollection" />

<PeriodicEvent
name="timeHistoryOutput"
timeFrequency="1.0"
targetExactTimestep="0"
target="/Outputs/timeHistoryOutput"/>
</Events>

Similar settings are applied for the other two cases.
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Mesh, material properties, and boundary conditions

Last, let us take a closer look at the geometry of this simple problem, if using EmbeddedFractures solver. We use the
internal mesh generator to create a large domain (40 m x 40m x 1 m), with one single element along the Z axes, 121
elements along the X axis and 921 elements along the Y axis.

<Mesh>
<InternalMesh

name="mesh1"
elementTypes="{ C3D8 }"
xCoords="{ -20, -4, 4, 20 }"
yCoords="{ -20, -4, 4, 20 }"
zCoords="{ 0, 1 }"
nx="{ 10, 101, 10 }"
ny="{ 10, 901, 10 }"
nz="{ 1 }"
cellBlockNames="{ cbl }"/>

</Mesh>

The mesh for the case with LagrangianContact solver was also created using the internal mesh generator, as
parametrized in the InternalMesh XML tag. The mesh discretizes the same compational domain (40 m x40 m x1m)
with 300 x 300 x 2 eight-node brick elements in the X, y, and z directions respectively.

<Mesh>
<InternalMesh

name="mesh1"
elementTypes="{ C3D8 }"
xCoords="{ -20, -2, 2, 20 }"
yCoords="{ -20, -2, 2, 20 }"
zCoords="{ 0, 1 }"
nx="{ 40, 220, 40 }"
ny="{ 40, 220, 40 }"
nz="{ 2 }"
cellBlockNames="{ cbl }"/>

</Mesh>

Similarly, the internal mesh generator was used to discretize the same domain (40 m x 40m x 1m) and generate the
mesh for the case with Hydrofracture solver, which contains 280 x 280 x 1 eight-node brick elements in the x, y, and z

directions.

<Mesh>
<InternalMesh

name="mesh1"
elementTypes="{ C3D8 }"
xCoords="{ -20, -2, 2, 20 }"
yCoords="{ -20, -2, 2, 20 }"
zCoords="{ 0, 1 }"
nx="{ 40, 200, 40 }"
ny="{ 40, 200, 40 }"
nz="{ 1 }"
cellBlockNames="{ cbl }"/>

</Mesh>

In all the three cases, eight-node hexahedral elements are defined as C3D8 elementTypes, and their collection forms a
mesh with one group of cell blocks named here cb1l. Refinement is necessary to conform with the fracture geometry
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specified in the Geometry section.

The parameters used in the simulation are summarized in the following table.

Symbol Parameter Units  Value
K Bulk modulus [GPa] 16.7
G Shear modulus [GPa] 10.0
Ly Fracture length [m] 2.0

Df Fracture pressure [MPa] -2.0

Note that the internal fracture pressure has a negative value, due to the negative sign convention for compressive stresses

in GEOS.

Material properties and boundary conditions are specified in the Constitutive and FieldSpecifications sections.

Adding a fracture

The static fracture is defined by a nodeset occupying a small region within the computation domain, where the fracture

tends to open upon internal pressurization:

¢ The test case with EmbeddedFractures solver:

<Geometry>
<Rectangle
name="FracturePlane"
normal="{1.0, 0.0, 0.0}"
origin="{0.0, 0.0, 0.0}"
lengthVector="{0.0, 1.0, 0.0}"
widthVector="{0.0, 0.0, 1.0}"
dimensions="{ 2, 10 }"/>
</Geometry>

* The test case with LagrangianContact solver:

<Geometry>
<Rectangle

name="fracture"
normal="{1.0, 0.0, 0.0}’
origin="{0.0, 0.0, 0.0}"
lengthVector="{0.0, 1.0, 0.0}"
widthVector="{0.0, 0.0, 1.0}"
dimensions="{ 2, 10 }"/>

<Rectangle
name="core"
normal="{1.0, 0.
origin="{0.0, 0.
lengthVector="{0.0, 1.0, 0.0}"
widthVector="{0.0, 0.0, 1.0}"
dimensions="{ 2, 10 }"/>
</Geometry>

0, 0.03}"
0, 0.03}"

* The test case with HydroFracture solver:
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<Geometry>
<Box
name="fracture"
xMin="{ -0.01, -1.01, -0.01 }"
xMax="{ 0.01, 1.1, 1.01 }"/>

<Box
name="source"
xMin="{ -0.01, -0.11, -0.01 }"
xMax="{ 0.01, 0.11, 1.01 }"/>

<Box
name="core"
xMin="{ -0.01, -10.01, -0.01 }"
xMax="{ 0.01, 10.01, 1.01 }"/>
</Geometry>

To make these cases identical to the analytical example, fracture propagation is not allowed in this example.

Time history function

In the Tasks section, PackCollection tasks are defined to collect time history information from fields. Either the
entire field or specified named sets of indices in the field can be collected. In this example, a task is specified to output
fracture aperture (normal opening); however, for different solvers, different fieldName and objectPath should be
called:

¢ The test case with EmbeddedFractures solver:

<Tasks>
<PackCollection
name="displacementJumpCollection"
objectPath="ElementRegions/Fracture/embeddedSurfaceSubRegion"
fieldName="displacementJump"
setNames="{all}"/>
</Tasks>

* The test case with LagrangianContact solver:

<Tasks>
<PackCollection
name="displacementJumpCollection"
objectPath="ElementRegions/Fracture/faceElementSubRegion"
fieldName="displacementJump" />
</Tasks>

* The test case with Hydrofracture solver:

<Tasks>
<PackCollection
name="apertureCollection"
objectPath="ElementRegions/Fracture/faceElementSubRegion"
fieldName="elementAperture" />
</Tasks>
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These tasks are triggered using the Event manager with a PeriodicEvent defined for these recurring tasks. GEOS
writes output files named after the string defined in the filename keyword and formatted as HDF5 files. The
TimeHistory file contains the collected time history information from each specified time history collector. This
information includes datasets for the simulation time, element center defined in the local coordinate system, and the
time history information. A Python script is used to read and plot any specified subset of the time history data for
verification and visualization.

Running GEOS

To run these three cases, use the following commands:
path/to/geos -i inputFiles/efemFractureMechanics/Sneddon_embeddedFrac_verification.xml

path/to/geos -i inputFiles/lagrangianContactMechanics/ContactMechanics_Sneddon_benchmark.
xml

path/to/geos -i inputFiles/hydraulicFracturing/Sneddon_hydroFrac_benchmark.xml

Inspecting results

This plot compares the analytical solution (continuous lines) with the numerical solutions (markers) for the normal
opening of the pressurized fracture. As shown below, consistently, numerical solutions with different solvers correlate
very well with the analytical solution.
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To go further

Feedback on this example
This concludes the Sneddon example. For any feedback on this example, please submit a GitHub issue on the project’s
GitHub page.

Single Fracture Under Shear Compression

Context

In this example, a single fracture is simulated using a Lagrange contact model in a 2D infinite domain and subjected to
a constant uniaxial compressive remote stress (Franceschini et al., 2020). An analytical solution (Phan et al., 2003) is
available for verifying the accuracy of the numerical results, providing an analytical form for the normal traction and
slip on the fracture surface due to frictional contact. In this example, the TimeHistory function and a Python script
are used to output and postprocess multi-dimensional data (traction and displacement on the fracture surface).

Input file

Everything required is contained within these GEOS input files and one mesh file located at:

[inputFi les/lagrangianContactMechanics/SingleFracCompression_base.xml

[inputFi les/lagrangianContactMechanics/SingleFracCompression_benchmark.xml J

inputFiles/lagrangianContactMechanics/ContactMechanics_SingleFracCompression_benchmark.
—xml

[inputFi les/lagrangianContactMechanics/crackInPlane_benchmark.vtu ]

Description of the case

We simulate an inclined fracture under a compressive horizontal stress (o), as shown below. This fracture is placed in
an infinite, homogeneous, isotropic, and elastic medium. Uniaxial compression and frictional contact on the fracture
surface cause mechanical deformation to the surrounding rock and sliding along the fracture plane. For verification
purposes, plane strain deformation and Coulomb failure criterion are considered in this numerical model.

To simulate this phenomenon, we use a Lagrange contact model. Displacement and stress fields on the fracture plane
are calculated numerically. Predictions of the normal traction (¢ ) and slip (g7) on the fracture surface are compared
with the corresponding analytical solution (Phan et al., 2003).

tx = —o(sin (1))

%wm (1) (cos (v) — sin () tan (0))) /b* — (b — €)°

where v is the inclination angle, v is Poisson’s ratio, E' is Young’s modulus, 6 is the friction angle, b is the fracture
half-length, ¢ is a local coordinate on the fracture varying in the range [0, 2b].

gr =

In this example, we focus our attention on the Mesh tags, the Constitutive tags, and the FieldSpecifications
tags.

Mesh

The following figure shows the mesh used in this problem.

Here, we load the mesh with VTKMesh (see Importing the Mesh). The syntax to import external meshes is simple:
in the XML file, the mesh file crackInPlane_benchmark.vtu is included with its relative or absolute path to the
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Fig. 1.16: Sketch of the problem

location of the GEOS XML file and a user-specified label (here CubeHex) is given to the mesh object. This unstructured
mesh contains quadrilaterals elements and interface elements. Refinement is performed to conform with the fracture
geometry specified in the Geometry section

<Mesh>
<VTKMesh
name="CubeHex"
file="crackInPlane_benchmark.vtu"/>
</Mesh>

<Geometry>
<Rectangle
name="fracture"
normal="{-0.342020143325669, 0.939692620785908, 0.0}"
origin="{0.0, 0.0, 0.0}"
lengthVector="{0.939692620785908, 0.342020143325669, 0.0}"
widthVector="{0.0, 0.0, 1.0}"
dimensions="{ 2, 10 }"/>

<Rectangle
name="core"
normal="{-0.342020143325669, 0.939692620785908, 0.0}"
origin="{0.0, 0.0, 0.0}"
lengthVector="{0.939692620785908, 0.342020143325669, 0.0}"
widthVector="{0.0, 0.0, 1.0}"
dimensions="{ 2, 10 }"/>

<Box

(continues on next page)

154 Chapter 1. Table of Contents




GEOS Documentation

Fig. 1.17: Imported mesh
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(continued from previous page)

name="rightPoint"
xMin="{ 39.9, -40.1, -0.001}"
xMax="{ 40.1, 40.1, 0.051}"/>

<Box
name="1leftPoint"
xMin="{-40.1, -40.1, -0.001}"
xMax="{-39.9, 40.1, 0.051}"/>

<Box
name="topPoint"
xMin="{-40.1, 39.9, -0.001}"
xMax="{ 40.1, 40.1, 0.051}"/>

<Box
name="bottomPoint"
xMin="{-40.1, -40.1, -0.001}"
xMax="{ 40.1, -39.9, 0.051}"/>

<Box

name="front"

xMin="{-40.1, -40.1, -0.001}"

xMax="{ 40.1, 40.1, 0.001}"/>
<Box

name="rear"

xMin="{-40.1, -40.1, 0.049}"

xMax="{ 40.1, 40.1, 0.051}"/>
<Box

name="xmin"

xMin="{-40.1, -40.1, -0.001}"

xMax="{-39.9, 40.1, 0.051}1"/>

<Box
name="xmax"
xMin="{39.9, -40.1, -0.001}"
xMax="{40.1, 40.1, 0.051}"/>
</Geometry>

Solid mechanics solver

GEOS is a multi-physics platform. Different combinations of physics solvers available in the code can be applied in
different regions of the domain and be functional at different stages of the simulation. The Solvers tag in the XML
file is used to list and parameterize these solvers.

To specify a coupling between two different solvers, we define and characterize each single-physics solver separately.
Then, we customize a coupling solver between these single-physics solvers as an additional solver. This approach
allows for generality and flexibility in constructing multi-physics solvers. Each single-physics solver should be given
a meaningful and distinct name because GEOS recognizes these single-physics solvers based on their given names to
create the coupling.

To setup a coupling between rock and fracture deformations, we define three different solvers:
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* For solving the frictional contact, we define a Lagrangian contact solver, called here lagrangiancontact. In
this solver, we specify targetRegions that includes both the continuum region Region and the discontinuum
region Fracture where the solver is applied to couple rock and fracture deformation. The contact constitutive
law used for the fracture elements is named fractureMaterial, and defined later in the Constitutive section.

* Rock deformations are handled by a solid mechanics solver SolidMechanicsLagrangianFEM. This solid me-
chanics solver (see Solid Mechanics Solver) is based on the Lagrangian finite element formulation. The problem
is run as QuasiStatic without considering inertial effects. The computational domain is discretized by FE1,
which is defined in the NumericalMethods section. The solid material is named rock, and its mechanical
properties are specified later in the Constitutive section.

* The solver SurfaceGenerator defines the fracture region and rock toughness.

<Solvers
gravityVector="{0.0, 0.0, 0.0}">
<SolidMechanicsLagrangeContact
name="1lagrangiancontact"
timeIntegrationOption="QuasiStatic"
stabilizationName="TPFAstabilization"
logLevel="1"
discretization="FE1"
targetRegions="{ Region, Fracture }">
<NonlinearSolverParameters
newtonTol="1.0e-8"
logLevel="2"
newtonMaxIter="10"
maxNumConfigurationAttempts="10"
lineSearchAction="Require"
lineSearchMaxCuts="2"
maxTimeStepCuts="2"/>
<LinearSolverParameters
solverType="direct"
directParallel="0"
logLevel="0"/>
</SolidMechanicsLagrangeContact>
</Solvers>

Constitutive laws

For this specific problem, we simulate the elastic deformation and fracture slippage caused by uniaxial compression.
A homogeneous and isotropic domain with one solid material is assumed, with mechanical properties specified in the
Constitutive section.

Fracture surface slippage is assumed to be governed by the Coulomb failure criterion. The contact constitutive behav-
ior is named fractureMaterial in the Coulomb block, where cohesion cohesion="0.0" and friction coefficient
frictionCoefficient="0.577350269" are specified.

<Constitutive>
<ElasticIsotropic
name="rock"
defaultDensity="2700"
defaultBulkModulus="16.66666666666666€9"
defaultShearModulus="1.0e10"/>

<Coulomb
(continues on next page)
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(continued from previous page)
name="frictionLaw"
cohesion="0.0"
frictionCoefficient="0.577350269"/>
</Constitutive>

Recall that in the SolidMechanicsLagrangianFENM section, rock is the material of the computational domain. Here,
the isotropic elastic model ElasticIsotropic is used to simulate the mechanical behavior of rock.

All constitutive parameters such as density, bulk modulus, and shear modulus are specified in the International System
of Units.

Time history function

In the Tasks section, PackCollection tasks are defined to collect time history information from fields. Either the
entire field or specified named sets of indices in the field can be collected. In this example, tractionCollection
and displacementJumpCollection tasks are specified to output the local traction fieldName="traction" and
relative displacement fieldName="displacementJump" on the fracture surface.

<Tasks>
<PackCollection
name="tractionCollection"
objectPath="ElementRegions/Fracture/faceElementSubRegion"
fieldName="traction"/>

<PackCollection
name="displacementJumpCollection"
objectPath="ElementRegions/Fracture/faceElementSubRegion"
fieldName="displacementJump" />

</Tasks>

These two tasks are triggered using the Event management, with PeriodicEvent defined for these recurring tasks.
GEOS writes two files named after the string defined in the £filename keyword and formatted as HDFS files (displace-
mentJump_history.hdf5 and traction_history.hdf5). The TimeHistory file contains the collected time history informa-
tion from each specified time history collector. This information includes datasets for the simulation time, element
center defined in the local coordinate system, and the time history information. Then, a Python script is used to access
and plot any specified subset of the time history data for verification and visualization.

Initial and boundary conditions

The next step is to specify fields, including:
* The initial value (the remote compressive stress needs to be initialized),
* The boundary conditions (the constraints of the outer boundaries have to be set).

In this tutorial, we specify an uniaxial horizontal stress (o, = -1.0e8 Pa). The remaining parts of the outer boundaries
are subjected to roller constraints. These boundary conditions are set up through the FieldSpecifications section.

<FieldSpecifications>
<FieldSpecification
name="frac"
initialCondition="1"
setNames="{ fracture }"
objectPath="faceManager"

(continues on next page)
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fieldName="ruptureState"
scale="1"/>

<FieldSpecification
name="separableFace"
initialCondition="1"
setNames="{ core }"
objectPath="faceManager"
fieldName="isFaceSeparable"
scale="1"/>

<FieldSpecification
name="xconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"
scale="0.0"
setNames="{ leftPoint, rightPoint }"/>

<FieldSpecification
name="yconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"
scale="0.0"
setNames="{ bottomPoint, topPoint }"/>

<FieldSpecification
name="zconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="2"
scale="0.0"
setNames="{ front, rear }"/>

<FieldSpecification

name="Sigmax"

initialCondition="1"

setNames="{ all }"

objectPath="ElementRegions/Region"

fieldName="rock_stress"

component="0"

scale="-1.0e8"/>
</FieldSpecifications>

(continued from previous page)

Note that the remote stress has a negative value, due to the negative sign convention for compressive stresses in GEOS.

The parameters used in the simulation are summarized in the following table.
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Symbol Parameter Unit Value
K Bulk Modulus [GPa] 16.67
G Shear Modulus [GPa] 10.0

o Compressive Stress [MPa] -100.0
0 Friction Angle [Degree] 30.0
Y Inclination Angle [Degree] 20.0

b Fracture Half Length  [m] 1.0

Inspecting results

We request VTK-format output files and use Paraview to visualize the results. The following figure shows the distribu-
tion of u, in the computational domain.

The next figure shows the distribution of relative shear displacement values on the fracture surface.

The figure below shows a comparison between the numerical predictions (marks) and the corresponding analytical
solutions (solid curves) for the normal traction (¢ ) and slip (g7) distributions on the fracture surface. One can observe
that the numerical results obtained by GEOS and the analytical solutions are nearly identical.

To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page.

Fracture Intersection Problem

Context

In this example, two fractures intersecting at a right angle are simulated using a Lagrange contact model in a 2D
infinite domain and subjected to a constant uniaxial compressive remote stress. Numerical solutions based on the
symmetric-Galerkin boundary element method (Phan et al., 2003) is used to verify the accuracy of the GEOS results
for the normal traction, normal opening, and shear slippage on the fracture surfaces, considering frictional contact and
fracture-fracture interaction. In this example, the TimeHistory function and a Python script are used to output and
post-process multi-dimensional data (traction and displacement on the fracture surfaces).

Input file

Everything required is contained within these xml files located at:

[inputFi les/lagrangianContactMechanics/TFrac_base.zxml J

[inputFi les/lagrangianContactMechanics/TFrac_benchmark.xml

[inputFi les/lagrangianContactMechanics/ContactMechanics_TFrac_benchmark.xml

Description of the case

We simulate two intersecting fractures under a remote compressive stress constraint, as shown below. The two fractures
sit in an infinite, homogeneous, isotropic, and elastic medium. The vertical fracture is internally pressurized and
perpendicularly intersects the middle of the horizontal fracture. A combination of uniaxial compression, frictional
contact, and opening of the vertical fracture causes mechanical deformations of the surrounding rock, thus leads to
sliding of the horizontal fracture. For verification purposes, a plane strain deformation and Coulomb failure criterion
are considered in this numerical model.
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Fig. 1.18: Simulation result of u,
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Fig. 1.19: Simulation result of fracture slip
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Fig. 1.20: Sketch of the problem (Phan et al., 2003)
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To simulate this problem, we use a Lagrange contact model. Displacement and stress fields on the fracture plane are
calculated numerically. Predictions of the normal traction and slip along the sliding fracture and mechanical aperture
of the pressurized fracture are compared with the corresponding literature work (Phan et al., 2003).

For this example, we focus on the Mesh, the Constitutive, and the FieldSpecifications tags.

Mesh

The following figure shows the mesh used in this problem.

Fig. 1.21: Generated mesh

This mesh was created using the internal mesh generator as parametrized in the InternalMesh XML tag. The mesh
contains 300 x 300 x 2 eight-node brick elements in the x, y, and z directions respectively. Such eight-node hexahedral
elements are defined as C3D8 elementTypes, and their collection forms a mesh with one group of cell blocks named
here cbl.

<Mesh>
<InternalMesh
name="mesh1"
elementTypes="{ C3D8 }"
xCoords="{ -1000, -100, 100, 1000 }"

(continues on next page)

164 Chapter 1. Table of Contents


https://onlinelibrary.wiley.com/doi/10.1002/nme.707

GEOS Documentation

(continued from previous page)
yCoords="{ -1000, -100, 100, 1000 }"
zCoords="{ 0, 2 }"
nx="{ 150, 200, 150 }"
ny="{ 150, 200, 150 }"
nz="{ 2 }"
cellBlockNames="{ cbl }"/>

</Mesh>

Refinement is necessary to conform with the fracture geometry specified in the Geometry section.

<Geometry>
<Rectangle

name="fracturel"
normal="{1.0, 0.0, 0.0}
origin="{0.0, 0.0, 0.0}"
lengthVector="{0.0, 1.0, 0.0}"
widthVector="{0.0, 0.0, 1.0}"
dimensions="{ 100, 200 }"/>

<Rectangle
name="corel"
normal="{1.0, 0.0, 0.0}"
origin="{0.0, 0.0, 0.0}"
lengthVector="{0.0, 1.0, 0.0}"
widthVector="{0.0, 0.0, 1.0}"
dimensions="{ 100, 200 }"/>

<Rectangle
name="fracture2"
normal="{0.0, 1.0, 0.0}"
origin="{0.0, 50.0, 0.0}"
lengthVector="{1.0, 0.0, 0.0}"
widthVector="{0.0, 0.0, 1.0}"
dimensions="{ 50, 200 }"/>

<Rectangle

name="core2"

normal="{0.0, 1.0, 0.0}"

origin="{0.0, 50.0, 0.0}"

lengthVector="{1.0, 0.0, 0.0}"

widthVector="{0.0, 0.0, 1.0}"

dimensions="{ 50, 200 }"/>
</Geometry>

Solid mechanics solver

GEOS is a multiphysics simulation platform. Different combinations of physics solvers can be applied in different
regions of the domain at different stages of the simulation. The Solvers tag in the XML file is used to list and
parameterize these solvers.

To specify a coupling between two different solvers, we define and characterize each single-physics solver separately.
Then, we customize a coupling solver between these single-physics solvers as an additional solver. This approach
allows for generality and flexibility in constructing multiphysics solvers. Each single-physics solver should be given a
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meaningful and distinct name, because GEOS recognizes these single-physics solvers by their given names to create
the coupling.

To setup a coupling between rock and fracture deformations, we define three different solvers:

* For solving the frictional contact, we define a Lagrangian contact solver, called here lagrangiancontact. In
this solver, we specify targetRegions that include both the continuum region Region and the discontinuum
region Fracture where the solver is applied to couple rock and fracture deformations. The contact constitutive
law used for the fracture elements is named fractureMaterial, and is defined later in the Constitutive
section.

* Rock deformations are handled by a solid mechanics solver SolidMechanicsLagrangianFEM. This solid me-
chanics solver (see SolidMechanicsLagrangianFEM) is based on the Lagrangian finite element formulation. The
problem runs in QuasiStatic mode without inertial effects. The computational domain is discretized by FE1,
which is defined in the NumericalMethods section. The solid material is named rock and its mechanical
properties are specified later in the Constitutive section.

* The solver SurfaceGenerator defines the fracture region and rock toughness.

<SolidMechanicsLagrangeContact
name="1lagrangiancontact"
timeIntegrationOption="QuasiStatic"
stabilizationName="TPFAstabilization"
logLevel="1"
discretization="FE1"
targetRegions="{ Region, Fracture }'">
<NonlinearSolverParameters
newtonTol="1.0e-5"
logLevel="2"
maxNumConfigurationAttempts="10"
newtonMaxIter="10"
lineSearchAction="Require"
lineSearchMaxCuts="2"
maxTimeStepCuts="2"/>
<LinearSolverParameters
solverType="gmres"
preconditionerType="mgr"
krylovTol="1e-8"
logLevel="0"/>
</SolidMechanicsLagrangeContact>

Constitutive laws

For this problem, we simulate the elastic deformation and fracture slippage caused by the uniaxial compression. A
homogeneous and isotropic domain with one solid material is assumed, and its mechanical properties are specified in
the Constitutive section.

Fracture surface slippage is assumed to be governed by the Coulomb failure criterion. The contact constitutive behav-
ior is named fractureMaterial in the Coulomb block, where cohesion cohesion="0.0" and friction coeflicient
frictionCoefficient="0.577350269" are specified.

<Constitutive>
<ElasticIsotropic
name="rock"
defaultDensity="2700"
defaultBulkModulus="38.89e9"

(continues on next page)
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defaultShearModulus="29.17e9"/>

<Coulomb
name="frictionLaw"
cohesion="0.0"
frictionCoefficient="0.577350269"/>
</Constitutive>

Recall that in the SolidMechanicsLagrangianFEM section, rock is the material of the computational domain. Here,
the isotropic elastic model ElasticIsotropic is used to simulate the mechanical behavior of rock.

All constitutive parameters such as density, bulk modulus, and shear modulus are specified in the International System
of Units.

Time history function

In the Tasks section, PackCollection tasks are defined to collect time history information from fields. Either the
entire field or specified named sets of indices in the field can be collected. In this example, tractionCollection
and displacementJumpCollection tasks are specified to output the local traction fieldName="traction" and
relative displacement fieldName="displacementJump" on the fracture surface.

<Tasks>
<PackCollection
name="tractionCollection"
objectPath="ElementRegions/Fracture/faceElementSubRegion"
fieldName="traction"/>

<PackCollection
name="displacement JumpCollection"
objectPath="ElementRegions/Fracture/faceElementSubRegion"
fieldName="displacementJump" />
</Tasks>

These two tasks are triggered using the Event manager with a PeriodicEvent defined for these recurring tasks. GEOS
writes two files named after the string defined in the filename keyword and formatted as HDFS files (displacemen-
tJump_history.hdf5 and traction_history.hdf5). The TimeHistory file contains the collected time history information
from each specified time history collector. This information includes datasets for the simulation time, element center
defined in the local coordinate system, and the time history information. A Python script is used to read and plot any
specified subset of the time history data for verification and visualization.

Initial and boundary conditions

The next step is to specify fields, including:
* The initial value (the remote compressive stress needs to be initialized),

* The boundary conditions (traction loaded on the vertical fracture and the constraints of the outer boundaries have

to be set).
In this tutorial, we specify an uniaxial vertical stress SigmaY (o, = -1.0e8 Pa). A compressive traction
NormalTraction (F;, = -1.0e8 Pa) is applied at the surface of vertical fracture. The remaining parts of

the outer boundaries are subjected to roller constraints. These boundary conditions are set up through the
FieldSpecifications section.
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<FieldSpecifications>
<FieldSpecification

name="frac"
initialCondition="1"
setNames="{ fracturel, fracture2
objectPath="faceManager"
fieldName="ruptureState"
scale="1"/>

<FieldSpecification
name="separableFace"
initialCondition="1"
setNames="{ corel, core2 }"
objectPath="faceManager"
fieldName="isFaceSeparable"
scale="1"/>

<FieldSpecification
name="xconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"
scale="0.0"
setNames="{ xpos, xneg }"/>

<FieldSpecification
name="yconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"
scale="0.0"
setNames="{ ypos, yneg }"/>

<FieldSpecification
name="zconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="2"
scale="0.0"
setNames="{ zpos, zneg }"/>

<Traction
name="NormalTraction"
objectPath="faceManager"
tractionType="normal"
scale="-1.0e8"
functionName="ForceTimeFunction"
setNames="{ corel }"/>

<FieldSpecification
name="SigmaY"
initialCondition="1"
setNames="{ all }"

(continues on next page)
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objectPath="ElementRegions/Region"
fieldName="rock_stress"
component="1"
scale="-1.0e8"/>
</FieldSpecifications>

Note that the remote stress and internal fracture pressure has a negative value, due to the negative sign convention for
compressive stresses in GEOS.

The parameters used in the simulation are summarized in the following table.

Symbol Parameter Unit Value
K Bulk Modulus [GPa] 38.89
G Shear Modulus [GPa] 29.17
oy Remote Stress [MPa] -100.0
P, Internal Pressure [MPa] -100.0
0 Friction Angle [Degree] 30.0
Ly, Horizontal Frac Length [m] 50.0
L, Vertical Frac Length [m] 100.0

Inspecting results

We request VTK-format output files and use Paraview to visualize the results. The following figure shows the distribu-
tion of o, in the computational domain.

rock_stress XX
572e+08 _

[o=]

-1.08e+08

Fig. 1.22: Simulation result of o,
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The next figure shows the distribution of relative shear displacement values along the surface of two intersected frac-
tures.
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Fig. 1.23: Simulation result of fracture slip

The figure below compares the results from GEOS (marks) and the corresponding literature reference solution (solid
curves) for the normal traction and slip distributions along the horizontal fracture and opening of the vertical fracture.
GEOS reliably captures the mechanical interactions between two intersected fractures and shows excellent agreement
with the reference solution. Due to sliding of the horizontal fracture, GEOS prediction as well as the reference solution
on the normal opening of pressurized vertical fracture deviates away from Sneddon’s analytical solution, especially
near the intersection point.

To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page.

Verification of Induced Stresses Along a Fault

Context

In this example, we evaluate the induced stresses in a pressurized reservoir displaced by a normal fault (permeable or
impermeable). This problem is solved using the poroelastic solver in GEOS to obtain the stress perturbations along the
fault plane, which are verified against the corresponding analytical solution (Wu et al., 2020).

Input file

The xml input files for the test case with impermeable fault are located at:
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inputFiles/poromechanics/faultPoroelastic_base.xml
inputFiles/poromechanics/impermeableFault_benchmark.xml

The xml input files for the test case with permeable fault are located at:

inputFiles/poromechanics/faultPoroelastic_base.xml
inputFiles/poromechanics/permeableFault_benchmark.xml

A mesh file and a python script for post-processing the simulation results are also provided:

[inputFi les/poromechanics/faultMesh.vtu

src/docs/sphinx/advancedExamples/validationStudies/faultMechanics/faultVerification/
—.faultVerificationFigure.py

Description of the case

We simulate induced stresses along a normal fault in a pressurized reservoir and compare our results against an analyti-
cal solution. In conformity to the analytical set-up, the reservoir is divided into two parts by an inclined fault. The fault
crosses the entire domain, extending into the overburden and the underburden. The domain is horizontal, infinite, ho-
mogeneous, isotropic, and elastic. The reservoir is pressurized uniformely upon injection, and we neglect the transient
effect of fluid flow. A pressure buildup is applied to: (i) the whole reservoir in the case of a permeable fault; (ii) the
left compartment in the case of an impermeable fault. The overburden and underburden are impermeable (no pressure
changes). Due to poromechanical effects, pore pressure changes in the reservoir cause a mechanical deformation of the
entire domain. This deformation leads to a stress perturbation on the fault plane that could potentially trigger sliding
of the fault. Here, the fault serves only as a flow boundary, and the mechanical separation of the fault plane (either by
shear slippage or normal opening) is prohibited, like in the analytical example. For verification purposes, a plane strain
deformation is considered in the numerical model.

In this example, we set up and solve a poroelastic model to obtain the spatial solutions of displacement and stress fields
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Fault
60°

Fig. 1.24: Sketch of the problem

across the domain upon pressurization. Changes of total stresses along the fault plane are evaluated and compared with
the corresponding published work (Wu et al., 2020).

For this example, we focus on the Mesh, the Constitutive, and the FieldSpecifications tags.

Mesh

The following figure shows the mesh used in this problem.

Fig. 1.25: Imported mesh

Here, we load the mesh with VTKMesh. The syntax to import external meshes is simple: in the XML file, the mesh file
faultMesh. vtuis included with its relative or absolute path to the location of the GEOS XML file and a user-specified
label (here FaultModel) is given to the mesh object. This mesh contains quadrilateral elements and local refinement
to conform with the fault geometry, and two reservoir compartments displaced by the fault. The size of the reservoir
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should be large enough to avoid boundary effects.

<Mesh>
<VTKMesh
name="FaultModel"
file="faultMesh.vtu"
regionAttribute="CellEntityIds"/>
</Mesh>

Solid mechanics solver

GEOS is a multi-physics platform. Different combinations of physics solvers available in the code can be applied in
different regions of the domain and be functional at different stages of the simulation. The Solvers tag in the XML
file is used to list and parameterize these solvers.

To specify a coupling between two different solvers, we define and characterize each single-physics solver separately.
Then, we customize a coupling solver between these single-physics solvers as an additional solver. This approach
allows for generality and flexibility in constructing multi-physics solvers. The order in which solvers are specified is
not important in GEOS. Note that end-users should give each single-physics solver a meaningful and distinct name, as
GEOS will recognize these single-physics solvers based on their customized names to create the expected couplings.

As demonstrated in this example, to setup a poromechanical coupling, we need to define three different solvers in the
XML file:

* the mechanics solver, a solver of type SolidMechanicsLagrangianFENM called here mechanicsSolver (more
information here: Solid Mechanics Solver),

<SolidMechanicsLagrangianFEM
name="mechanicsSolver"
timeIntegrationOption="QuasiStatic"
logLevel="1"
discretization="FE1"
targetRegions="{ Domain }">
<NonlinearSolverParameters
newtonTol = "1.0e-5"
newtonMaxIter = "15"/>
<LinearSolverParameters
solverType="gmres"
krylovTol="1.0e-10"/>
</SolidMechanicsLagrangianFEM>

* the single-phase flow solver, a solver of type SinglePhaseFVM called here singlePhaseFlowSolver (more
information on these solvers at Singlephase Flow Solver),

<SinglePhaseFVM

name="singlePhaseFlowSolver"

logLevel="1"

discretization="singlePhaseTPFA"

targetRegions="{ Domain }">

<NonlinearSolverParameters
newtonTol = "1.0e-6"
newtonMaxIter = "8"

/>

<LinearSolverParameters
solverType="gmres"

(continues on next page)
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(continued from previous page)
krylovTol="1.0e-12"/>
</SinglePhaseFVM>
</Solvers>

* the coupling solver (SinglePhasePoromechanics) that will bind the two single-physics solvers above, named
poromechanicsSolver (more information at Poromechanics Solver).

<Solvers gravityVector="{0.0, 0.0, 0.0}">
<SinglePhasePoromechanics
name="poromechanicsSolver"
solidSolverName="mechanicsSolver"
flowSolverName="singlePhaseFlowSolver"
logLevel="1"
targetRegions="{ Domain }">
<LinearSolverParameters
solverType="gmres"
preconditionerType="mgr"
logLevel="1"
krylovAdaptiveTol="1"
/>
<NonlinearSolverParameters
newtonMaxIter = "40"
/>

</SinglePhasePoromechanics>

The two single-physics solvers are parameterized as explained in their corresponding documents.

In this example, let us focus on the coupling solver. This solver (poromechanicsSolver) uses a set of attributes that
specifically describe the coupling process within a poromechanical framework. For instance, we must point this solver
to the designated fluid solver (here: singlePhaseFlowSolver) and solid solver (here: mechanicsSolver). These
solvers are forced to interact with all the constitutive models in the target regions (here, we only have one, Domain).
More parameters are required to characterize a coupling procedure (more information at Poromechanics Solver). This
way, the two single-physics solvers will be simultaneously called and executed for solving the problem.

Discretization methods for multiphysics solvers

Numerical methods in multiphysics settings are similar to single physics numerical methods. In this problem, we use
finite volume for flow and finite elements for solid mechanics. All necessary parameters for these methods are defined
in the NumericalMethods section.

As mentioned before, the coupling solver and the solid mechanics solver require the specification of a discretization
method called FE1. In GEOS, this discretization method represents a finite element method using linear basis functions
and Gaussian quadrature rules. For more information on defining finite elements numerical schemes, please see the
dedicated Finite Element Discretization section.

The finite volume method requires the specification of a discretization scheme. Here, we use a two-point flux ap-
proximation scheme (singlePhaseTPFA), as described in the dedicated documentation (found here: Finite Volume
Discretization).

<NumericalMethods>
<FiniteElements>
<FiniteElementSpace
name="FE1"
order="1"/>
(continues on next page)
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</FiniteElements>

<FiniteVolume>
<TwoPointFluxApproximation
name="singlePhaseTPFA"
/>
</FiniteVolume>
</NumericalMethods>

(continued from previous page)

Constitutive laws

For this problem, a homogeneous and isotropic domain with one solid material is assumed for both the reservoir
and its surroundings. The solid and fluid materials are named as rock and water respectively, and their mechan-
ical properties are specified in the Constitutive section. PorousElasticIsotropic model is used to describe
the linear elastic isotropic response of rock when subjected to fluid injection. And the single-phase fluid model

CompressibleSinglePhaseFluid is selected to simulate the flow of water

<Constitutive>
<PorousElasticIsotropic
name="porousRock"
solidModelName="rock"
porosityModelName="rockPorosity"
permeabilityModelName="rockPerm"

/>

<ElasticIsotropic
name="rock"
defaultDensity="2700"
defaultYoungModulus="14.95e9"
defaultPoissonRatio="0.15"

/>

<CompressibleSinglePhaseFluid
name="water"
defaultDensity="1000"
defaultViscosity="0.001"
referencePressure="0e6"
referenceDensity="1000"
compressibility="2.09028227021e-10"
referenceViscosity="0.001"
viscosibility="0.0"

/>

<BiotPorosity
name="rockPorosity"
defaultGrainBulkModulus="7.12e10"
defaultReferencePorosity="0.3"

/>

<ConstantPermeability
name="rockPerm"

permeabilityComponents="{1.0e-18, 1.0e-18, 1.0e-18}"

(continues on next page)
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(continued from previous page)

/>

</Constitutive>

All constitutive parameters such as density, viscosity, and Young’s modulus are specified in the International System
of Units.

Initial and boundary conditions

The next step is to specify fields, including:
* The initial value (the in-situ stresses and pore pressure have to be initialized),

* The boundary conditions (pressure buildup within the reservoir and constraints of the outer boundaries have to
be set).

In this example, we need to specify isotropic horizontal total stress (o, = -60.0 MPa and o 7 = -60.0 MPa), vertical total
stress (o, = -70.0 MPa), and initial reservoir pressure (P = 35.0 MPa). When initializing the model, a normal traction
(name="NormalTraction") of -70.0 MPa is imposed on the upper boundary (setNames="{ 91 }") to reach me-
chanical equilibrium. The lateral and lower boundaries are subjected to roller constraints. These boundary conditions
are set up through the FieldSpecifications section.

<FieldSpecifications>

<FieldSpecification
name="initialPressure"
initialCondition="1"
setNames="{all}"
objectPath="ElementRegions/Domain"
fieldName="pressure"
scale="35.0e6"

/>

<FieldSpecification
name="stressXX"
initialCondition="1"
setNames="{all}"
objectPath="ElementRegions/Domain"
fieldName="rock_stress"
component="0"
scale="-28.499545e6"

/>

<FieldSpecification
name="stressYY"
initialCondition="1"
setNames="{all}"
objectPath="ElementRegions/Domain"
fieldName="rock_stress"
component="1"
scale="-38.499545e6"

/>

<FieldSpecification
name="stressZz"
initialCondition="1"
(continues on next page)
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setNames="{all}"
objectPath="ElementRegions/Domain"
fieldName="rock_stress"
component="2"
scale="-28.499545e6"

/>

<FieldSpecification
name="xconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"
scale="0.0"
setNames="{ 89, 88 }"/>

<FieldSpecification
name="yconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"
scale="0.0"
setNames="{ 90 }"/>

<FieldSpecification
name="zconstraintFront"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="2"
scale="0.0"
setNames="{ 92, 93 }"/>

<Traction
name="NormalTraction"
objectPath="faceManager"
tractionType="normal"
scale="-70.0e6"
setNames="{ 91 }"/>
</FieldSpecifications>

(continued from previous page)

In this example, the only difference between the impermeable fault and permeable fault cases is how to apply pressure
buildup. For the impermeable fault case, a constant pressure buildup is imposed to the left compartment of the reservoir

(objectPath="ElementRegions/Domain/97_hexahedra"):

<FieldSpecifications>
<FieldSpecification
name="injection"
initialCondition="0"
setNames="{all}"
objectPath="ElementRegions/Domain/97_hexahedra"
fieldName="pressure"
scale="55.0e6"/>
</FieldSpecifications>
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For the permeable fault case, a constant pressure buildup is imposed to both compartments of the reser-
voir: (objectPath="ElementRegions/Domain/97_hexahedra" and objectPath="ElementRegions/Domain/
96_hexahedra"):

<FieldSpecifications>

<FieldSpecification
name="injection"
initialCondition="0"
setNames="{all}"
objectPath="ElementRegions/Domain/97_hexahedra"
fieldName="pressure"
scale="55.0e6"/>

<FieldSpecification
name="injection2"
initialCondition="0"
setNames="{all}"
objectPath="ElementRegions/Domain/96_hexahedra"
fieldName="pressure"
scale="55.0e6"/>

</FieldSpecifications>

The parameters used in the simulation are summarized in the following table, which are specified in the Constitutive
and FieldSpecifications sections. Note that stresses and traction have negative values, due to the negative sign
convention for compressive stresses in GEOS.

Symbol Parameter Unit Value
E Young’s Modulus [GPa] 14.95
v Poisson’s Ratio [-1 0.15
op Min Horizontal Stress [MPa] -60.0
OH Max Horizontal Stress [MPa] -60.0
o Vertical Stress [MPa] -70.0
Po Initial Reservoir Pressure [MPa] 35.0
Ap Pressure Buildup [MPa] 20.0
K, Grain Bulk Modulus [GPa] 71.2

0 Fault Dip [Degree] 60.0

K Matrix Permeability [m?] 1.0%10°18
[0) Porosity [-] 0.3
Dy, Domain Length [m] 4000.0
Dy Domain Width [m] 2000.0
Dr Domain Thickness [m] 1000.0
Rest Reservoir Thickness [m] 300.0
Fory Fault Vertical Offset [m] 100.0

Inspecting results

We request VTK-format output files and use Paraview to visualize the results. The following figure shows the distribu-
tion of resulting shear stress (0,) in the computational domain for two different cases (a permeable vs. an impermeable
fault). Numerical solutions for both cases are also compared with the corresponding analytical solutions.

The figure below compares the results from GEOS (marks) and the corresponding analytical solution (solid curves)
for the change of total stresses (0, 0yy and o) along the fault plane. As shown, GEOS reliably captures the
mechanical deformation of the faulted reservoir and shows excellent agreement with the analytical solutions for two
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Fig. 1.26: Simulation results of o,

different scenarios. Differences in the stress perturbations between the cases with permeable and impermeable fault
are also noticeable, which suggests that fault permeability plays a crucial role in governing reservoir deformation for
the problems with reservoir pressurization or depletion.

To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page.

Hydraulic Fracture

Toughness dominated KGD hydraulic fracture
Description of the case

In this example, we consider a plane-strain hydraulic fracture propagating in an infinite, homogeneous and elastic
medium, due to fluid injection at a rate (o during a period from O to ¢,,,,. Two dimensional KGD fracture is charac-
terized as a vertical fracture with a rectangle-shaped cross section. For verification purpose, the presented numerical
model is restricted to the assumptions used to analytically solve this problem (Bunger et al., 2005). Vertical and im-
permeable fracture surface is assumed, which eliminate the effect of fracture plane inclination and fluid leakoff. The
injected fluid flows within the fracture, which is assumed to be governed by the lubrication equation resulting from
the mass conservation and the Poiseuille law. Fracture profile is related to fluid pressure distribution, which is mainly
dictated by fluid viscosity w. In addition, fluid pressure contributes to the fracture development through the mechanical
deformation of the solid matrix, which is characterized by rock elastic properties, including the Young modulus £, and
the Poisson ratio v.
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For toughness-dominated fractures, more work is spent to split the intact rock than that applied to move the fracturing
fluid. To make the case identical to the toughness dominated asymptotic solution, incompressible fluid with an ultra-
low viscosity of 0.001 cp and medium rock toughness should be defined. Fracture is propagating with the creation of

new surface if the stress intensity factor exceeds rock toughness K.

In toughness-storage dominated regime, asymptotic solutions of the fracture length /¢, the net pressure py and the
fracture aperture wq at the injection point for the KGD fracture are provided by (Bunger et al., 2005):

_ E,Q3
0= 0.9324X ~1/6(=LX0Y1/642/3
( 19 )
12
w? = 0.5X1/2(75Q0)1/2£

p

wopo = 0.125X 2 (12uQ E,) ) /2

where the plane modulus E,, is defined by

and the term X is given as:

Input file

The input xml files for this test case are located at:

[inputFi les/hydraulicFracturing/kgdToughnessDominated_base.xml

and

[inputFi les/hydraulicFracturing/kgdToughnessDominated_benchmark.xml ]

The corresponding integrated test with coarser mesh and smaller injection duration is also prepared:
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[inputFi1es/hydrau1icFracturing/kngoughnessDominated_Smoke .xml }

Python scripts for post-processing and visualizing the simulation results are also prepared:

[inputFi1es/hydraulicFracturing/scripts/hydrofractureQueries .py ]

[inputFiles/hydraulicFracturing/scripts/hydrofractureFigure .by

Mechanics solvers

The solver SurfaceGenerator defines rock toughness K. as:

<SurfaceGenerator
name="SurfaceGen"
targetRegions="{ Domain }"
nodeBasedSIF="1"
initialRockToughness="1e6"
mpiCommOrder="1"/>

Rock and fracture deformation are modeled by the solid mechanics solver SolidMechanicsLagrangianFEM. In
this solver, we define targetRegions that includes both the continuum region and the fracture region. The name
of the contact constitutive behavior is also specified in this solver by the contactRelationName, besides the
solidMaterialNames.

<SolidMechanicsLagrangianFEM
name="1lagsolve"
timeIntegrationOption="QuasiStatic"
discretization="FE1"
targetRegions="{ Domain, Fracture }"
contactRelationName="fractureContact"
contactPenaltyStiffness="1.0"/>

The single phase fluid flow inside the fracture is solved by the finite volume method in the solver SinglePhaseFVM as:

<SinglePhaseFVM
name="SinglePhaseFlow"
discretization="singlePhaseTPFA"
targetRegions="{ Fracture }"/>

All these elementary solvers are combined in the solver Hydrofracture to model the coupling between fluid flow
within the fracture, rock deformation, fracture opening/closure and propagation. A fully coupled scheme is defined by
setting a flag FIM for couplingTypeOption.

<Hydrofracture
name="hydrofracture"
solidSolverName="1lagsolve"
flowSolverName="SinglePhaseFlow"
surfaceGeneratorName="SurfaceGen"
logLevel="1"
targetRegions="{ Fracture }"
maxNumResolves="2"
useQuasiNewton="1">
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The constitutive laws

The constitutive law CompressibleSinglePhaseFluid defines the default and reference fluid viscosity, compress-
ibility and density. For this toughness dominated example, ultra low fluid viscosity is used:

<CompressibleSinglePhaseFluid
name="water"
defaultDensity="1000"
defaultViscosity="1.0e-6"
referencePressure="0.0"
compressibility=""5e-10"
referenceViscosity="1.0e-6"
viscosibility="0.0"/>

The isotropic elastic Young modulus and Poisson ratio are defined in the ElasticIsotropic block. The density of
rock defined in this block is useless, as gravity effect is ignored in this example.

<ElasticIsotropic
name="rock"
defaultDensity="2700"
defaultYoungModulus="30.0e9"
defaultPoissonRatio="0.25"/>

Mesh

Internal mesh generator is used to generate the geometry of this example. The domain size is large enough comparing
to the final size of the fracture. A sensitivity analysis has shown that the domain size in the direction perpendicular
to the fracture plane, i.e. x-axis, must be at least ten times of the final fracture half-length to minimize the boundary
effect. However, smaller size along the fracture plane, i.e. y-axis, of only two times the fracture half-length is good
enough. It is also important to note that at least two layers are required in z-axis to ensure a good match between the
numerical results and analytical solutions, due to the node based fracture propagation criterion. Also in x-axis, bias
parameter xBias is added for optimizing the mesh by refining the elements near the fracture plane.

<InternalMesh
name="mesh1"
elementTypes="{C3D8}"
xCoords="{ -100, O, 100 }"
yCoords="{ 0, 50 }"
zCoords="{ 0, 1 }"
nx="{ 30, 30 }"
ny="{ 100 }"
nz="{ 2 }"
xBias="{ 0.5, -0.5 }"
cellBlockNames="{cb1}"/>

Defining the initial fracture

The initial fracture is defined by a nodeset occupying a small area where the KGD fracture starts to propagate:

<Box
name="fracture"
xMin="{ -0.01, -0.01, -0.01 }"
xMax="{ 0.01, 1.01, 1.01 }"/>
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This initial ruptureState condition must be specified for this area in the following FieldSpecification block:

<FieldSpecification
name="frac"
initialCondition="1"
setNames="{ fracture }"
objectPath="faceManager"
fieldName="ruptureState"
scale="1"/>

Defining the fracture plane

The plane within which the KGD fracture propagates is predefined to reduce the computational cost. The fracture plane
is outlined by a separable nodeset by the following initial FieldSpecification condition:

<Box
name="core"
xMin="{ -0.01, -0.01, -0.01 }"
xMax="{ 0.01, 50.01, 1.01 }"/>

<FieldSpecification
name="separableFace"
initialCondition="1"
setNames="{ core }"
objectPath="faceManager"
fieldName="isFaceSeparable"
scale="1"/>

Defining the injection rate

Fluid is injected into a sub-area of the initial fracture. Only half of the injection rate is defined in this boundary
condition because only half-wing of the KGD fracture is modeled regarding its symmetry. Hereby, the mass injection
rate is actually defined, instead of the volume injection rate. More precisely, the value given for scale is Qops/2 (not

Qo/2).

<SourceFlux
name="sourceTerm"
objectPath="ElementRegions/Fracture"
scale="-5e-2"
setNames="{ source }"/>
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Time history function

In the Tasks section, PackCollection tasks are defined to collect time history information from fields. Either the
entire field or specified named sets of indices in the field can be collected. In this example, pressureCollection,
apertureCollection, hydraulicApertureCollection and areaCollection are specified to output the time
history of fracture characterisctics (pressure, width and area). objectPath="ElementRegions/Fracture/
FractureSubRegion" indicates that these PackCollection tasks are applied to the fracure element subregion.

<Tasks>
<PackCollection
name="pressureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="pressure"/>

<PackCollection
name="apertureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="elementAperture" />

<PackCollection
name="hydraulicApertureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="hydraulicAperture"/>

<PackCollection
name="areaCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="elementArea"/>

<!-- Collect aperture, pressure at the source for curve checks -->
<PackCollection
name="sourcePressureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="pressure"
setNames="{ source }"/>

<PackCollection
name="sourceHydraulicApertureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="hydraulicAperture"
setNames="{ source }"/>
</Tasks>

These tasks are triggered using the Event manager with a PeriodicEvent defined for the recurring tasks.
GEOS writes one file named after the string defined in the filename keyword and formatted as a HDFS5 file
(kgdToughnessDominated_output.hdf5). This TimeHistory file contains the collected time history information
from specified time history collector. This file includes datasets for the simulation time, fluid pressure, element aper-
ture, hydraulic aperture and element area for the propagating hydraulic fracture. A Python script is prepared to read
and query any specified subset of the time history data for verification and visualization.

The parameters used in the simulation are summarized in the following table.
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Symbol Parameter Units Value
Qo Injection rate [m3/s] 10*
FE Young’s modulus  [GPa] 30

v Poisson’s ratio [-] 0.25
U Fluid viscosity [Pa.s] 10°°
K. Rock toughness [MPa.m?] 1

Inspecting results

Fracture propagation during the fluid injection period is shown in the figure below.

First, by running the query script

[python ./hydrofractureQueries.py kgdToughnessDominated

the HDFS5 output is postprocessed and temporal evolution of fracture characterisctics (fluid pressure and fracture width
at fluid inlet and fracure half length) are saved into a txt file model-results. txt, which can be used for verification
and visualization:

[[' time', ' pressure', ' aperture', ' length']]
2 4.086e+05 8.425e-05 2
4 3.063e+05 0.0001021 3
6 3.121e+05 0.0001238 3.5
8 2.446e+05 0.0001277 4.5
10 2.411e+05 0.0001409 5

Note: GEOS python tools geosx_xml_tools should be installed to run the query script (See Python Tools Setup for
details).

A good agreement between GEOS results and analytical solutions is shown in the comparison below, which is generated
using the visualization script:

[python ./kgdToughnessDominatedFigure.py

To go further

Feedback on this example

This concludes the toughness dominated KGD example. For any feedback on this example, please submit a GitHub
issue on the project’s GitHub page.

Viscosity dominated KGD hydraulic fracture
Description of the case

The KGD problem addresses a single plane strain fracture growing in an infinite elastic domain. Basic assumptions and
characteristic shape for this example is similar to those of another case (Viscosity dominated KGD hydraulic fracture)
except that the viscosity dominated regime is now considered. In this regime, more work is spent to move the fracturing
fluid than to split the intact rock. In this test, slickwater with a constant viscosity of 1 cp is chosen as fracturing fluid,
whose compressibility is neglected. To make the case identical to the viscosity dominated asymptotic solution, an ultra-
low rock toughness K. is defined and fracture is assumed to be always propagating following fluid front. Asymptotic
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solutions of the fracture length ¢, the net pressure pg and the fracture aperture wy at the injection point for the KGD
fracture with a viscosity dominated regime are provided by (Adachi and Detournay, 2002):

E 3
(= 0.6152(L%)1/6t2/3
12p

12Q0 )1/2£
Ey

wopo = 0.62(12uQ0 E,)'/?

wi = 2.1(

where the plane modulus E, is defined by

and the term X is given as:
_ 26K,
3% LQoE,’
Input file

The input xml files for this test case are located at:

[inputFi les/hydraulicFracturing/kgdViscosityDominated_base.xml

and

[inputFi les/hydraulicFracturing/kgdViscosityDominated_benchmark.xml

The corresponding integrated test with coarser mesh and smaller injection duration is also prepared:

[inputFi les/hydraulicFracturing/kgdViscosityDominated_smoke.xml

Python scripts for post-processing and visualizing the simulation results are also prepared:

[inputFi les/hydraulicFracturing/scripts/hydrofractureQueries.py

[inputFi1es/hydraulicFracturing/scripts/hydrofractureFigure .by

Fluid rheology and rock toughness are defined in the xml blocks below. Please note that setting an absolute zero value
for the rock toughness could lead to instability issue. Therefore, a low value of K. is used in this example.

<SurfaceGenerator
name="SurfaceGen"
targetRegions="{ Domain }"
nodeBasedSIF="1"
initialRockToughness="1e4"
mpiCommOrder="1"/>

<CompressibleSinglePhaseFluid
name="water"
defaultDensity="1000"
defaultViscosity="1.0e-3"
referencePressure="0.0"
compressibility="5e-10"
referenceViscosity="1.0e-3"
viscosibility="0.0"/>
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First, by running the query script

[python ./hydrofractureQueries.py kgdViscosityDominated J

the HDFS5 output is postprocessed and temporal evolution of fracture characterisctics (fluid pressure and fracture width
at fluid inlet and fracure half length) are saved into a txt file model-results. txt, which can be used for verification
and visualization:

[ time', ' pressure', ' aperture', ' length']]
2 1.075e+06 0.0001176 1.5
4 9.636e+05 0.0001645 2
6 8.372e+05 0.0001917 2.5
8 7.28e+05 0.000209 3
10 6.512e+05 0.000222 3.5

Note: GEOS python tools geosx_xml_tools should be installed to run the query script (See Python Tools Setup for
details).

A good agreement between GEOS results and analytical solutions is shown in the comparison below, which is generated
using the visualization script:

[python ./kgdViscosityDominatedFigure.py ]
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To go further

Feedback on this example
This concludes the viscosity dominated KGD example. For any feedback on this example, please submit a GitHub

issue on the project’s GitHub page.

Validating KGD Hydraulic Fracture with Experiment

Context

In this example, we use GEOS to model a planar hydraulic fracture propagating in a finite domain subject to traction-
free external boundaries. Contrary to the classic KGD problems, we do not assume an infinite rock domain. Existing
analytical solutions cannot model fracture behavior in this scenario, so this problem is solved using the hydrofracture
solver in GEOS. We validate the simulation results against a benchmark experiment (Rubin, 1983).

Input file

This example uses no external input files. Everything we need is contained within two GEOS input files:

[inputFi les/hydraulicFracturing/kgdValidation_base.xml

[inputFiles/hydraulicFracturing/kngalidation_benchmark .xml

Python scripts for post-processing and visualizing the simulation results are also prepared:

src/docs/sphinx/advancedExamples/validationStudies/hydraulicFracture/kgdValidation/
—kgdValidationQueries.py

src/docs/sphinx/advancedExamples/validationStudies/hydraulicFracture/kgdValidation/
—kgdValidationFigure.py

Description of the case

We simulate a hydraulic fracturing experiment within a finite domain made of three layers of polymethylmethacrylate
(PMMA). As shown below, we inject viscous fluid to create a single planar fracture in the middle layer. The target layer
is bonded weakly to the adjacent layers, so a vertical fracture develops inside the middle layer. Four pressure gages are
placed to monitor wellbore pressure (gage 56) and fluid pressure along the fracture length (gage 57, 58, and 59). A linear
variable differential transducer (LVDT) measures the fracture aperture at 28.5 mm away from the wellbore. Images are
taken at regular time intervals to show the temporal evolution of the fracture extent. All experimental measurements
for the time history of pressure, aperture, and length are reported in Rubin (1983). We use GEOS to reproduce the
conditions of this test, including material properties and pumping parameters. In the experiment, the upper and lower
layers are used only to restrict the fracture height growth, they are therefore not simulated in GEOS but are present as
boundary conditions. Given the vertical plane of symmetry, only half of the middle layer is modeled. For verification
purposes, a plane strain deformation and zero fluid leak-off are considered in the numerical model.

In this example, we solve the hydraulic fracturing problem with the hydrofrac solver to obtain the temporal solution
of the fracture characteristics (length, aperture and pressure). These modeling predictions are compared with the
corresponding experimental results (Rubin, 1983).

For this example, we focus on the Mesh, the Constitutive, and the FieldSpecifications tags.
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Fig. 1.27: Sketch of the problem

Mesh

The following figure shows the mesh used in this problem.

Fig. 1.28: Generated mesh

‘We use the internal mesh generator to create a computational domain (0.1525m x0.096 m x0.055 m), as parametrized
in the InternalMesh XML tag. The structured mesh contains 80 x 18 x 10 eight-node brick elements in the x, y, and
z directions respectively. Such eight-node hexahedral elements are defined as C3D8 elementTypes, and their collection
forms a mesh with one group of cell blocks named here cb1. Along the y-axis, refinement is performed for the elements

in the vicinity of the fracture plane.

( <InternalMesh

(continues on next page)
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(continued from previous page)

name="mesh1"

elementTypes="{C3D8}"

xCoords="{ 0, 0.1525 }"

yCoords="{ -0.048, -0.012, -0.006, 0.006, 0.012, 0.048 }"
zCoords="{ 0.037, 0.092 }"

nx="{ 80 }"
ny="{ 4, 2, 6, 2, 4 }"
nz="{ 10 }"

cellBlockNames="{cb1}"/>

The fracture plane is defined by a nodeset occupying a small region within the computation domain, where the fracture
tends to open and propagate upon fluid injection:

<Box
name="core"
xMin="{ -0.1, -0.001, 0.036 }"
xMax="{ 0.2, 0.001, 0.093 }"/>

Solid mechanics solver

GEOS is a multi-physics platform. Different combinations of physics solvers available in the code can be applied in
different regions of the domain and be functional at different stages of the simulation. The Solvers tag in the XML
file is used to list and parameterize these solvers.

Three elementary solvers are combined in the solver Hydrofracture to model the coupling between fluid flow within
the fracture, rock deformation, fracture deformation and propagation:

<Hydrofracture
name="hydrofracture"
solidSolverName="1lagsolve"
flowSolverName="SinglePhaseFlow"
surfaceGeneratorName="SurfaceGen"
logLevel="1"
targetRegions="{ Fracture }"
maxNumResolves="2">
<NonlinearSolverParameters
newtonTol="1.0e-5"
newtonMaxIter="20"
lineSearchMaxCuts="3"/>
<LinearSolverParameters
directParallel="0"/>
</Hydrofracture>

* Rock and fracture deformation are modeled by the solid mechanics solver SolidMechanicsLagrangianFEM.
In this solver, we define targetRegions that includes both the continuum region and the fracture region. The
name of the contact constitutive behavior is specified in this solver by the contactRelationName.

<SolidMechanicsLagrangianFEM
name="1agsolve"
timeIntegrationOption="QuasiStatic"
discretization="FE1"
targetRegions="{ Domain, Fracture }"
(continues on next page)
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(continued from previous page)
contactRelationName="fractureContact"
contactPenaltyStiffness="1.0"/>

* The single-phase fluid flow inside the fracture is solved by the finite volume method in the solver
SinglePhaseFVM.

<SinglePhaseFVM
name="SinglePhaseFlow"
discretization="singlePhaseTPFA"
targetRegions="{ Fracture }"/>

* The solver SurfaceGenerator defines the fracture region and rock toughness. With nodeBasedSIF="0",
edge-based Stress Intensity Factor (SIF) calculation is chosen for the fracture propagation criterion.

<SurfaceGenerator
name="SurfaceGen"
logLevel="1"
targetRegions="{ Domain }"
nodeBasedSIF="0"
initialRockToughness="1.2e6"
mpiCommOrder="1"/>

Constitutive laws

For this problem, a homogeneous and isotropic domain with one solid material is assumed, and its mechanical
properties and associated fluid rheology are specified in the Constitutive section. ElasticIsotropic model is
used to describe the mechanical behavior of rock, when subjected to fluid injection. The single-phase fluid model
CompressibleSinglePhaseFluid is selected to simulate the response of water upon fracture propagation.

<Constitutive>
<CompressibleSinglePhaseFluid

name="water"
defaultDensity="1000"
defaultViscosity="97.7"
referencePressure="0.0"
compressibility=">5e-12"
referenceViscosity="97.7"
viscosibility="0.0"/>

<ElasticIsotropic
name="rock"
defaultDensity="2700"
defaul tBulkModulus="4.110276e9"
defaultShearModulus="1.19971e9"/>

<CompressibleSolidParallelPlatesPermeability
name="fractureFilling"
solidModelName="nullSolid"
porosityModelName="fracturePorosity"
permeabilityModelName="fracturePerm" />

<NullModel

(continues on next page)
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name="nullSolid"/>

<PressurePorosity
name="fracturePorosity"
defaultReferencePorosity="1.00"
referencePressure="0.0"
compressibility="0.0"/>

<ParallelPlatesPermeability
name="fracturePerm" />

<FrictionlessContact
name="fractureContact"/>

<HydraulicApertureTable
name="hApertureModel"
apertureTableName="apertureTable" />
</Constitutive>

All constitutive parameters such as density, viscosity, bulk modulus, and shear modulus are specified in the International
System of Units.

Time history function

In the Tasks section, PackCollection tasks are defined to collect time history information from fields. Either the
entire field or specified named sets of indices in the field can be collected. In this example, pressureCollection,
apertureCollection, hydraulicApertureCollection and areaCollection are specified to output the time
history of fracture characterisctics (pressure, width and area). objectPath="ElementRegions/Fracture/
FractureSubRegion" indicates that these PackCollection tasks are applied to the fracure element subregion.

<Tasks>
<PackCollection
name="pressureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="pressure"/>

<PackCollection
name="apertureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="elementAperture" />

<PackCollection
name="hydraulicApertureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="hydraulicAperture"/>

<PackCollection
name="areaCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="elementArea"/>
</Tasks>

These tasks are triggered using the Event manager with a PeriodicEvent defined for the recurring tasks.
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GEOS writes one file named after the string defined in the filename keyword and formatted as a HDFS5 file
(KGD_validation_output.hdf5). This TimeHistory file contains the collected time history information from speci-
fied time history collector. This file includes datasets for the simulation time, fluid pressure, element aperture, hydraulic
aperture and element area for the propagating hydraulic fracture. A Python script is prepared to read and query any
specified subset of the time history data for verification and visualization.

Initial and boundary conditions

The next step is to specify fields, including:

 The initial values: the waterDensity, separableFace and the ruptureState of the propagating fracture
have to be initialized,

* The boundary conditions: fluid injection rates and the constraints of the outer boundaries have to be set.

In this example, a mass injection rate SourceFlux (scale="-0.0000366") is applied at the surfaces of the initial
fracture. Only half of the injection rate is defined in this boundary condition because only a half-wing of the fracture
is modeled (the problem is symmetric). The value given for scale is Qops/2 (not Qo /2). The lateral surfaces (xpos,
ypos and yneg) are traction free. The remaining parts of the outer boundaries are subjected to roller constraints. These
boundary conditions are set up through the FieldSpecifications section

<FieldSpecifications>
<FieldSpecification

name="waterDensity"
initialCondition="1"
setNames="{ fracture }"
objectPath="ElementRegions"
fieldName="water_density"
scale="1000"/>

<FieldSpecification
name="separableFace"
initialCondition="1"
setNames="{ core }"
objectPath="faceManager"
fieldName="isFaceSeparable"
scale="1"/>

<FieldSpecification
name="frac"
initialCondition="1"
setNames="{ fracture }"
objectPath="faceManager"
fieldName="ruptureState"
scale="1"/>

<FieldSpecification
name="zconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="2"
scale="0.0"
setNames="{ zneg, zpos }"/>

<FieldSpecification

(continues on next page)
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name="xConstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"

scale="0.0"

setNames="{ xneg }"/>

<SourceFlux
name="sourceTerm"
objectPath="ElementRegions/Fracture"
scale="-0.0000366"
setNames="{ source }"/>
</FieldSpecifications>

Note that the applied traction has a negative value, due to the negative sign convention for compressive stresses in
GEOS.

The parameters used in the simulation are summarized in the following table.

Symbol Parameter Unit Value

K Bulk Modulus [GPa] 4.11

G Shear Modulus [GPa] 1.2

K. Rock Toughness [MPa.m'?] 1.2

I Fluid Viscosity [Pa.s] 97.7

Qo Injection Rate [m3/s] 73.2x107°
B Injection Time [s] 100

hy Fracture Height [mm)] 55

Inspecting results

The following figure shows the distribution of o, at ¢ = 100s within the computational domain..

By running the query script kgdValidationQueries.py, the HDFS output is postprocessed and temporal evolution
of fracture characterisctics (fluid pressure and fracture width at fluid inlet and fracure half length) are saved into a txt
file model-results.txt, which can be used for verification and visualization:

[[' time', ' wpressure', '58pressure', 'S57pressure', ' Laperture', ' area']]
0 0 0 0 ® 0.0001048
0.1 1.515e+07 0 0 ® 0.0003145
0.2 1.451e+07 0 0 0 0.0003774
0.3 1.349e+07 0 0 0 0.0004194
0.4 1.183e+07 0 0 ® 0.0005662
0.5 1.125e+07 0 0 ® 0.0005662

Note: GEOS python tools geosx_xml_tools should be installed to run the query script (See Python Tools Setup for
details).

The figure below shows simulation results of the fracture extent at the end of the injection, which is generated using
the visualization script kgdValidationFigure.py. The temporal evolution of the fracture characteristics (length,
aperture and pressure) from the GEOS simulation are extracted and compared with the experimental data gathered at
specific locations. As observed, the time history plots of the modelling predictions (green curves) for the pressure at
three gage locations, the fracture length, and the fracture aperture at LVDT location correlate well with the experimental
data (blue circles).
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To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page.

Toughness-Storage-Dominated Penny Shaped Hydraulic Fracture

Context

In this example, we simulate the growth of a radial hydraulic fracture in toughness-storage-dominated regime, a classic
benchmark in hydraulic fracturing (Settgast et al., 2016). The developed fracture is characterized as a planar fracture
with an elliptical cross-section perpendicular to the fracture plane and a circular fracture tip. This problem is solved
using the hydrofracture solver in GEOS. The modeling predictions on the temporal evolutions of the fracture charac-
teristics (length, aperture, and pressure) are verified against the analytical solutions (Savitski and Detournay, 2002).

Input file

This example uses no external input files. Everything we need is contained within two GEOS input files:

[inputFiles/hydraulicFracturing/pen.nyShapedToughnessDominated_base .xml

[inputFi les/hydraulicFracturing/pennyShapedToughnessDominated_benchmark.xml

Python scripts for post-processing and visualizing the simulation results are also prepared:

[inputFi1es/hydraulicFracturing/scripts/hydrofractureQueries .py

[inputFi les/hydraulicFracturing/scripts/hydrofractureFigure.py

Description of the case

We model a radial fracture emerging from a point source and forming a perfect circular shape in an infinite, isotropic,
and homogenous elastic domain. As with the KGD problem, we simplify the model to a radial fracture in a toughness-
storage-dominated propagation regime. For toughness-dominated fractures, more work is spent on splitting the intact
rock than on moving the fracturing fluid. Storage-dominated propagation occurs if most of the fracturing fluid is
contained within the propagating fracture. In this analysis, incompressible fluid with ultra-low viscosity (0.001cp)
and medium rock toughness (3.0M Pay/m) are specified. In addition, an impermeable fracture surface is assumed to
eliminate the effect of fluid leak-off. This way, the GEOS simulations represent cases within the valid range of the
toughness-storage-dominated assumptions.

In this model, the injected fluid within the fracture follows the lubrication equation resulting from mass conservation
and Poiseuille’s law. The fracture propagates by creating new surfaces if the stress intensity factor exceeds the local rock
toughness K;c. By symmetry, the simulation is reduced to a quarter-scale to save computational cost. For verification
purposes, a plane strain deformation is considered in the numerical model.

In this example, we set up and solve a hydraulic fracture model to obtain the temporal solutions of the fracture radius
R, the net pressure py and the fracture aperture wy at the injection point for the penny-shaped fracture developed in
this toughness-storage-dominated regime. The numerical predictions from GEOS are then compared with the corre-
sponding asymptotic solutions (Savitski and Detournay, 2002):

E2Q5t*
R(t) = 0.8546(1}(72)1/5
p
Kngt 1/5
wo() = 0.6537(—=—)
p
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P )1/5

(Eont

0.3004
where the plane modulus E), is related to Young’s modulus £ and Poisson’s ratio v:

po(t)

The term K, is proportional to the rock toughness Kr¢:

For this example, we focus on the Mesh, the Constitutive, and the FieldSpecifications tags.

Mesh

The following figure shows the mesh used in this problem.
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Fig. 1.30: Generated mesh

We use the internal mesh generator to create a computational domain (400m x 400m x 800 m), as parametrized in

the InternalMesh XML tag. The structured mesh contains 80 x 80 x 60 eight-node brick elements in the X, y, and z

directions respectively. Such eight-node hexahedral elements are defined as C3D8 elementTypes, and their collection

forms a mesh with one group of cell blocks named here cb1. Local refinement is performed for the elements in the

vicinity of the fracture plane.

Note that the domain size in the direction perpendicular to the fracture plane, i.e. z-axis, must be at least ten times of

the final fracture radius to minimize possible boundary effects.
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<Mesh>
<InternalMesh

name="mesh1"
elementTypes="{ C3D8 }"
xCoords="{ 0, 100, 200, 400 }"
yCoords="{ 0, 100, 200, 400 }"
zCoords="{ -400, -100, -20, 20, 100, 400 }"
nx="{ 50, 10, 20 }"
ny="{ 50, 10, 20 }"
nz="{ 10, 10, 20, 10, 10 }"
cellBlockNames="{ cbl }"/>

</Mesh>

The fracture plane is defined by a nodeset occupying a small region within the computation domain, where the fracture
tends to open and propagate upon fluid injection:

<Box
name="core"
xMin="{ -500.1, -500.1, -0.1 }"
xMax="{ 500.1, 500.1, 0.1 }"/>

Solid mechanics solver

GEOS is a multi-physics platform. Different combinations of physics solvers available in the code can be applied in
different regions of the domain and be functional at different stages of the simulation. The Solvers tag in the XML
file is used to list and parameterize these solvers.

Three elementary solvers are combined in the solver Hydrofracture to model the coupling between fluid flow within
the fracture, rock deformation, fracture deformation and propagation:

<Hydrofracture
name="hydrofracture"
solidSolverName="1lagsolve"
flowSolverName="SinglePhaseFlow"
surfaceGeneratorName="SurfaceGen"
logLevel="1"
targetRegions="{ Fracture }"
maxNumResolves="5"
initialDt="0.1">
<NonlinearSolverParameters
newtonTol="1.0e-4"
newtonMaxIter="50"
logLevel="1"/>
<LinearSolverParameters
solverType="gmres"
preconditionerType="mgr"
logLevel="1"
krylovAdaptiveTol="1"/>
</Hydrofracture>

* Rock and fracture deformation are modeled by the solid mechanics solver SolidMechanicsLagrangianFEM.
In this solver, we define targetRegions that includes both the continuum region and the fracture region. The
name of the contact constitutive behavior is specified in this solver by the contactRelationName
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<SolidMechanicsLagrangianFEM
name="1lagsolve"
timeIntegrationOption="QuasiStatic"
logLevel="1"
discretization="FE1"
targetRegions="{ Domain, Fracture }"
contactRelationName="fractureContact"
contactPenaltyStiffness="1.0e0">
<NonlinearSolverParameters
newtonTol="1.0e-6"/>
<LinearSolverParameters
solverType="gmres"
krylovTol="1.0e-10"/>
</SolidMechanicsLagrangianFEM>

e The single-phase fluid flow inside the fracture is solved by the finite volume method in the solver
SinglePhaseFVM.

<SinglePhaseFVM
name="SinglePhaseFlow"
logLevel="1"
discretization="singlePhaseTPFA"
targetRegions="{ Fracture }">
<NonlinearSolverParameters
newtonTol="1.0e-5"
newtonMaxIter="10"/>
<LinearSolverParameters
solverType="gmres"
krylovTol="1.0e-12"/>
</SinglePhaseFVM>

* The solver SurfaceGenerator defines the fracture region and rock toughness rockToughness="3.0e6"
With nodeBasedSIF="1", a node-based Stress Intensity Factor (SIF) calculation is chosen for the fracture prop-
agation criterion.

<SurfaceGenerator
name="SurfaceGen"
targetRegions="{ Domain }"
nodeBasedSIF="1"
initialRockToughness="3.0e6"
mpiCommOrder="1"/>

Constitutive laws

For this problem, a homogeneous and isotropic domain with one solid material is assumed. Its mechanical prop-
erties and associated fluid rheology are specified in the Constitutive section. ElasticIsotropic model is
used to describe the mechanical behavior of rock when subjected to fluid injection. The single-phase fluid model
CompressibleSinglePhaseFluid is selected to simulate the response of water upon fracture propagation.

<Constitutive>
<CompressibleSinglePhaseFluid
name="water"
defaultDensity="1000"

(continues on next page)
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defaultViscosity="1.0e-6"
referencePressure="0.0"
compressibility="5e-13"
referenceViscosity="1.0e-6"
viscosibility="0.0"/>

<ElasticIsotropic
name="rock"
defaultDensity="2700"
defaultBulkModulus="20.0e9"
defaultShearModulus="12.0e9" />

<CompressibleSolidParallelPlatesPermeability
name="fractureFilling"
solidModelName="nullSolid"
porosityModelName="fracturePorosity"
permeabilityModelName="fracturePerm"/>

<NullModel
name="nullSolid" />

<PressurePorosity
name="fracturePorosity"
defaultReferencePorosity="1.00"
referencePressure="0.0"
compressibility="0.0"/>

<ParallelPlatesPermeability
name="{fracturePerm"/>

<FrictionlessContact
name="fractureContact" />

<HydraulicApertureTable
name="hApertureModel"
apertureTableName="apertureTable" />

</Constitutive>

All constitutive parameters such as density, viscosity, bulk modulus, and shear modulus are specified in the International
System of Units.

Time history function

In the Tasks section, PackCollection tasks are defined to collect time history information from fields. Either the
entire field or specified named sets of indices in the field can be collected. In this example, pressureCollection,
apertureCollection, hydraulicApertureCollection and areaCollection are specified to output the time
history of fracture characterisctics (pressure, width and area). objectPath="ElementRegions/Fracture/
FractureSubRegion" indicates that these PackCollection tasks are applied to the fracure element subregion.

<Tasks>
<PackCollection

(continues on next page)
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name="pressureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="pressure"/>

<PackCollection
name="apertureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="elementAperture" />

<PackCollection
name="hydraulicApertureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="hydraulicAperture"/>

<PackCollection
name="areaCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="elementArea"/>

<!-- Collect aperture, pressure at the source for curve checks -->
<PackCollection
name="sourcePressureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="pressure"
setNames="{ source }"/>

<PackCollection
name="sourceHydraulicApertureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="hydraulicAperture"
setNames="{ source }"/>
</Tasks>

These tasks are triggered using the Event manager with a PeriodicEvent defined for the recurring tasks.
GEOS writes one file named after the string defined in the filename keyword and formatted as a HDFS5 file
(pennyShapedToughnessDominated_output.hd£f5). This TimeHistory file contains the collected time history in-
formation from specified time history collector. This file includes datasets for the simulation time, fluid pressure, ele-
ment aperture, hydraulic aperture and element area for the propagating hydraulic fracture. A Python script is prepared
to read and query any specified subset of the time history data for verification and visualization.

Initial and boundary conditions

The next step is to specify fields, including:

* The initial values: the waterDensity, separableFace and the ruptureState of the propagating fracture
have to be initialized,

* The boundary conditions: fluid injection rates and the constraints of the outer boundaries have to be set.

In this example, a mass injection rate SourceFlux (scale="-6.625") is applied at the surfaces of the initial fracture.
Only one fourth of the total injection rate is defined in this boundary condition because only a quarter of the fracture is
modeled (the problem is symmetric). The value given for scale is Qopy/4 (not Qo/4). All the outer boundaries are
subject to roller constraints. These boundary conditions are set through the FieldSpecifications section.
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<FieldSpecifications>
<FieldSpecification

name="waterDensity"
initialCondition="1"
setNames="{ fracture }"
objectPath="ElementRegions"
fieldName="water_density"
scale="1000"/>

<FieldSpecification
name="separableFace"
initialCondition="1"
setNames="{ core }"
objectPath="faceManager"
fieldName="isFaceSeparable"
scale="1"/>

<FieldSpecification
name="frac"
initialCondition="1"
setNames="{ fracture }"
objectPath="faceManager"
fieldName="ruptureState"
scale="1"/>

<FieldSpecification
name="yconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"
scale="0.0"
setNames="{ yneg, ypos }"/>

<FieldSpecification
name="zconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="2"
scale="0.0"
setNames="{ zneg, zpos }"/>

<FieldSpecification
name="xconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"
scale="0.0"
setNames="{ xneg, xpos }"/>

<SourceFlux
name="sourceTerm"
objectPath="ElementRegions/Fracture"
scale="-6.625"

(continues on next page)
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setNames="{ source }"/>
</FieldSpecifications>

The parameters used in the simulation are summarized in the following table.

Symbol Parameter Unit Value
K Bulk Modulus [GPa] 20.0

G Shear Modulus [GPa] 12.0
Ko Rock Toughness [MPa.m'?] 3.0

o Fluid Viscosity ~ [Pa.s] 1.0x10°
Qo Injection Rate [m3/s] 0.0265
ting Injection Time [s] 400

Inspecting results

The following figure shows the distribution of o, at ¢ = 400s within the computational domain..

DB: zeroViscosity_00005500
Cycle; 55 Time:400

Pseudocalor
Var. Domain_Solid_MaterialFields/stress_33
8,050e+05

— 50858405

2,121e+05

-8,442e+04
-3,80
Max: 8.952e
Min: -3, 809%e-

Mesh
Var Fracture

Fig. 1.31: Simulation result of o, , at t = 400s

First, by running the query script
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[python ./hydrofractureQueries.py pennyShapedToughnessDominated J

the HDFS output is postprocessed and temporal evolution of fracture characterisctics (fluid pressure and fracture width
at fluid inlet and fracure radius) are saved into a txt file model-results. txt, which can be used for verification and
visualization:

[[' time', ' pressure', ' aperture', ' length']]
2 8.207e+05 0.0004661 8.137
4 6.799e+05 0.0005258 10.59
6 7.082e+05 0.0006183 11.94
8 6.07e+05 0.0006163 13.73
10 6.32e+05 0.0006827 14.45

Note: GEOS python tools geosx_xml_tools should be installed to run the query script (See Python Tools Setup for
details).

Next, the figure below compares the asymptotic solutions (curves) and the GEOS simulation results (markers) for this
analysis, which is generated using the visualization script:

[python ./pennyShapedToughnessDominatedFigure.py J

The time history plots of fracture radius, fracture aperture and fluid pressure at the point source match the asymptotic
solutions, confirming the accuracy of GEOS simulations.
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To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page.

Viscosity-Storage-Dominated Penny Shaped Hydraulic Fracture

Context

In this example, we simulate the propagation of a radial hydraulic fracture in viscosity-storage-dominated regime,
another classic benchmark in hydraulic fracturing (Settgast et al., 2016). The fracture develops as a planar fracture
with an elliptical cross-section perpendicular to the fracture plane and a circular fracture tip. Unlike the toughness-
storage-dominated fractures, fluid frictional loss during the transport of viscous fracturing fluids governs the growth
of viscosity-storage-dominated fractures. We solve this problem using the hydrofracture solver in GEOS. We simulate
the change in length, aperture, and pressure of the fracture, and compare them against the corresponding analytical
solutions (Savitski and Detournay, 2002).

Input file

This example uses no external input files. Everything we need is contained within two GEOS input files:

[inputFi les/hydraulicFracturing/pennyShapedViscosityDominated_base.xml }

[inputFi les/hydraulicFracturing/pennyShapedViscosityDominated_benchmark.xml

Python scripts for post-processing and visualizing the simulation results are also prepared:

[inputFi les/hydraulicFracturing/scripts/hydrofractureQueries.py

[inputFi les/hydraulicFracturing/scripts/hydrofractureFigure.py

Description of the case

We model a radial fracture emerging from a point source and forming a perfect circular shape in an infinite, isotropic,
and homogenous elastic domain. As with the viscosity-dominated KGD problem, we restrict the model to a radial frac-
ture developed in a viscosity-storage-dominated propagation regime. For viscosity-dominated fractures, more energy
is applied to move the fracturing fluid than to split the intact rock. If we neglect fluid leak-off, the storage-dominated
propagation occurs from most of the injected fluid confined within the opened surfaces. We use a low rock toughness
(0.3M Pa+/m), and the slickwater we inject has a constant viscosity value (1.0cp) and zero compressibility. In addi-
tion, we assume that the fracture surfaces are impermeable, thus eliminating fluid leak-off. With this configuration, our
GEOS simulations meet the requirements of the viscosity-storage-dominated assumptions.

The fluid injected in the fracture follows the lubrication equation resulting from mass conservation and Poiseuille’s
law. The fracture propagates by creating new surfaces if the stress intensity factor exceeds the local rock toughness
K7c. By symmetry, the simulation is reduced to a quarter-scale to save computational cost. For verification purposes,
a plane strain deformation is considered in the numerical model.

We set up and solve a hydraulic fracture model to obtain the evolution with time of the fracture radius R, the net
pressure po and the fracture aperture wy at the injection point for the penny-shaped fracture developed in viscosity-
storage-dominated regime. Savitski and Detournay (2002) presented the corresponding asymptotic solutions, used here
to validate the results of our GEOS simulations:

E,Q3t*
R(t) = 0.6955( =220 )1/9
MP
MZ2Q3t

wo(t) = 1.1977(—5 )10
P
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E2M,
Po(ILt) = Mo (§) (——

where the plane modulus E, is related to Young’s modulus E and Poisson’s ratio v:

)1/3

E
E,=——
L
The term M, is proportional to the fluid viscosity u:
M, =12p
The viscosity scaling function II,,,, is given as:
Mo (€) = Ay [2.479 2 - Bin) +1]
mo - . T 571 N1/2) ni-
! 3(1—¢)1/3 2

with A; = 0.3581, B = 0.09269, ¢; = 0.6846, co = 0.07098, and £ = r/R(t) denoting a dimensionless radial
coordinate along the fracture.

For this example, we focus on the Mesh, the Constitutive, and the FieldSpecifications tags.
Mesh

The following figure shows the mesh used in this problem.
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Fig. 1.32: Generated mesh

We use the internal mesh generator to create a computational domain (400 m x 400m x 800m), as parametrized in
the InternalMesh XML tag. The structured mesh contains 80 x 80 x 60 eight-node brick elements in the x, y, and z
directions respectively. Such eight-node hexahedral elements are defined as C3D8 elementTypes, and their collection

forms a mesh with one group of cell blocks named here cbl. Local refinement is performed for the elements in the
vicinity of the fracture plane.

1.4. Advanced Examples 207



GEOS Documentation

Note that the domain size in the direction perpendicular to the fracture plane, i.e. z-axis, must be at least ten times of
the final fracture radius to minimize possible boundary effects.

<Mesh>
<InternalMesh

name="mesh1"
elementTypes="{ C3D8 }"
xCoords="{ 0, 100, 200, 400 }"
yCoords="{ 0, 100, 200, 400 }"
zCoords="{ -400, -100, -20, 20, 100, 400 }"
nx="{ 50, 10, 20 }"
ny="{ 50, 10, 20 }"
nz="{ 10, 10, 20, 10, 10 }"
cellBlockNames="{ cbl }"/>

</Mesh>

The fracture plane is defined by a nodeset occupying a small region within the computation domain, where the fracture
tends to open and propagate upon fluid injection:

<Box
name="core"
xMin="{ -500.1, -500.1, -0.1 }"
xMax="{ 500.1, 500.1, 0.1 }"/>

Solid mechanics solver

GEOS is a multi-physics platform. Different combinations of physics solvers available in the code can be applied in
different regions of the domain and be functional at different stages of the simulation. The Solvers tag in the XML
file is used to list and parameterize these solvers.

Three elementary solvers are combined in the solver Hydrofracture to model the coupling between fluid flow within
the fracture, rock deformation, fracture deformation and propagation:

<Hydrofracture
name="hydrofracture"
solidSolverName="1lagsolve"
flowSolverName="SinglePhaseFlow"
surfaceGeneratorName="SurfaceGen"
logLevel="1"
targetRegions="{ Fracture }"
maxNumResolves="1"
initialDt="0.1">
<NonlinearSolverParameters
newtonTol="1.0e-4"
newtonMaxIter="10"
maxTimeStepCuts="5"
logLevel="1"/>
<LinearSolverParameters
solverType="gmres"
preconditionerType="mgr"
logLevel="1"
krylovAdaptiveTol="1"/>
</Hydrofracture>

* Rock and fracture deformation are modeled by the solid mechanics solver SolidMechanicsLagrangianFEM.
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In this solver, we define targetRegions that includes both the continuum region and the fracture region. The
name of the contact constitutive behavior is specified in this solver by the contactRelationName

<SolidMechanicsLagrangianFEM
name="1lagsolve"
timeIntegrationOption="QuasiStatic"
logLevel="1"
discretization="FE1"
targetRegions="{ Domain, Fracture }"
contactRelationName="fractureContact"
contactPenaltyStiffness="1.0e0">
<NonlinearSolverParameters
newtonTol="1.0e-6"/>
<LinearSolverParameters
solverType="gmres"
krylovTol="1.0e-10"/>
</SolidMechanicsLagrangianFEM>

e The single-phase fluid flow inside the fracture is solved by the finite volume method in the solver
SinglePhaseFVNM.

<SinglePhaseFVM
name="SinglePhaseFlow"
logLevel="1"
discretization="singlePhaseTPFA"
targetRegions="{ Fracture }">
<NonlinearSolverParameters
newtonTol="1.0e-5"
newtonMaxIter="10"/>
<LinearSolverParameters
solverType="gmres"
krylovTol="1.0e-12"/>
</SinglePhaseFVM>

* The solver SurfaceGenerator defines the fracture region and rock toughness rockToughness="0.3e6"
With nodeBasedSIF="1", a node-based Stress Intensity Factor (SIF) calculation is chosen for the fracture prop-
agation criterion.

<SurfaceGenerator
name="SurfaceGen"
targetRegions="{ Domain }"
nodeBasedSIF="1"
initialRockToughness="0.3e6"
mpiCommOrder="1"/>

Constitutive laws

For this problem, a homogeneous and isotropic domain with one solid material is assumed. Its mechanical proper-
ties and associated fluid rheology are specified in the Constitutive section. The ElasticIsotropic model is
used to describe the mechanical behavior of rock when subjected to fluid injection. The single-phase fluid model
CompressibleSinglePhaseFluid is selected to simulate the response of water upon fracture propagation.

<Constitutive>

<CompressibleSinglePhaseFluid
(continues on next page)
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(continued from previous page)
name="water"
defaultDensity="1000"
defaultViscosity="0.001"
referencePressure="0.0"
compressibility="5e-12"
referenceViscosity="1.0e-3"
viscosibility="0.0"/>

<ElasticIsotropic
name="rock"
defaultDensity="2700"
defaultBulkModulus="20.0e9"
defaultShearModulus="12.0e9"/>

<CompressibleSolidParallelPlatesPermeability
name="fractureFilling"
solidModelName="nullSolid"
porosityModelName="fracturePorosity"
permeabilityModelName="fracturePerm" />

<NullModel
name="nullSolid"/>

<PressurePorosity
name="fracturePorosity"
defaultReferencePorosity="1.00"
referencePressure="0.0"
compressibility="0.0"/>

<ParallelPlatesPermeability
name="fracturePerm" />

<FrictionlessContact
name="fractureContact"/>

<HydraulicApertureTable
name="hApertureModel"
apertureTableName="apertureTable" />
</Constitutive>

All constitutive parameters such as density, viscosity, bulk modulus, and shear modulus are specified in the International
System of Units.

Time history function

In the Tasks section, PackCollection tasks are defined to collect time history information from fields. Either the
entire field or specified named sets of indices in the field can be collected. In this example, pressureCollection,
apertureCollection, hydraulicApertureCollection and areaCollection are specified to output the time
history of fracture characterisctics (pressure, width and area). objectPath="ElementRegions/Fracture/
FractureSubRegion" indicates that these PackCollection tasks are applied to the fracure element subregion.
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<Tasks>
<PackCollection
name="pressureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="pressure"/>

<PackCollection
name="apertureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="elementAperture" />

<PackCollection
name="hydraulicApertureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="hydraulicAperture"/>

<PackCollection
name="areaCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="elementArea"/>

<!-- Collect aperture, pressure at the source for curve checks -->
<PackCollection
name="sourcePressureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="pressure"
setNames="{ source }"/>

<PackCollection
name="sourceHydraulicApertureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="hydraulicAperture"
setNames="{ source }"/>
</Tasks>

These tasks are triggered using the Event manager with a PeriodicEvent defined for the recurring tasks.
GEOS writes one file named after the string defined in the filename keyword and formatted as a HDFS5 file
(pennyShapedViscosityDominated_output.hdf5). This TimeHistory file contains the collected time history in-
formation from specified time history collector. This file includes datasets for the simulation time, fluid pressure, ele-
ment aperture, hydraulic aperture and element area for the propagating hydraulic fracture. A Python script is prepared
to read and query any specified subset of the time history data for verification and visualization.

Initial and boundary conditions

Next, we specify initial and boundary conditions:

* Initial values: the waterDensity, separableFace and the ruptureState of the propagating fracture have to
be initialized,

* Boundary conditions: fluid injection rates and the constraints of the outer boundaries have to be set.

In this example, a mass injection rate SourceFlux (scale="-6.625") is applied at the surfaces of the initial fracture.
Only one fourth of the total injection rate is defined in this boundary condition because only a quarter of the fracture is
modeled (the problem is symmetric). The value given for scale is Qops/4 (not Qo/4). All the outer boundaries are
subject to roller constraints. These boundary conditions are set through the FieldSpecifications section.
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<FieldSpecifications>
<FieldSpecification

name="waterDensity"
initialCondition="1"
setNames="{ fracture }"
objectPath="ElementRegions"
fieldName="water_density"
scale="1000"/>

<FieldSpecification

name="separableFace"
initialCondition="1"
setNames="{ core }"
objectPath="faceManager"
fieldName="isFaceSeparable"
scale="1"/>

<FieldSpecification

name="frac"
initialCondition="1"
setNames="{ fracture }"
objectPath="faceManager"
fieldName="ruptureState"
scale="1"/>

<FieldSpecification

name="yconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"

scale="0.0"

setNames="{ yneg, ypos }"/>

<FieldSpecification

name="zconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="2"

scale="0.0"

setNames="{ zneg, zpos }"/>

<FieldSpecification

name="xconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"

scale="0.0"

setNames="{ xneg, xpos }"/>

<SourceFlux

name="sourceTerm"

objectPath="ElementRegions/Fracture"

scale="-6.625"

(continues on next page)
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setNames="{ source }"/>
</FieldSpecifications>

The parameters used in the simulation are summarized in the following table.

Symbol Parameter Unit Value
K Bulk Modulus [GPa] 20.0

G Shear Modulus [GPa] 12.0
Ko Rock Toughness [MPa.m'?] 0.3

o Fluid Viscosity ~ [Pa.s] 1.0x1073
Qo Injection Rate [m3/s] 0.0265
ting Injection Time [s] 400

Inspecting results

The following figure shows the distribution of o, at ¢ = 400s within the computational domain..

DB: zeroToughness_00005500
Cycle: 55 Time:400

Pseudocolor
Var. Domain,_Solid_MarterlalFields/stress_33
40e+05

w

— 1.642e+08

! 3506,

-1.472e+05

-:-Z.Q?Qe+05

Max: 3.049e+05
Min: -2,.979e405

Fig. 1.33: Simulation result of o, at t = 400s

First, by running the query script
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[python ./hydrofractureQueries.py pennyShapedViscosityDominated J

the HDFS output is postprocessed and temporal evolution of fracture characterisctics (fluid pressure and fracture width
at fluid inlet and fracure radius) are saved into a txt file model-results. txt, which can be used for verification and
visualization:

[[' time', ' pressure', ' aperture', ' length']]
2 1.654e+06 0.0006768 8.137
4 1.297e+06 0.000743 10.59
6 1.115e+06 0.0007734 12.36
8 1.005e+06 0.0007918 13.73
10 9.482e+05 0.0008189 15.14

Note: GEOS python tools geosx_xml_tools should be installed to run the query script (See Python Tools Setup for
details).

Next, GEOS simulation results (markers) and asymptotic solutions (curves) for the case with viscosity-storage domi-
nated assumptions are plotted together in the following figure, which is generated using the visualization script:

[python ./pennyShapedViscosityDominatedFigure.py J

As seen, GEOS predictions of the temporal evolution of fracture radius, wellbore aperture and pressure at fluid inlet
are nearly identical to the asymptotic solutions.
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To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page.

Viscosity-Storage-Dominated PKN Hydraulic Fracture

Context

In this example, we simulate the propagation of a Perkins—Kern—Nordgren (PKN) fracture in a viscosity-storage-
dominated regime, a classic benchmark in hydraulic fracturing. The developed planar fracture displays an elliptical
vertical cross-section. Unlike KGD and penny-shaped fractures, the growth height of a PKN fracture is constrained
by mechanical barriers (such as bedding layers, sedimentary laminations, or weak interfaces), thus promoting lateral
propagation. This problem is solved using the hydrofracture solver in GEOS to obtain the temporal evolutions of the
fracture characteristics (length, aperture, and pressure). We validate these simulated values against existing analytical
solutions (Kovalyshen and Detournay, 2010; Economides and Nolte, 2000).

Input file

This example uses no external input files. Everything we need is contained within two GEOS input files:

[inputFi les/hydraulicFracturing/pknViscosityDominated_base.xml

[inputFi les/hydraulicFracturing/pknViscosityDominated_benchmark.xml

Python scripts for post-processing and visualizing the simulation results are also prepared:

[inputFi les/hydraulicFracturing/scripts/hydrofractureQueries.py

[inputFi les/hydraulicFracturing/scripts/hydrofractureFigure.py

Description of the case

In this example, a hydraulic fracture initiates and propagates from the center of a 20m-thick layer. This layer is ho-
mogeneous and bounded by neighboring upper and lower layers. For viscosity-dominated fractures, more energy is
necessary to move the fracturing fluid than to split the intact rock. If fluid leak-off is neglected, storage-dominated
propagation occurs with most of the injected fluid confined within the open surfaces. To meet the requirements of the
viscosity-storage-dominated assumptions, impermeable domain (no fluid leak-off), incompressible fluid with constant
viscosity (1.0cp) and ultra-low rock toughness (0.1M Pa+/m) are chosen in the GEOS simulation. With these param-
eters, the fracture stays within the target layer; it extends horizontally and meets the conditions of the PKN fracture in
a viscosity-storage-dominated regime.

We assume that the fluid injected in the fracture follows the lubrication equation resulting from mass conservation and
Poiseuille’s law. The fracture propagates by creating new surfaces if the stress intensity factor exceeds the local rock
toughness K7c. As the geometry of the PKN fracture exhibits symmetry, the simulation is reduced to a quarter-scale.
For verification purposes, a plane strain deformation is considered in the numerical model.

We set up and solve a hydraulic fracture model to obtain the temporal solutions of the fracture half length [, the net pres-
sure pg and the fracture aperture wy at the fluid inlet for the PKN fracture propagating in viscosity-storage-dominated
regime. Kovalyshen and Detournay (2010) and Economides and Nolte (2000) derived the analytical solutions for this
classic hydraulic fracture problem, used here to verify the results of the GEOS simulations:

E,Q3t*
— 0.381 pP=0 1/5
U(t) = 0.3817(=2 1)
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where the plane modulus E), is related to Young’s modulus £ and Poisson’s ratio v:

For this example, we focus on the Mesh, the Constitutive, and the FieldSpecifications tags.

Mesh

The following figure shows the mesh used in this problem.
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Fig. 1.34: Generated mesh
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We use the internal mesh generator to create a computational domain (400 m x 400m x 800 m)

the InternalMesh XML tag. The structured mesh contains

node brick elements in the x, y, and

105 x 105 x 60 eight

z directions respectively. Such eight-node hexahedral elements are defined as C3D8 elementTypes, and their collection

forms a mesh with one group of cell blocks named here cbl. Local refinement is performed for the elements in the

vicinity of the fracture plane.

<Mesh>

<InternalMesh

"mesh1"
elementTypes="{ C3D8 }"

xCoords="{ O,

name

150, 200, 400 1"

150, 200, 400 }"

yCoords="{ O,

100, 400 1"

20,

-20,

-100,

zCoords="{ -400,

20 }"
10, 20 "

10,
10,

nx="{ 75,

ny="{ 75,
nz="{ 10,

160, 10 1"

20,
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(continued from previous page)

cellBlockNames="{ cbl }"/>
</Mesh>

The fracture plane is defined by a nodeset occupying a small region within the computational domain, where the fracture
tends to open and propagate upon fluid injection:

<Box
name="core"
xMin="{ -500.1, -500.1, -0.1 }"
xMax="{ 500.1, 10.1, 0.1 }"/>

Solid mechanics solver

GEOS is a multi-physics platform. Different combinations of physics solvers available in the code can be applied in
different regions of the domain and be functional at different stages of the simulation. The Solvers tag in the XML
file is used to list and parameterize these solvers.

Three elementary solvers are combined in the solver hydrofracture to model the coupling between fluid flow within
the fracture, rock deformation, fracture deformation and propagation:

<Hydrofracture
name="hydrofracture"
solidSolverName="1lagsolve"
flowSolverName="SinglePhaseFlow"
surfaceGeneratorName="SurfaceGen"
logLevel="1"
targetRegions="{ Fracture }"
maxNumResolves="5"
initialDt="0.1">
<NonlinearSolverParameters
newtonTol="1.0e-4"
newtonMaxIter="10"
maxTimeStepCuts="5"
maxAllowedResidualNorm="1e+15"/>
<LinearSolverParameters
solverType="gmres"
preconditionerType="mgr"
logLevel="1"
krylovAdaptiveTol="1"/>
</Hydrofracture>

* Rock and fracture deformations are modeled by the solid mechanics solver SolidMechanicsLagrangianFEM
In this solver, we define targetRegions that includes both the continuum region and the fracture region. The
name of the contact constitutive behavior is specified in this solver by the contactRelationName

<SolidMechanicsLagrangianFEM
name="1lagsolve"
timeIntegrationOption="QuasiStatic"
discretization="FE1"
targetRegions="{ Domain, Fracture }"
contactRelationName="fractureContact"
contactPenaltyStiffness="1.0e0">

<NonlinearSolverParameters
(continues on next page)
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newtonTol="1.0e-6"/>
<LinearSolverParameters
solverType="gmres"
krylovTol="1.0e-10"/>
</SolidMechanicsLagrangianFEM>

e The single-phase fluid flow inside the fracture is solved by the finite volume method in the solver
SinglePhaseFVNM.

<SinglePhaseFVM
name="SinglePhaseFlow"
discretization="singlePhaseTPFA"
targetRegions="{ Fracture }">
<NonlinearSolverParameters
newtonTol="1.0e-5"
newtonMaxIter="10"/>
<LinearSolverParameters
solverType="gmres"
krylovTol="1.0e-12"/>
</SinglePhaseFVlM>

* The solver SurfaceGenerator defines the fracture region and rock toughness rockToughness="0.1e6".
With nodeBasedSIF="1", a node-based Stress Intensity Factor (SIF) calculation is chosen for the fracture prop-
agation criterion.

<SurfaceGenerator
name="SurfaceGen"
targetRegions="{ Domain }"
nodeBasedSIF="1"
initialRockToughness="0.1e6"
mpiCommOrder="1"/>

Constitutive laws

For this problem, a homogeneous and isotropic domain with one solid material is assumed. Its mechanical prop-
erties and associated fluid rheology are specified in the Constitutive section. ElasticIsotropic model is
used to describe the mechanical behavior of rock when subjected to fluid injection. The single-phase fluid model
CompressibleSinglePhaseFluid is selected to simulate the response of water upon fracture propagation.

<Constitutive>

<CompressibleSinglePhaseFluid
name="water"
defaultDensity="1000"
defaultViscosity="0.001"
referencePressure="0.0"
compressibility=">5e-12"
referenceViscosity="1.0e-3"
viscosibility="0.0"/>

<ElasticIsotropic
name="rock"
defaultDensity="2700"

(continues on next page)
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defaultBulkModulus="20.0e9"
defaultShearModulus="12.0e9"/>

<CompressibleSolidParallelPlatesPermeability
name="fractureFilling"
solidModelName="nullSolid"
porosityModelName="fracturePorosity"
permeabilityModelName="fracturePerm" />

<NullModel
name="nullSolid"/>

<PressurePorosity
name="fracturePorosity"
defaultReferencePorosity="1.00"
referencePressure="0.0"
compressibility="0.0"/>

<ParallelPlatesPermeability
name="fracturePerm" />

<FrictionlessContact
name="fractureContact"/>

<HydraulicApertureTable
name="hApertureModel"

apertureTableName="apertureTable" />

</Constitutive>

All constitutive parameters such as density, viscosity, bulk modulus, and shear modulus are specified in the International
System of Units.

Time history function

In the Tasks section, PackCollection tasks are defined to collect time history information from fields. Either the
entire field or specified named sets of indices in the field can be collected. In this example, pressureCollection,
apertureCollection, hydraulicApertureCollection and areaCollection are specified to output the time
history of fracture characterisctics (pressure, width and area). objectPath="ElementRegions/Fracture/
FractureSubRegion" indicates that these PackCollection tasks are applied to the fracure element subregion.

<Tasks>
<PackCollection
name="pressureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="pressure"/>

<PackCollection
name="apertureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="elementAperture" />

(continues on next page)
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<PackCollection
name="hydraulicApertureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="hydraulicAperture"/>

<PackCollection
name="areaCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="elementArea'"/>

<!-- Collect aperture, pressure at the source for curve checks -->
<PackCollection
name="sourcePressureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="pressure"
setNames="{ source }"/>

<PackCollection
name="sourceHydraulicApertureCollection"
objectPath="ElementRegions/Fracture/FractureSubRegion"
fieldName="hydraulicAperture"
setNames="{ source }"/>
</Tasks>

These tasks are triggered using the Event manager with a PeriodicEvent defined for the recurring tasks.
GEOS writes one file named after the string defined in the filename keyword and formatted as a HDFS5 file
(pknViscosityDominated_output.hdf5). This TimeHistory file contains the collected time history information
from specified time history collector. This file includes datasets for the simulation time, fluid pressure, element aper-
ture, hydraulic aperture and element area for the propagating hydraulic fracture. A Python script is prepared to read
and query any specified subset of the time history data for verification and visualization.

Initial and boundary conditions

The next step is to specify:

 The initial values: the waterDensity, separableFace and the ruptureState of the propagating fracture
have to be initialized,

* The boundary conditions: fluid injection rates and the constraints of the outer boundaries have to be set.

In this example, a mass injection rate SourceFlux (scale="-6.625") is applied at the surfaces of the initial fracture.
Only one fourth of the total injection rate is used because only a quarter of the fracture is modeled (the problem is
symmetric). The value given for scaleis Qopy /4 (not Qo /4). All the outer boundaries are subject to roller constraints.
These boundary conditions are set through the FieldSpecifications section.

<FieldSpecifications>
<FieldSpecification

name="waterDensity"
initialCondition="1"
setNames="{ fracture }"
objectPath="ElementRegions"
fieldName="water_density"
scale="1000"/>

(continues on next page)
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<FieldSpecification

name="separableFace"
initialCondition="1"
setNames="{ core }"
objectPath="faceManager"
fieldName="isFaceSeparable"
scale="1"/>

<FieldSpecification
name="frac"
initialCondition="1"
setNames="{ fracture }"
objectPath="faceManager"
fieldName="ruptureState"
scale="1"/>

<FieldSpecification
name="yconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"
scale="0.0"
setNames="{ yneg, ypos }"/>

<FieldSpecification
name="zconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="2"
scale="0.0"
setNames="{ zneg, zpos }"/>

<FieldSpecification
name="xconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"
scale="0.0"
setNames="{ xneg, xpos }"/>

<SourceFlux
name="sourceTerm"
objectPath="ElementRegions/Fracture"
scale="-6.625"
setNames="{ source }"/>
</FieldSpecifications>

The parameters used in the simulation are summarized in the following table.
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Symbol Parameter Unit Value
K Bulk Modulus [GPa] 20.0

G Shear Modulus [GPa] 12.0
Ko Rock Toughness [MPa.m'?] 0.1

U Fluid Viscosity ~ [Pa.s] 1.0x1073
Qo Injection Rate [m3/s] 0.0265
Bog Injection Time [s] 200

hy Fracture Height  [m] 20

Inspecting results

The following figure shows the distribution of o, at ¢ = 200s within the computational domain..

DB: zeroToughness_00004500
Cycle: 45 Time:200

Pseudaocolor
Var: Domain_Solid_MaterialFields/stress_33
10e+06

m

— 0.236e+05

! 1360405

-6.409¢e-

Fig. 1.35: Simulation result of o, at ¢ = 200s

First, by running the query script

[python ./hydrofractureQueries.py pknViscosityDominated ]

the HDFS5 output is postprocessed and temporal evolution of fracture characterisctics (fluid pressure and fracture width
at fluid inlet and fracure half length) are saved into a txt file model-results. txt, which can be used for verification
and visualization:
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[ time', ' pressure', ' aperture', ' length']]
2 1.413e+06 0.0006093 5.6
4 1.174e+06 0.0007132 8.4
6 1.077e+06 0.0007849 10.8
8 1.044e+06 0.0008482 12.8
10 1.047e+06 0.0009098 14.8

Note: GEOS python tools geosx_xml_tools should be installed to run the query script (See Python Tools Setup for
details).

Next, figure below shows the comparisons between the results from GEOS simulations (markers) and the corresponding
analytical solutions (curves) for the example with viscosity-storage dominated assumptions, which is generated using
the visualization script:

[python ./pknViscosityDominatedFigure.py ]

The evolution in time of the fracture half-length, the near-wellbore fracture aperture, and the fluid pressure all correlate
well with the analytical solutions.
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To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page.

Proppant Slot Test

Context

In this example, a simulation is built up to model a proppant slot test. In this way, the implemented proppant model
is validated by comparing numerical results with the corresponding experimental data. Furthermore, this calibrated
proppant model can allow field engineers to customize stimulation design and optimize field operations in multiple
engineering aspects (Huang et al., 2021).

Input file

This example uses no external input files and everything is contained within a single xml file that is located at:

[inputFi1es/proppant/ProppantSlotTest_base .xml

[inputFi les/proppant/ProppantSlotTest_benchmark.xml

Description of the case

Chun et al. (2020) conducted slot tests on proppant transport with slickwater. As shown below, a 4 ft X 1 ft slot with
0.3 in gap width was constructed. Three fluid inlets with 0.5 in inner diameter were placed at the right side of the slot,
which were three inches away from each other. One outlet was placed on the top side to allow pressure relief. The other
one was located on the left side acting as a fluid sink. In their tests, to resemble a slickwater fracturing treatment, the
proppant concentration was kept at 1.5 ppg and the viscosity of carrying fluid was approximately 1 cp. The slurry was
mixed well and then injected into the flow channel at a constant injection rate of 6 gpm. A simulation case with the
same settings is built up to mimic these slot tests. A vertical and impermeable fracture surface is assumed in this case,
which eliminates the effect of fracture plane inclination and fluid leak-off. A static fracture with an uniform aperture
of 0.3 in is defined and fracture propagation is not involved. 30/50 mesh proppant is injected via the three inlets and is
flowed through the slot for 30 seconds.

To simulate proppant transport phenomenon, a proppant solver based on the assumption of multi-component single
phase flow is used in this example. Proppant concentration and distribution within the slot are numerically calculated
by solving the equations of proppant transport in hydraulic fractures. These numerical predictions are then validated
against the corresponding testing results (Chun et al., 2020).

In this example, we focus our attention on the Solvers, Constitutive and FieldSpecifications tags.

Mesh

The following figure shows the mesh used for solving this problem.

We use the internal mesh generator InternalMesh to create a computational domain. This mesh contains 2 x 97 x
24 eight-node brick elements in the x, y and z directions, respectively. Here, a structured three-dimensional mesh is
generated with C3D8 as the elementTypes (eight-node hexahedral elements). This mesh is defined as a cell block with
the name cb1.

<Mesh>
<InternalMesh
name="mesh"
elementTypes="{ C3D8 }"

(continues on next page)
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Fig. 1.36: Configuration of the slot for proppant transport experiment (after Chun et al., 2020)

Fig. 1.37: Mesh for simulating the proppant slot tests.
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xCoords="{ -1, 1 "
yCoords="{ ®, 1.2319 }"
zCoords="{ 0, 0.3048 }"
nx="{ 2 }"
ny="{ 97 }"
nz="{ 24 }"
cellBlockNames="{ cbl }"/>
</Mesh>

Proppant transport solver

GEOS is a multi-physics platform. Different combinations of physics solvers available in the code can be applied in
different regions of the domain and be functional at different stages of the simulation. The Solvers tag in the XML
file is used to define these solvers.

To specify a coupling between two different solvers, we define and characterize each single-physics solver separately.
Then, we customize a coupling solver between these single-physics solvers as an additional solver. This approach
allows for generality and flexibility in constructing multi-physics solvers. The order of specifying these solvers is not
restricted in GEOS. Note that end-users should give each single-physics solver a meaningful and distinct name, as
GEOS will recognize these single-physics solvers based on their customized names and create user-expected coupling.

As demonstrated in this example, to setup a coupled proppant transport solver, we need to define three different solvers
in the XML file:

 the proppant transport solver for the fracture region, a solver of type ProppantTransport called here
ProppantTransport (see Proppant Transport Solver for more information),

<ProppantTransport
name="ProppantTransport"
logLevel="1"
updateProppantPacking="1"
proppantDiameter="4.5e-4"
frictionCoefficient="0.04"
criticalShieldsNumber="0.0"
maxProppantConcentration="0.62"
discretization="singlePhaseTPFA"
targetRegions="{ Fracture }">
<NonlinearSolverParameters
newtonTol="1.0e-6"
newtonMaxIter="8"
lineSearchAction="None"
maxTimeStepCuts="5"/>
<LinearSolverParameters
solverType="gmres"
krylovTol="1.0e-7"/>
</ProppantTransport>

* the single-phase flow solver, a solver of type SinglePhaseProppantFVM called here SinglePhaseFVl,

<SinglePhaseProppantFVM
name="SinglePhaseFVM"
logLevel="1"
discretization="singlePhaseTPFA"
(continues on next page)
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targetRegions="{ Fracture }">
<NonlinearSolverParameters

newtonTol="1.0e-6"
newtonMaxIter="8"
lineSearchAction="None"
newtonMinIter="0"/>
<LinearSolverParameters
solverType="gmres"
preconditionerType="amg"
krylovTol="1.0e-7"/>
</SinglePhaseProppantFVM>

¢ the coupling solver (FlowProppantTransport) that binds the two single-physics solvers above, which is named
as FlowProppantTransport

<FlowProppantTransport
name="FlowProppantTransport"
proppantSolverName="ProppantTransport"
flowSolverName="SinglePhaseFVM"
targetRegions="{ Fracture }"
logLevel="1"/>

In this example, let us focus on the coupling solver. This solver (FlowProppantTransport) describes the coupling
process between proppant and flow transport within the Fracture region. In this way, the two single-physics solvers
(ProppantTransport and SinglePhaseFVM) are sequentially called to solve the sub-problems (proppant transport
and pressure problem, respectively) involved in this test case.

Constitutive laws

For this slot test, 30/50 mesh proppant is injected via the three inlets and flowing through the slot for 30 seconds.
The viscosity of carrying fluid is 0.001 Pa.s to resemble slickwater fracturing. In this example, the solid and fluid
materials are named as sand and water respectively. Proppant characterization and fluid rheology are specified in the
Constitutive section:

<Constitutive>
<ProppantSlurryFluid

name="water"
referencePressure="1e5"
referenceDensity="1000"
compressibility="0.0"
maxProppantConcentration="0.62"
referenceViscosity="0.001"
referenceProppantDensity="2550.0"/>

<ParticleFluid
name="sand"
particleSettlingModel="Stokes"
hinderedSettlingCoefficient="4.5"
proppantDensity="2550.0"
proppantDiameter="4.5e-4"
maxProppantConcentration="0.62"/>

(continues on next page)
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<ProppantSolidProppantPermeability
name="fractureFilling"
solidModelName="nullSolid"
porosityModelName="fracturePorosity"
permeabilityModelName="fracturePerm" />

<NullModel
name="nullSolid" />

<ProppantPorosity
name="fracturePorosity"
defaultReferencePorosity="1.00"
maxProppantConcentration="0.62"/>

<ProppantPermeability
name="fracturePerm"
proppantDiameter="4.5e-4"
maxProppantConcentration="0.62"/>
</Constitutive>

The constitutive parameters such as proppant density and proppant diameter are specified in the International System
of Units.

Initial and boundary conditions

The next step is to specify fields, including:

* The initial value (fracture aperture, fluid pressure and proppant concentration within the fracture have to be
initialized)
* The boundary conditions (fluid pressure and proppant concentration at fluid inlets and outlets)

These boundary conditions are set up through the FieldSpecifications section. At a constant injection rate, the
slurry is equally flowing into the open channel through three inlets.

<FieldSpecifications>
<FieldSpecification

name="frac"
initialCondition="1"
setNames="{ fracture }"
objectPath="faceManager"
fieldName="ruptureState"
scale="1"/>

<FieldSpecification
name="fracAp"
initialCondition="1"
objectPath="ElementRegions/Fracture"
fieldName="elementAperture"
scale="7.62e-3"
setNames="{ fracture }"/>

<FieldSpecification
name="fracl"

(continues on next page)
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initialCondition="1"
objectPath="ElementRegions/Fracture"
fieldName="pressure"
scale="0.0"
component="0"
setNames="{ fracture }"/>

<FieldSpecification
name="frac2"
initialCondition="1"
objectPath="ElementRegions/Fracture"
fieldName="proppantConcentration"
scale="0.0"
component="0"
setNames="{ fracture }"/>

<FieldSpecification
name="frac3"
initialCondition="1"
objectPath="ElementRegions/Fracture"
fieldName="isProppantBoundary"
component="0"
setNames="{ fracture }"/>

<FieldSpecification
name="frac4"
initialCondition="1"
objectPath="ElementRegions/Fracture"
fieldName="1sProppantBoundary"
scale="1"
component="0"
setNames="{ left® }"/>

<SourceFlux
name="leftla"
objectPath="ElementRegions/Fracture"
scale="-0.14"
component="0"
setNames="{ leftl }"/>

<FieldSpecification
name="1left1lb"
objectPath="ElementRegions/Fracture"
fieldName="proppantConcentration"
scale="0.07"
component="0"
setNames="{ leftl }"/>

<SourceFlux
name="1left2a"
objectPath="ElementRegions/Fracture"
scale="-0.14"

(continues on next page)
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component="0"
setNames="{ left2 }"/>

<FieldSpecification

name="1eft2b"
objectPath="ElementRegions/Fracture"
fieldName="proppantConcentration"
scale="0.07"

component="0"

setNames="{ left2 }"/>

<SourceFlux

name="1left3a"
objectPath="ElementRegions/Fracture"
scale="-0.14"

component="0"

setNames="{ left3 }"/>

<FieldSpecification

name="1eft3b"
objectPath="ElementRegions/Fracture"
fieldName="proppantConcentration"
scale="0.07"

component="0"

setNames="{ left3 }"/>

<FieldSpecification

name="rightl"
objectPath="ElementRegions/Fracture"
fieldName="pressure"

scale="0.0"

component="0"

setNames="{ right }"/>

<FieldSpecification

name="right2"
objectPath="ElementRegions/Fracture"
fieldName="proppantConcentration"
scale="0.0"

component="0"

setNames="{ right }"/>

</FieldSpecifications>

(continued from previous page)

Note: For static (non-propagating) fracture problems, the fields ruptureState and elementAperture should be
provided in the initial conditions. FieldName="pressure" here means that the source flux term is added to the mass
balance equation for pressure.

The parameters used in the simulation are summarized in the following table.
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Symbol Parameter Unit Value
dp Proppant Diameter [m] 0.00045
f Darcy Friction Coefficient [-] 0.04
Ngp, Critical Shields Number [-1 0.0

@5 Max Fraction of Proppant [-] 0.62

P Fluid Density [kg/m”3] 1000

y Fluid Viscosity [Pa*s] 0.001
Pp Proppant Density [kg/m”3] 2550

As Hindered Settling Coefficient [-1 4.5

@y Proppant Concentration in Slurry  [m”3/m”3] 0.07

L Fracture Length [m] 1.219
H Fracture Height [m] 0.3048
a Fracture Aperture [m] 0.00762
Q Injection Rate [m”3/s] 0.0003785

Inspecting results

The following figure shows the modelling prediction of proppant distribution at 10 s and 30 s, which are compared
with the experiments in (Chun et al., 2020). Due to proppant settling in low viscosity fluid, a heterogeneous proppant
distribution is obtained, which evolves with injection time. Three different zones (immobile proppant bed, suspended
proppant and clean fluid) are visually identified for both the presented experiment and simulation.

z(f)

X (ft)

Suspended proppant

Proppant bed

c) -

Fig. 1.38: Proppant distribution profile

As shown below, consistently, the modelling predictions (green curve) on proppant transport and distribution show a
good agreement with the reported experimental data (red dot) at each time.

To go further

Feedback on this example

This concludes the example on simulating a proppant slot test. For any feedback on this example, please submit a
GitHub issue on the project’s GitHub page.

For more details

* More on proppant solver, please see Proppant Transport Solver.
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Wellbore Problems

Kirsch Wellbore Problem

Context

In this example, we simulate a vertical elastic wellbore subjected to in-situ stress and the induced elastic deformation
of the reservoir rock. Kirsch’s solution to this problem provides the stress and displacement fields developing around
a circular cavity, which is hereby employed to verify the accuracy of the numerical results. For this example, the
TimeHistory function and python scripts are used to output and post-process multi-dimensional data (stress and
displacement).

Input file

Everything required is contained within two GEOS input files located at:

[inputFi les/solidMechanics/KirschProblem_base.xml J

[inputFi1es/solidMechanics/KirschProblem_benchmark .xml

Description of the case

We solve a drained wellbore problem subjected to anisotropic horizontal stress (0, and o) as shown below. This
is a vertical wellbore drilled in an infinite, homogeneous, isotropic, and elastic medium. Far-field in-situ stresses and
internal supporting pressure acting at the circular cavity cause a mechanical deformation of the reservoir rock and
stress concentration in the near-wellbore region. For verification purpose, a plane strain condition is considered for the
numerical model.
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7

Fig. 1.39: Sketch of the wellbore problem

In this example, stress (o, 0gg, and o,¢) and displacement (u,- and ug) fields around the wellbore are calculated
numerically. These numerical predictions are compared with the corresponding Kirsch solutions (Poulos and Davis,
1974).
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where ag is the intiial wellbore radius, r is the radial coordinate, v is the Poisson’s ratio, GG is the shear modulus, P,,
is the normal traction acting on the wellbore wall, the angle 6 is measured with respect to x-z plane and defined as
positive in counter-clockwise direction.

In this example, we focus our attention on the Mesh, the Constitutive, and the FieldSpecifications tags.

Mesh

Following figure shows the generated mesh that is used for solving this wellbore problem.

Let us take a closer look at the geometry of this wellbore problem. We use the internal wellbore mesh generator
InternalWellbore to create a rock domain (10m x 5m x 2m), with a wellbore of initial radius equal to 0.1
m. Only half of the domain is modeled by a theta angle from 0 to 180, assuming symmetry for the rest of the
domain. Coordinates of trajectory defines the wellbore trajectory, a vertical well in this example. By turning on
autoSpaceRadialElems="{ 1 }",the internal mesh generator automatically sets number and spacing of elements in
the radial direction, which overrides the values of nr. With useCartesianOuterBoundary="0", a Cartesian aligned
boundary condition is enforced on the outer blocks. This way, a structured three-dimensional mesh is created with 50 x
40 x 2 elements in the radial, tangential and z directions, respectively. All elements are eight-node hexahedral elements
(C3D8) and refinement is performed to conform with the wellbore geometry. This mesh is defined as a cell block with
the name cb1l.
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Fig. 1.40: Generated mesh for a vertical wellbore problem

<Mesh>
<InternalWellbore
name="mesh1"
elementTypes="{ C3D8 }"
radius="{ 0.1, 5.0 }"
theta="{ 0, 180 }"
zCoords="{ -1, 1 }"

nr:"{ 40 }u
nt:n{ 40 }u
nZ:"{ 2 }n

trajectory="{ { 0.0, 0.0, -1.0 },
{ 0.0, 0.0, 1.0 } }"
autoSpaceRadialElems="{ 1 }"
useCartesianOuterBoundary="0"
cellBlockNames="{ cbl }"/>
</Mesh>

Solid mechanics solver

For a drained wellbore problem, the pore pressure variation is omitted. Therefore, we just need to define a solid
mechanics solver, which is called mechanicsSolver. This solid mechanics solver (see Solid Mechanics Solver) is
based on the Lagrangian finite element formulation. The problem is run as QuasiStatic without considering inertial
effects. The computational domain is discretized by FE1, which is defined in the NumericalMethods section. The
material is named rock, whose mechanical properties are specified in the Constitutive section.

<Solvers gravityVector="{0.0, 0.0, 0.0}">
<SolidMechanicsLagrangianFEM
name="mechanicsSolver"
timeIntegrationOption="QuasiStatic"

(continues on next page)
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logLevel="1"

discretization="FE1"

targetRegions="{0Omega}">

<NonlinearSolverParameters
newtonTol = "1.0e-5"
newtonMaxIter = "15"

/>

<LinearSolverParameters
directParallel="0"/>

</SolidMechanicsLagrangianFEM>
</Solvers>

Constitutive laws

For this drained wellbore problem, we simulate a linear elastic deformation around the circular cavity. A homogeneous
and isotropic domain with one solid material is assumed, with mechanical properties specified in the Constitutive
section:

<Constitutive>
<ElasticIsotropic
name="rock"
defaultDensity="2700"
defaultBulkModulus="5.0e8"
defaultShearModulus="3.0e8"
/>

</Constitutive>

Recall that in the SolidMechanicsLagrangianFEM section, rock is the material in the computational domain. Here,
the isotropic elastic model ElasticIsotropic simulates the mechanical behavior of rock.

The constitutive parameters such as the density, the bulk modulus, and the shear modulus are specified in the Interna-
tional System of Units.

Time history function

In the Tasks section, PackCollection tasks are defined to collect time history information from fields. Either the
entire field or specified named sets of indices in the field can be collected. In this example, stressCollection and
displacementCollection tasks are specified to output the resultant stresses (tensor stored as an array with Voigt
notation) and total displacement field (stored as a 3-component vector) respectively.

<Tasks>
<PackCollection
name="stressCollection"
objectPath="ElementRegions/Omega/cbl"
fieldName="rock_stress"/>

<PackCollection
name="displacementCollection"
objectPath="nodeManager"
fieldName="totalDisplacement" />
</Tasks>

These two tasks are triggered using the Event management, where PeriodicEvent are defined for these recurring
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tasks. GEOS writes two files named after the string defined in the filename keyword and formatted as HDFS5 files
(displacement_history.hdf5 and stress_history.hdf5). The TimeHistory file contains the collected time history infor-
mation from each specified time history collector. This information includes datasets for the simulation time, element
center or nodal position, and the time history information. Then, a Python script is prepared to access and plot any
specified subset of the time history data for verification and visualization.

Initial and boundary conditions

The next step is to specify fields, including:
¢ The initial value (the in-situ stresses and traction at the wellbore wall have to be initialized),
* The boundary conditions (constraints of the outer boundaries have to be set).

Here, we specify anisotropic horizontal stress values (oy, = -9.0 MPa and o0, = -11.25 MPa) and a vertical stress
(0., = -15.0 MPa). A compressive traction (WellLoad) P, = -2.0 MPa is loaded at the wellbore wall rneg. The
remaining parts of the outer boundaries are subjected to roller constraints. These boundary conditions are set in the
FieldSpecifications section.

<FieldSpecifications>

<FieldSpecification
name="Sxx"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions"
fieldName="rock_stress"
component="0"
scale="-11.25e6"

/>

<FieldSpecification
name="Syy"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions"
fieldName="rock_stress"
component="1"
scale="-9.0e6"

/>

<FieldSpecification
name="Szz"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions"
fieldName="rock_stress"
component="2"
scale="-15.0e6"

/>

<Traction
name="WellLoad"
setNames="{ rneg }"
objectPath="faceManager"
scale="-2.0e6"

(continues on next page)
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tractionType="normal"

/>

<FieldSpecification
name="xconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"
scale="0.0"
setNames="{xneg, xpos}"

/>

<FieldSpecification
name="yconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"
scale="0.0"
setNames="{tneg, tpos, ypos}"
/>

<FieldSpecification
name="zconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="2"
scale="0.0"
setNames="{zneg, zpos}"

/>

</FieldSpecifications>

With tractionType="normal", traction is applied to the wellbore wall rneg as a pressure specified as the scalar
product of scale scale="-2.0e6" and the outward face normal vector. In this case, the loading magnitude of the
traction does not change with time.

You may note :

All initial value fields must have initialCondition field set to 1;
The setName field points to the previously defined set to apply the fields;

nodeManager and faceManager in the objectPath indicate that the boundary conditions are applied to the
element nodes and faces, respectively;

fieldName is the name of the field registered in GEOS;
Component 0, 1, and 2 refer to the X, y, and z direction, respectively;
And the non-zero values given by scale indicate the magnitude of the loading;

Some shorthand, such as xneg and xpos, are used as the locations where the boundary conditions are applied
in the computational domain. For instance, xneg means the face of the computational domain located at the
left-most extent in the x-axis, while xpos refers to the face located at the right-most extent in the x-axis. Similar
shorthands include ypos, yneg, zpos, and zneg;

The mud pressure loading and in situ stresses have negative values due to the negative sign convention for com-
pressive stress in GEOS.
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The parameters used in the simulation are summarized in the following table.

Symbol Parameter Unit Value
K Bulk Modulus [MPa] 500.0
G Shear Modulus [MPa] 300.0
Ty Min Horizontal Stress  [MPa] -9.0
O Max Horizontal Stress [MPa] -11.25
lo o Vertical Stress [MPa] -15.0
ag Initial Well Radius [m] 0.1
P, Traction at Well [MPa] -2.0

Inspecting results

In the above examples, we request VTK output files that can be imported into Paraview to visualize the outcome. The

following figure shows the distribution of o, in the near wellbore region.

.

Fig. 1.41: Simulation result of o,

We use time history function to collect time history information and run a Python script to query and plot the results.
The figure below shows the comparisons between the numerical predictions (marks) and the corresponding analytical
solutions (solid curves) with respect to the distributions of stress components and displacement at § = 45 degrees.

Predictions computed by GEOS match the analytical results.
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To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page.

Cased Elastic Wellbore Problem
Problem description

This example uses the solid mechanics solver to handle a cased wellbore problem subjected to a pressure test. The com-
pleted wellbore is composed of a steel casing, a cement sheath and rock formation. Isotropic linear elastic behavior is
assumed for all the three materials. No separation is allowed for the casing-cement and cement-rock contact interfaces.

Analytical results of the radial and hoop stresses, o, and gy, in casing, cement sheath and rock are expressed as
(Hervé and Zaoui, 1995) :

2GB

orr = (22 +2G)A — 2

2GB

r2
where \ and G are the Lamé moduli, r is the radial coordinate, A and B are piecewise constants that are obtained by
solving the boundary and interface conditions, as detailed in the post-processing script.

Opp = (2)\ + 2G)A +

Input file

This benchmark example uses no external input files and everything required is contained within two GEOS xml files
that are located at:

[inputFiles/wellbore/CasedElasticWellbore_base .xml ]
and
[inputFi1es/wellbore/CasedElasticWellbore_benchmark .xml ]

The corresponding integrated test is

[inputFi1es/wellbore/CasedElasticWellbore_smoke .xml }

In this example, we would focus our attention on the Solvers, Mesh and Constitutive tags.
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Solid mechanics solver

As fluid flow is not considered, only the solid mechanics SolidMechanicsLagrangianFEM solver is required for
solving this linear elastic problem. In this solver, the three regions and three materials associated to casing, cement
sheath and rock are respectively defined by targetRegions and solidMaterialNames.

<SolidMechanicsLagrangianFEM
name="1lagsolve"
timeIntegrationOption="QuasiStatic"
discretization="FE1"
logLevel="0"
targetRegions="{ casing, cement, rock }">

Cased wellbore mesh

The internal wellbore mesh generator InternalWellbore is employed to create the mesh of this wellbore problem.
The radii of the casing cylinder, the cement sheath cylinder and the far-field boundary of the surrounding rock formation
are defined by a vector radius. In the tangent direction, theta angle is specified from 0 to 360 degree for a full
geometry of the domain. Note that a half or a quarter of the domain can be defined by a theta angle from O to
180 or 90 degree, respectively. The trajectory of the well is defined by trajectory, which is vertical in this case.
The autoSpaceRadialElems parameters allow optimally increasing the element size from local zone around the
wellbore to the far-field zone. In this example, the auto spacing option is only applied for the rock formation. The
useCartesianOuterBoundary transforms the far-field boundary to a squared shape to enforce a Cartesian aligned
outer boundary, which eases the loading of the boundary conditions. The cel1BlockNames and elementTypes define
the regions and related element types associated to casing, cement sheath and rock.

<Mesh>
<InternalWellbore

name="mesh1"

elementTypes="{ C3D8, C3D8, C3D8 }"
radius="{ 0.1, 0.106, 0.133, 2.0 }"
theta="{ 0, 360 }"

zCoords="{ 0, 1 }"

nr="{ 10, 20, 10 }"

nt="{ 320 }"
nz:"{ 1 }Il
trajectory="{ { 0.0, 0.0, 0.0 },
{ 0.0, 0.0, 1.0 } "

; b
autoSpaceRadialElems="{ 0, 0, 1 }"
useCartesianOuterBoundary="2"
cellBlockNames="{ casing, cement, rock }"
/>

</Mesh>

Steel, cement, and rock constitutive laws

Isotropic linear elastic constitutive behavior is considered for all the three materials. Note that the default density is
useless for this case.

<ElasticIsotropic
name="casing"
defaultDensity="2700"
defaultBulkModulus="175e9"

(continues on next page)
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defaultShearModulus="80.8e9" />

<ElasticIsotropic
name="cement"
defaultDensity="2700"
defaultBulkModulus="10.3e9"
defaultShearModulus="6.45e9" />

<ElasticIsotropic
name="rock"
defaultDensity="2700"
defaultBulkModulus="5.5556e9"

defaultShearModulus="4.16667e9"/>

(continued from previous page)

Boundary conditions

Far-field boundary are subjected to roller constraints. The normal traction on the inner face of the casing is defined
by Traction field specification. The nodeset generated by the internal wellbore generator for this face is named as
rneg. The traction type is normal to mimic a casing test pressure that is applied normal to the casing inner face . The
negative sign of the scale is attributed to the negative sign convention for compressive stress in GEOS.

<FieldSpecifications>

<FieldSpecification
name="xConstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"
scale="0.0"
setNames="{ xneg, xpos }"/>

<FieldSpecification
name="yConstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"
scale="0.0"
setNames="{ yneg, ypos }"/>

<FieldSpecification
name="zconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="2"
scale="0.0"
setNames="{ zneg, zpos }"/>

<Traction
name="innerPressure"
objectPath="faceManager"
tractionType="normal"
scale="-10.0e6"

(continues on next page)
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setNames="{ rneg }"/>
</FieldSpecifications>

Results and benchmark

A good agreement between the GEOS results and analytical results is shown in the figure below:
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To go further

Feedback on this example

This concludes the cased wellbore example. For any feedback on this example, please submit a GitHub issue on the
project’s GitHub page.

Deviated Elastic Wellbore Problem
Problem description

This example uses the solid mechanics solver to handle a deviated wellbore problem with open hole completion. This
wellbore is subjected to a mud pressure at wellbore wall and undrained condition is assumed (no fluid flow in the
rock formation). A segment of the wellbore with isotropic linear elastic deformation is simulated in this case. Far
field stresses and gravity effect are excluded. The main goal of this example is to validate the internal wellbore mesh
generator and mechanics solver for the case of an inclined wellbore.

Analytical results of the radial and hoop stresses, o, and ggg, around the wellbore are expressed as (Detournay and
Cheng, 1988) :

a2

Orr = P05
rr 7"2
0,2
069 = —Po—5
r

where py is the applied mud pressure at wellbore wall, a is the wellbore radius and r is the radial coordinate.
Input file

This benchmark example uses no external input files and everything required is contained within two GEOS xml files
that are located at:
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[inputFi1es/wel1bore/DeviatedElasticWellbore_base .xml

and

[inputFi les/wellbore/DeviatedElasticliliellbore_benchmark.xml

The corresponding xml file for the integrated test is

[inputFiles/wellbore/DeviatedElasticWellbore_smoke .xml

In this example, we would focus our attention on the Mesh tag.

Solid mechanics solver

As fluid flow is not considered, only the solid mechanics solver SolidMechanicsLagrangianFEN is required for
solving this wellbore problem.

<SolidMechanicsLagrangianFEM
name="1lagsolve"
timeIntegrationOption="QuasiStatic"
discretization="FE1"

logLevel="0"
targetRegions="{ Omega }"
>

Deviated wellbore mesh

The internal wellbore mesh generator InternalWellbore is employed to create the mesh of this wellbore problem.
The radius of the wellbore and the size of the surrounding rock formation are defined by a vector radius. In the tangent
direction, theta angle is specified from 0 to 180 degree for a half of the domain regarding its symmetry. Note that the
whole domain could be specified with a theta angle from 0 to 360 degree, if modeling complicated scenarios. The
trajectory of the well is defined by trajectory. In this example, the wellbore is inclined in the x-z plane by an angle
of 45 degree. The autoSpaceRadialElems parameter allows optimally increasing the element size from local zone
around the wellbore to the far-field zone, which is set to 1 to activate this option. The useCartesianOuterBoundary
transforms the far-field boundary to a squared shape to enforce a Cartesian aligned outer boundary, which eases the
loading of the far-field boundary conditions. In this example, this value is set to O for the single region along the radial
direction.

<Mesh>
<InternalWellbore
name="mesh1"
elementTypes="{ C3D8 }"
radius="{ 0.1, 2 "
theta="{ 0, 180 }"
zCoords="{ -0.5, 0.5 }"

nr="{ 30 }"
nt="{ 80 }"
nz="{ 100 }"
trajectory="{ { -0.5, 0.0, -0.5 },
{ 0.5, 0.0, 0.5} }"

autoSpaceRadialElems="{ 1 }"
useCartesianOuterBoundary="0"

(continues on next page)
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cellBlockNames="{ cbl }"/>
</Mesh>
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Constitutive law

Isotropic linear elastic constitutive behavior is considered for the rock around the wellbore. Note that the default density
is useless in this specific example, as gravity effect is neglected.

<ElasticIsotropic
name="shale"
defaultDensity="2700"
defaul tBulkModulus="5.5556e9"
defaultShearModulus="4.16667e9"/>

Boundary conditions

Far-field boundaries are subjected to roller constraints and in-situ stresses are not considered. The mud pressure on
the wellbore wall is defined by Traction field specification. The nodeset generated by the internal wellbore generator
for this face is named as rneg. The traction type is normal to mimic a pressure that is applied normal to the wellbore
wall. The negative sign of the scale is attributed to the negative sign convention for compressive stresses in GEOS.

<FieldSpecifications>

(continues on next page)
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<FieldSpecification

name="xConstraint"

objectPath="nodeManager"

fieldName="totalDisplacement"

component="0"

scale="0.0"

setNames="{ xneg }"/>

<FieldSpecification
name="yConstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"
scale="0.0"
setNames="{ tneg, tpos }"/>

<FieldSpecification
name="zconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="2"
scale="0.0"
setNames="{ zneg }"/>

<Traction
name="innerPressure"
objectPath="faceManager"
tractionType="normal"
scale="-10.e6"
setNames="{ rneg }"/>
</FieldSpecifications>

Results and benchmark

A good agreement between the GEOS results and the corresponding analytical solutions is shown in the figure below:

To go further

Feedback on this example

This concludes the deviated elastic wellbore example. For any feedback on this example, please submit a GitHub issue
on the project’s GitHub page.

Extended Drucker-Prager Model for Wellbore Problems

Context

The main goal of this example is to learn how to use the internal wellbore mesh generator and an elasto-plastic model
to handle wellbore problems in GEOS. The Extended Drucker-Prager model (see Model: Extended Drucker-Prager)
is applied to solve for elastoplastic deformation within the vicinity of a vertical wellbore. For the presented example,
an analytical solution is employed to verify the accuracy of the numerical results. The resulting model can be used as
a base for more complex analysis (e.g., wellbore drilling, fluid injection and storage scenarios).

Objectives
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At the end of this example you will know:
* how to construct meshes for wellbore problems with the internal mesh generator,

* how to specify initial and boundary conditions, such as in-situ stresses and variation of traction at the wellbore
wall,

* how to use a plastic model for mechanical problems in the near wellbore region.

Input file

This example uses no external input files and everything required is contained within two xml files that are located at:
[inputFiles/solidMechanicS/ExtendedDruckerPragerWe1lbore_base .xml ]
[inputFi1es/solidMechanics/ExtendedDruckerPragerWel1bore_benchmark .xml J

The Python scripts for post-processing GEOS results, analytical restuls and validation plots are also provided in this
example.

Description of the case

We simulate a drained wellbore problem subjected to isotropic horizontal stress (o) and vertical stress (o,). By
lowering the wellbore supporting pressure (P,,), the wellbore contracts, and the reservoir rock experiences elastoplastic
deformation. A plastic zone develops in the near wellbore region, as shown below.

l U,h

Flastic
(DruckerPrager)

Elaslic region

Fig. 1.42: Sketch of the wellbore problem (Chen and Abousleiman, 2017)
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To simulate this phenomenon, the strain hardening Extended Drucker-Prager model with an associated plastic flow rule
in GEOS is used in this example. Displacement and stress fields around the wellbore are numerically calculated. These
numerical predictions are then compared with the corresponding analytical solutions (Chen and Abousleiman, 2017)
from the literature.

All inputs for this case are contained inside a single XML file. In this example, we focus our attention on the Mesh
tags, the Constitutive tags, and the FieldSpecifications tags.

Mesh

Following figure shows the generated mesh that is used for solving this 3D wellbore problem

Fig. 1.43: Generated mesh for the wellbore problem

Let us take a closer look at the geometry of this wellbore problem. We use the internal mesh generator
InternalWellbore to create a rock domain (10m x 10m x 2m), with a wellbore of initial radius equal to 0.1
m. Coordinates of trajectory defines the wellbore trajectory, which represents a vertical well in this example. By
turning on autoSpaceRadialElems="{ 1 }", the internal mesh generator automatically sets number and spacing of
elements in the radial direction, which overrides the values of nr. In this way, a structured three-dimensional mesh is
created. All the elements are eight-node hexahedral elements (C3D8) and refinement is performed to conform with the
wellbore geometry. This mesh is defined as a cell block with the name cb1.

<Mesh>
<InternalWellbore
name="mesh1"
elementTypes="{ C3D8 }"
radius="{ 0.1, 10.0 }"

(continues on next page)
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(continued from previous page)
theta="{ 0, 90 }"
zCoords="{ -1, 1 }"

nr="{ 40 }"

nt="{ 40 }"

nz="{ 1 }"

trajectory="{ { 0.0, 0.0, -1.0 },
{ 0.0, 0.0, 1.0 } }"

autoSpaceRadialElems="{ 1 }"
cellBlockNames="{ cbl }"/>
</Mesh>

Solid mechanics solver

For the drained wellbore problem, the pore pressure variation is omitted and can be subtracted from the analysis.
Therefore, we just need to define a solid mechanics solver, which is called mechanicsSolver. This solid mechanics
solver (see Solid Mechanics Solver) is based on the Lagrangian finite element formulation. The problem is run as
QuasiStatic without considering inertial effects. The computational domain is discretized by FE1, which is defined
in the NumericalMethods section. The material is named as rock, whose mechanical properties are specified in the
Constitutive section.

<Solvers
gravityVector="{ 0.0, 0.0, 0.0 }">
<SolidMechanicsLagrangianFEM
name="mechanicsSolver"
timeIntegrationOption="QuasiStatic"
logLevel="1"
discretization="FE1"
targetRegions="{ Omega }"
>
<LinearSolverParameters
directParallel="0"/>
<NonlinearSolverParameters
newtonTol="1.0e-5"
newtonMaxIter="15"/>
</SolidMechanicsLagrangianFEM>
</Solvers>

Constitutive laws

For this drained wellbore problem, we simulate the elastoplastic deformation caused by wellbore contraction. A homo-
geneous domain with one solid material is assumed, whose mechanical properties are specified in the Constitutive
section:

<Constitutive>
<ExtendedDruckerPrager

name="rock"
defaultDensity="2700"
defaul tBulkModulus="0.5e9"
defaultShearModulus="0.3e9"
defaultCohesion="0.0"
defaultInitialFrictionAngle="15.27"

(continues on next page)
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(continued from previous page)
defaultResidualFrictionAngle="23.05"
defaultDilationRatio="1.0"
defaultHardening="0.01"/>

</Constitutive>

Recall that in the SolidMechanicsLagrangianFEM section, rock is designated as the material in the computational
domain. Here, Extended Drucker Prager model ExtendedDruckerPrager is used to simulate the elastoplastic behav-
ior of rock. As for the material parameters, defaultInitialFrictionAngle, defaultResidualFrictionAngle
and defaultCohesion denote the initial friction angle, the residual friction angle, and cohesion, respectively, as
defined by the Mohr-Coulomb failure envelope. In this example, zero cohesion is considered to consist with the ref-
erence analytical results. As the residual friction angle defaultResidualFrictionAngle is larger than the ini-
tial one defaultInitialFrictionAngle, a strain hardening model is adopted, whose hardening rate is given as
defaultHardening="0.01". If the residual friction angle is set to be less than the initial one, strain weakening
will take place. Setting defaultDilationRatio="1.0" corresponds to an associated flow rule. The constitutive
parameters such as the density, the bulk modulus, and the shear modulus are specified in the International System of
Units.

Initial and boundary conditions

The next step is to specify fields, including:
¢ The initial value (the in-situ stresses and traction at the wellbore wall have to be initialized)

* The boundary conditions (the reduction of wellbore pressure and constraints of the outer boundaries have to be
set)

In this example, we need to specify isotropic horizontal stress (o5, = -11.25 MPa) and vertical stress (o, = -15.0 MPa).
To reach equilibrium, a compressive traction p,, = -11.25 MPa is instantaneously applied at the wellbore wall rneg at
time ¢ = 0 s, which will then be gradually reduced to a lower absolute value (-2.0 MPa) to let wellbore contract. The
boundaries at tneg and tpos are subjected to roller constraints. The plane strain condition is ensured by fixing the
vertical displacement at zneg and zpos The far-field boundary is fixed in horizontal displacement. These boundary
conditions are set up through the FieldSpecifications section.

<FieldSpecifications>
<FieldSpecification

name="stressXX"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/Omega/cbl"
fieldName="rock_stress"
component="0"
scale="-11.25e6"/>

<FieldSpecification
name="stressYY"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/Omega/cbl"
fieldName="rock_stress"
component="1"
scale="-11.25e6"/>

<FieldSpecification
(continues on next page)
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name="stressZzZ"

initialCondition="1"

setNames="{ all }"
objectPath="ElementRegions/Omega/cbhl"
fieldName="rock_stress"

component="2"

scale="-15.0e6"/>

<Traction

name="ExternalLoad"
setNames="{ rneg }"
objectPath="faceManager"
scale="1.0"
tractionType="normal"
functionName="timeFunction"/>

<FieldSpecification

name="xconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"

scale="0.0"

setNames="{ tpos, rpos }"/>

<FieldSpecification

name="yconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"

scale="0.0"

setNames="{ tneg, rpos }"/>

<FieldSpecification

name="zconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="2"

scale="0.0"

setNames="{ zneg, zpos }"/>

</FieldSpecifications>

(continued from previous page)

With tractionType="normal", traction is applied to the wellbore wall rneg as a pressure specified from the product
of scale scale="1.0" and the outward face normal. A table function timeFunction is used to define the time-
dependent traction ExternalLoad. The coordinates and values form a time-magnitude pair for the loading time

history. In this case, the loading magnitude decreases linearly as the time evolves.

<Functions>

<TableFunction

name="timeFunction"
inputVarNames="{ time }"
coordinates="{ 0.0, 1.0, 1e99 }"

values="{ -11.25e6, -2.0e6, -2.0e6 }"/>

(continues on next page)
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(continued from previous page)

{ </Functions>

You may note :
¢ All initial value fields must have initialCondition field set to 1;
* The setName field points to the previously defined box to apply the fields;

* nodeManager and faceManager in the objectPath indicate that the boundary conditions are applied to the
element nodes and faces, respectively;

e fieldName is the name of the field registered in GEOS;
* Component 0, 1, and 2 refer to the X, y, and z direction, respectively;
* And the non-zero values given by Scale indicate the magnitude of the loading;

» Some shorthand, such as tpos and xpos, are used as the locations where the boundary conditions are applied
in the computational domain. For instance, tpos means the portion of the computational domain located at the
left-most in the x-axis, while xpos refers to the portion located at the right-most area in the x-axis. Similar
shorthand include ypos, tneg, zpos, and zneg;

* The mud pressure loading has a negative value due to the negative sign convention for compressive stress in
GEOS.

The parameters used in the simulation are summarized in the following table.

Symbol Parameter Unit Value
K Bulk modulus [MPa] 500
G Shear Modulus [MPa] 300

c Cohesion [MPa] 0.0

b; Initial Friction Angle [degree] 15.27
Or Residual Friction Angle [degree] 23.05
m Hardening Rate [-] 0.01
op Horizontal Stress [MPa] -11.25
o Vertical Stress [MPa] -15.0
ag Initial Well Radius [m] 0.1
Pw Mud Pressure [MPa] -2.0

Inspecting results

In the above example, we requested hdf5 output files. We can therefore use python scripts to visualize the outcome.
Below figure shows the comparisons between the numerical predictions (marks) and the corresponding analytical solu-
tions (solid curves) with respect to the distributions of principal stress components, stress path on the wellbore surface,
the supporting wellbore pressure and wellbore size. It is clear that the GEOS predictions are in excellent agreement
with the analytical results. On the top-right figure, we added also a comparison between GEOS results for elasto-
plastic material and the anlytical solutions of an elastic material. Note that the elastic solutions are differed from the
elasto-plastic results even in the elastic zone (1/a>2).

For the same wellbore problem, using different constitutive models (plastic vs. elastic), obviously, distinct differences
in rock deformation and distribution of resultant stresses is also observed and highlighted.
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Fig. 1.44: Validation of GEOS results.
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To go further

Feedback on this example

This concludes the example on Plasticity Model for Wellbore Problems. For any feedback on this example, please
submit a GitHub issue on the project’s GitHub page.

For more details
* More on plasticity models, please see Model: Extended Drucker-Prager.

* More on functions, please see Functions.

Drucker-Prager Model with Hardening for Wellbore Problems

Context

This is an alternative to the example Extended Drucker-Prager Model for Wellbore Problems, and the Drucker-Prager
constitutive with cohesion hardening (see Model: Drucker-Prager) is hereby considered. Analytical solutions to this
problem are not provided from literature work, however they can be derived following (Chen and Abousleiman 2017).
Details of those solutions are given in Python scripts associated to this example.

Input file

This example uses no external input files and everything required is contained within two xml files that are located at:
[inputFi1es/solidMechanics/DruckerPragerWellbore_base .xml ]
[inputFiles/solidMechanics/DruckerPragerWellbore_benchmark .xml ]

The related integrated test is

[inputFi les/solidMechanics/DruckerPragerWellbore_smoke.xml ]

The Drucker-Prager material properties are specified in the Constitutive section:

<Constitutive>
<DruckerPrager

name="rock"
defaultDensity="2700"
defaultBulkModulus="0.5e9"
defaultShearModulus="0.3e9"
defaultCohesion="0.1e6"
defaultFrictionAngle="15.27"
defaultDilationAngle="15.0"
defaultHardeningRate="10.0e6"/>

</Constitutive>

Here, rock is designated as the material in the computational domain. Drucker Prager model DruckerPrager
is used to simulate the elastoplastic behavior of rock. The material parameters, defaultFrictionAngle,
defaultDilationAngle and defaultCohesion denote the friction angle, the dilation angle, and the cohesion, re-
spectively. In this example, the hardening of the cohesion is described by a linear hardening law, which is governed by
the parameter defaultHardeningRate. The constitutive parameters such as the density, the bulk modulus, and the
shear modulus are specified in the International System of Units.

The parameters used in the simulation are summarized in the following table.
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Symbol Parameter Unit Value
K Bulk modulus [MPa] 500
G Shear Modulus [MPa] 300

c Cohesion [MPa] 0.1

10) Friction Angle [degree] 15.27
P Dilation Angle [degree] 15.0

h Hardening Rate [MPa] 10.0
op, Horizontal Stress [MPa] -11.25
o Vertical Stress [MPa] -15.0
ag Initial Well Radius [m] 0.1
Pw Mud Pressure [MPa] -2.0

The validation of GEOS results against analytical results is shown in the figure below:
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Fig. 1.45: Validation of GEOS results.

To go further

Feedback on this example

This concludes the example on Plasticity Model for Wellbore Problems. For any feedback on this example, please
submit a GitHub issue on the project’s GitHub page.
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Modified Cam-Clay Model for Wellbore Problems

Context

In this benchmark example, the Modified Cam-Clay model (see Model: Modified Cam-Clay) is applied to solve for
elastoplastic deformation within the vicinity of a vertical wellbore. For the presented example, an analytical solution is
employed to verify the accuracy of the numerical results. The resulting model can be used as a base for more complex
analysis (e.g., wellbore drilling, fluid injection and storage scenarios).

Input file

Everything required is contained within two GEOS input files located at:

[inputFiles/solidMechanics/Modi fiedCamClayWellbore_base.xml ]
[inputFiles/solidMechanics/Modi fiedCamClayWellbore_benchmark.xml ]

Description of the case

We simulate a drained wellbore problem subjected to isotropic horizontal stress (o7,) and vertical stress (o), as shown
below. By increasing the wellbore supporting pressure (P, ), the wellbore expands, and the formation rock experiences
elastoplastic deformation. A plastic zone develops in the near wellbore region.

7

Fig. 1.46: Sketch of the wellbore problem

To simulate this phenomenon, the Modified Cam-Clay model is used in this example. Displacement and stress fields
around the wellbore are numerically calculated. These numerical predictions are then compared with the corresponding
analytical solutions (Chen and Abousleiman, 2013) from the literature.

In this example, we focus our attention on the Mesh tags, the Constitutive tags, and the FieldSpecifications
tags.
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Mesh

Following figure shows the generated mesh that is used for solving this wellbore problem.

Fig. 1.47: Generated mesh for a vertical wellbore problem

Let us take a closer look at the geometry of this wellbore problem. We use the internal wellbore mesh generator
InternalWellbore to create a rock domain (10m x 5m x 2m), with a wellbore of initial radius equal to 0.1
m. Coordinates of trajectory defines the wellbore trajectory, which represents a vertical well in this example. By
turning on autoSpaceRadialElems="{ 1 }", the internal mesh generator automatically sets number and spacing
of elements in the radial direction, which overrides the values of nr. With useCartesianOuterBoundary="0", a
Cartesian aligned outer boundary on the outer block is enforced. In this way, a structured three-dimensional mesh is
created with 50 x 40 x 2 elements in the radial, tangential and z directions, respectively. All the elements are eight-node
hexahedral elements (C3D8) and refinement is performed to conform with the wellbore geometry. This mesh is defined
as a cell block with the name cb1.

<Mesh>
<InternalWellbore
name="mesh1l"
elementTypes="4{ C3D8 }"
radius="{ 0.1, 5.0 }"
theta="{ 0, 180 }"
zCoords="{ -1, 1 "

nr:ll{ 40 }ll

nt="{ 40 }"

nz="{ 2 }"

trajectory="{ { 0.0, 0.0, -1.0 },
{ 0.0, 0.0, 1.0 } }"

autoSpaceRadialElems="{ 1 }"

useCartesianOuterBoundary="0"

cellBlockNames="{ cbl }"/>
</Mesh>
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Solid mechanics solver

For the drained wellbore problem, the pore pressure variation is omitted. Therefore, we just need to define a solid
mechanics solver, which is called mechanicsSolver. This solid mechanics solver (see Solid Mechanics Solver) is
based on the Lagrangian finite element formulation. The problem is run as QuasiStatic without considering inertial
effects. The computational domain is discretized by FE1, which is defined in the NumericalMethods section. The
material is named as rock, whose mechanical properties are specified in the Constitutive section.

<Solvers
gravityVector="{ 0.0, 0.0, 0.0 }">
<SolidMechanicsLagrangianFEM
name="mechanicsSolver"
timeIntegrationOption="QuasiStatic"
logLevel="1"
discretization="FE1"
targetRegions="{ Omega }"
>
<LinearSolverParameters
directParallel="0"/>
<NonlinearSolverParameters
newtonTol="1.0e-5"
newtonMaxIter="15"/>
</SolidMechanicsLagrangianFEM>
</Solvers>

Constitutive laws

For this drained wellbore problem, we simulate the elastoplastic deformation caused by wellbore expansion. A homo-
geneous domain with one solid material is assumed, whose mechanical properties are specified in the Constitutive
section:

<Constitutive>

<ModifiedCamClay
name="rock"
defaultDensity="2700"
defaultRefPressure="-1.2e5"
defaultRefStrainVol="-0.0"
defaultShearModulus="4.302e6"
defaultPreConsolidationPressure="-1.69e5"
defaultCslSlope="1.2"
defaultVirginCompressionIndex="0.072676"
defaultRecompressionIndex="0.014535"

/>

</Constitutive>

Recall that in the SolidMechanicsLagrangianFENM section, rock is designated as the material in the computational
domain. Here, Modified Cam-Clay ModifiedCamClay is used to simulate the elastoplastic behavior of rock.

The following material parameters should be defined properly to reproduce the analytical example:
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XML Element: ModifiedCamClay

Name Type De- Description
fault
defaultCslSlope real64 1 Slope of the critical state line
defaultDensity real64 re- Default Material Density
quired
defaultDrainedLinearTEC real64 0 Default Linear Thermal Expansion Coefficient of the Solid
Rock Frame
defaultPreConsolidation- real64 -1.5 Initial preconsolidation pressure
Pressure
defaultRecompressionIn- real64 0.002  Recompresion Index
dex
defaultRefPressure real64 -1 Reference Pressure
defaultRefStrain Vol real64 0 Reference Volumetric Strain
defaultShearModulus real64 -1 Elastic Shear Modulus Parameter
defaultVirginCompres- real64 0.005 Virgin compression index
sionIndex
name group- re- A name is required for any non-unique nodes
Name quired

The constitutive parameters such as the density, the bulk modulus, and the shear modulus are specified in the Interna-
tional System of Units.

Initial and boundary conditions

The next step is to specify fields, including:
¢ The initial value (the in-situ stresses and traction at the wellbore wall have to be initialized)

¢ The boundary conditions (the reduction of wellbore pressure and constraints of the outer boundaries have to be
set)

In this tutorial, we need to specify isotropic horizontal stress (o}, = -100 kPa) and vertical stress (o, = -160 kPa). To
reach equilibrium, a compressive traction P,, = -100 kPa is instantaneously applied at the wellbore wall rneg at time
t = 0 s, which will then be gradually increased to a higher value (-300 kPa) to let wellbore expand. The remaining
parts of the outer boundaries are subjected to roller constraints. These boundary conditions are set up through the
FieldSpecifications section.

<FieldSpecifications>
<FieldSpecification

name="stressXX"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions"
fieldName="rock_stress"
component="0"
scale="-1.0e5"/>

<FieldSpecification
name="stressYY"
initialCondition="1"
setNames="{ all }"

(continues on next page)
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(continued from previous page)
objectPath="ElementRegions"
fieldName="rock_stress"
component="1"
scale="-1.0e5"/>

<FieldSpecification
name="stressZzZ"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions"
fieldName="rock_stress"
component="2"
scale="-1.6e5"/>

<Traction
name="ExternalLoad"
setNames="{ rneg }"
objectPath="faceManager"
scale="-1.0e5"
tractionType="normal"
functionName="timeFunction"/>

<FieldSpecification
name="xconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"
scale="0.0"
setNames="{ xneg, xpos }"/>

<FieldSpecification
name="yconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"
scale="0.0"
setNames="{ tneg, tpos, ypos }"/>

<FieldSpecification

name="zconstraint"

objectPath="nodeManager"

fieldName="totalDisplacement"

component="2"

scale="0.0"

setNames="{ zneg, zpos }"/>
</FieldSpecifications>

With tractionType="normal", traction is applied to the wellbore wall rneg as a pressure specified from the product
of scale scale="-1.0e5" and the outward face normal. A table function timeFunction is used to define the time-
dependent traction ExternalLoad. The coordinates and values form a time-magnitude pair for the loading time
history. In this case, the loading magnitude increases linearly as the time evolves.
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<Functions>
<TableFunction
name="timeFunction"
inputVarNames="{ time }"
coordinates="{ 0.0, 1.0 }"
values="{ 1.0, 3.0 }"/>
</Functions>

You may note :
¢ All initial value fields must have initialCondition field setto 1;
* The setName field points to the previously defined set to apply the fields;

* nodeManager and faceManager in the objectPath indicate that the boundary conditions are applied to the
element nodes and faces, respectively;

» fieldName is the name of the field registered in GEOS;
e Component 0, 1, and 2 refer to the X, y, and z direction, respectively;
* And the non-zero values given by scale indicate the magnitude of the loading;

* Some shorthand, such as xneg and xpos, are used as the locations where the boundary conditions are applied
in the computational domain. For instance, xneg means the face of the computational domain located at the
left-most extent in the x-axis, while xpos refers to the face located at the right-most extent in the x-axis. Similar
shorthands include ypos, yneg, zpos, and zneg;

* The mud pressure loading has a negative value due to the negative sign convention for compressive stress in
GEOS.

The parameters used in the simulation are summarized in the following table.

Symbol Parameter Units  Value
P, Reference Pressure [kPa] 120

G Shear Modulus [kPa] 4302

P, PreConsolidation Pressure [kPa] 169

M Slope of CSL [-] 1.2

@e Virgin Compression Index  [-] 0.072676
Cr Recompression Index [-] 0.014535
oh, Horizontal Stress [kPa] -100

Ou Vertical Stress [kPa] -160

ap Initial Well Radius [m] 0.1

1B Mud Pressure [kPa] -300

Inspecting results

In the above example, we requested silo-format output files. We can therefore import these into VisIt and use python
scripts to visualize the outcome. The following figure shows the distribution of 0y in the near wellbore region.

The figure below shows the comparisons between the numerical predictions (marks) and the corresponding analyti-
cal solutions (solid curves) with respect to the distributions of normal stress components, stress path, the supporting
wellbore pressure and wellbore size. It is evident that the predictions well match the analytical results.
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Fig. 1.48: Simulation result of ggg
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To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page.

Deviated Poro-Elastic Wellbore Subjected to Fluid Injection

Problem description

This example aims to solve a typical injection problem of a deviated wellbore subjected to a fluid pressure loaded at
wellbore wall. The problem geometry is generated with the internal wellbore mesh generator. Open hole completion
and poroelastic deformation are assumed. The coupled poroelastic solver, which combines the solid mechanics solver
and the single phase flow solver, is hereby employed to solve this specific problem. In-situ stresses and gravity effect
are excluded from this example. Please refer to the case Deviated Poro-Elastic Wellbore Subjected to In-situ Stresses
and Pore Pressure for in-situ stresses and pore pressure effects.

Analytical solutions of the pore pressure, the radial and hoop stresses in the near wellbore region are expressed in the
Laplace space as (Detournay and Cheng, 1988) :

~ ko(Rys)
p=ro sko(+/s)

1—2v  —Rki(Rys) + ki(Vs)

Orp = —b
L= Rk (v/5)
1-—2v
gge = —b P — Opr
1—v

where s is the Laplace variable normalized by the fluid diffusion coefficient, ky and k, are respectively the modified
Bessel functions of second kind of order O and 1, R is the dimensionless radial coordinate that is defined by the radial
coordinate normalized by the wellbore radius, v is the Poisson ratio and b is the Biot coefficient. Fluid pressure and
stresses in time space are obtained from these analytical expressions by the inverse Laplace transform (see the attached
Python script for more details).
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Input file

Everything required is contained within two GEOS xml files that are located at:

[inputFi les/wellbore/DeviatedPoroElasticWellbore_Injection_base.xml

[inputFi les/wellbore/DeviatedPoroElasticWWellbore_Injection_benchmark.xml

In this example, we would focus our attention on the Solvers and the Mesh tags.

Poroelastic solver

The coupled Poroelastic solver, that defines a coupling strategy between the solid mechanics solver
SolidMechanicsLagrangianFEM and the single phase flow solver SinglePhaseFVl, is required for solving this
wellbore problem.

<SinglePhasePoromechanics
name="poroSolve"
solidSolverName="1lagsolve"
flowSolverName="SinglePhaseFlow"
logLevel="1"
targetRegions="{ Omega }">

<SolidMechanicsLagrangianFEM
name="1lagsolve"
timeIntegrationOption="QuasiStatic"
discretization="FE1"
logLevel="0"
targetRegions="{ Omega }"
>

<SinglePhaseFVM
name="SinglePhaseFlow"
logLevel="1"
discretization="singlePhaseTPFA"
targetRegions="{ Omega }">

Deviated wellbore mesh

The internal wellbore mesh generator InternalWellbore is employed to create the mesh of this wellbore problem.
The radius of the wellbore and the size of the surrounding rock formation are defined by a vector radius. In the tangent
direction, theta angle is specified from 0 to 180 degree for a half of the domain regarding its symmetry. Note that the
whole domain could be specified with a theta angle from 0 to 360 degree, if modeling complicated scenarios. The
trajectory of the well is defined by trajectory. In this example, the wellbore is inclined in the x-z plane by an angle
of 45 degree. The autoSpaceRadialElems parameter allows optimally increasing the element size from local zone
around the wellbore to the far-field zone, which is set to 1 to activate this option. The useCartesianOuterBoundary
transforms the far-field boundary to a squared shape to enforce a Cartesian aligned outer boundary, which eases the
loading of the far-field boundary conditions. In this example, this value is set to O for the single region along the radial
direction.

<Mesh>
<InternalWellbore
name="mesh1"

(continues on next page)
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elementTypes="{ C3D8 }"
radius="{ 0.1, 4 }"
theta="{ 0, 180 }"
zCoords="{ -1, 1 "

nr="{ 30 }"
nt="{ 80 }"
nz="{ 10 }"
trajectory="{ { -1.0, 0.0, -1.0 },
{ 1.0, 0.0, 1.0 } "

autoSpaceRadialElems="{ 1 }"

useCartesianOuterBoundary="0"

cellBlockNames="{ cbl }"/>
</Mesh>

Constitutive law

Isotropic elastic constitutive block ElasticIsotropic, with the specified bulk and shear elastic moduli, is considered
for the rock around the wellbore. Fluid properties, such as dynamic viscosity and compressibility, are given in the
CompressibleSinglePhaseFluid constitutive block. The grain bulk modulus, that is required for computing the
Biot coeflicient, as well as the default porosity are located in the BiotPorosity block. The constant permeability is
given in the ConstantPermeability block

<PorousElasticIsotropic
name="porousRock"
solidModelName="rock"
porosityModelName="rockPorosity"
permeabilityModelName="rockPerm" />

<ElasticIsotropic
name="rock"
defaultDensity="0"
defaultBulkModulus="11039657020.4"
defaultShearModulus="8662741799.83"/>

<!-- BiotCoefficient="0.771"
BiotModulus=15.8e9 -->

<CompressibleSinglePhaseFluid
name="water"
defaultDensity="1000"
defaultViscosity="0.001"
referencePressure="0e6"
compressibility="1.78403329184e-10"
viscosibility="0.0"/>

<BiotPorosity
name="rockPorosity"
defaultGrainBulkModulus="48208109259"
defaultReferencePorosity="0.3"/>

<ConstantPermeability
name="rockPerm"
permeabilityComponents="{ 1.0e-17, 1.0e-17, 1.0e-17 }"/>

266 Chapter 1. Table of Contents




GEOS Documentation

Boundary conditions

Far-field boundaries are impermeable and subjected to roller constraints. The pressure on the wellbore wall is defined
by face pressure field specification. The nodeset generated by the internal wellbore generator for this face is named
as rneg. The negative sign of the scale denotes the fluid injection. Initial fluid pressure and the corresponding initial
porosity are also given for the computational domain. In this example, uniform isotropic permeability is assumed.

<FieldSpecifications>
<FieldSpecification

name="initialPorosity"
initialCondition="1"
setNames="{all}"
objectPath="ElementRegions/Omega/cbhl"
fieldName="rockPorosity_porosity"
scale="0.3"/>

<FieldSpecification
name="initialPressure"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/Omega/cbl"
fieldName="pressure"
scale="0e6"/>

<FieldSpecification
name="xConstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"
scale="0.0"
setNames="{ xneg, xpos }"/>

<FieldSpecification
name="yConstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"
scale="0.0"
setNames="{ tneg, tpos, ypos }"/>

<FieldSpecification
name="zconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="2"
scale="0.0"
setNames="{ zneg, zpos }"/>

<FieldSpecification
name="innerPorePressure"
objectPath="faceManager"
fieldName="pressure"
scale="10e6"
setNames="{ rneg }"/>

(continues on next page)
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{ </FieldSpecifications>

Results and benchmark

Result of the fluid pressure distribution after 78 s injection is shown in the figure below:

DB-plet-00010200
Cycle:r102——Time: 78

i

A good agreement between the GEOS results and the corresponding analytical solutions is shown in the figure below:

To go further

Feedback on this example

This concludes the deviated poro-elastic wellbore example. For any feedback on this example, please submit a GitHub
issue on the project’s GitHub page.

Deviated Poro-Elastic Wellbore Subjected to In-situ Stresses and Pore Pressure
Problem description

This example deals with the problem of drilling a deviated poro-elastic wellbore. This is an extension of the poroelastic
wellbore example Deviated Poro-Elastic Wellbore Subjected to Fluid Injection with the consideration of in-situ stresses
and in-situ pore pressure. Both pore pressure and mud pressure are supposed to be nil at the borehole wall following
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the consideration of (Abousleiman and Cui, 1998). Also, the in-situ horizontal stresses are anisotropic, i.e. Tpmar >
Ohmin- The wellbore trajectory is deviated from the directions of the in-situ stresses. Analytical solutions of the pore
pressure, the radial and hoop stresses in the near wellbore region are given by (Abousleiman and Cui, 1998). They are

hereby used to verify the modeling predictions.
Input file

Everything required is contained within two GEOS xml files that are located at:

[inputFi1es/wel1bore/DeviatedPoroE1asticWellbore_Drilling_base.xml

)

[inputFi1es/wellbore/DeviatedPoroElasticWellbore_Drilling_benchmark.xml

)

This case is nearly identical to another example Deviated Poro-Elastic Wellbore Subjected to Fluid Injection, except for

the FieldSpecifications tag. For this specific case, we need to consider following additional field specifications to

define the in-situ stresses, in-situ pore pressure, as well as the zero pore pressure at the borehole wall.

<FieldSpecification
name="initialPorePressure"
initialCondition="1"
setNames="{all}"
objectPath="ElementRegions/Omega/cbl"
fieldName="pressure"
scale="10e6" />

<FieldSpecification
name="Sx"
initialCondition="1"
setNames="{all}"
objectPath="ElementRegions/Omega/cbhl"
fieldName="rock_stress"
component="0"
scale="-21.9e6"/>

<FieldSpecification
name="Sy"
initialCondition="1"
setNames="{all}"
objectPath="ElementRegions/Omega/cbl"
fieldName="rock_stress"
component="1"
scale="-12.9e6"/>

<FieldSpecification
name="Sz"
initialCondition="1"
setNames="{all}"
objectPath="ElementRegions/Omega/cbl"
fieldName="rock_stress"
component="2"
scale="-17.9e6"/>

<FieldSpecification
name="innerPorePressure"

(continues on next page)
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objectPath="faceManager"
fieldName="pressure"
scale="0e6"

setNames="{ rneg }"/>

Results and benchmark

Pore pressure distribution after 78 s injection is shown in the figure below:

DB: plot_00010200
Cycle: 102  Time:78

Pseudocolor
Var. Omega_ElermmentFields/pressure
1.000e+07

— 7.500e+06

—5.000e+06

—2.500e+06

o

A good agreement between the GEOS results and the corresponding analytical solutions (Abousleiman and Cui, 1998)
is shown in the figure below:

To go further

Feedback on this example

This concludes the deviated poro-elastic wellbore example with in-situ stresses and pore pressure effects. For any
feedback on this example, please submit a GitHub issue on the project’s GitHub page.
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Vertical PoroElasto-Plastic Wellbore Problem

Context

The main objective of this example is to demonstrate how to use the internal wellbore mesh generator and poromechan-
ical solvers in GEOS to tackle wellbore problems in porous media. In this example, a poroplastic model is applied to
find the solution of rock deformation within the vicinity of a vertical wellbore, considering elastoplastic deformation,
fluid diffusion and poromechanical coupling effect. To do so, a single phase flow solver is fully coupled with a La-
grangian mechanics solver and the Extended Drucker-Prager model (see Model: Extended Drucker-Prager) is chosen
as the material model for the solid domain. We first solve this problem with a poroelastic model and verify the modeling
results with the corresponding analytical solutions. Then, the verified case is modified to test a poroplastic version,
whose results are compared with the ones obtained from the poroelastic case to highlight the impact of plasticity in this
specific problem.

Objectives
At the end of this example you will know:
* how to construct meshes for wellbore problems with the internal wellbore mesh generator,

* how to specify initial and boundary conditions, such as reservoir properties, in-situ stresses, mixed loading (me-
chanical and fluid) at wellbore wall and far-field constraints,

* how to use multiple solvers in GEOS for predicting poroplastic deformations in the near wellbore region.
Input file
This example uses no external input files and everything required is contained within a single GEOS input file.

The xml input files for the test case with poroelasticity are located at:

inputFiles/poromechanics/PoroElasticWellbore_base.xml
inputFiles/poromechanics/PoroElasticWellbore_benchmark.xml

The xml input files for the test case with poroplasticity are located at:

inputFiles/poromechanics/PoroDruckerPragerWellbore_base.xml
inputFiles/poromechanics/PoroDruckerPrageriellbore_benchmark.xml

Description of the case

We simulate the wellbore problem subjected to anisotropic horizontal stress (o, and o) and vertical stress (o), as
shown below. This is a vertical wellbore, which is drilled in a porous medium. By changing the wellbore supporting
pressure, the mechanical deformation of the reservoir rock will be induced and evolve with time, due to fluid diffusion
and coupling effect. Considering inelastic constitutive behavior, the reservoir rock in the near wellbore region will
experience elastoplastic deformation and a plastic zone will be developed and expand with time. To setup the base
case, a poroelastic version is employed to find the poroelastic solutions of this wellbore problem, which are verified
with the analytical solution (Detournay and Cheng, 1993) from the literature. Following that, a poroplastic version is
built and used to obtain the temporal and spatial solutions of pore pressure, displacement and stress fields around the
wellbore, considering induced plastic deformation.

All inputs for this case are contained inside a single XML file. In this example, we focus our attention on the Mesh
tags, the Solver tags, the Constitutive tags, and the FieldSpecifications tags.
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7

Fig. 1.49: Sketch of the wellbore problem

Mesh

The following figure shows the generated mesh that is used for solving this wellbore problem

Let us take a closer look at the geometry of this wellbore problem. We use the internal mesh generator
InternalWellbore to create a rock domain (10m x 5m X 2m), with a wellbore of initial radius equal to 0.1 m.
Coordinates of trajectory defines the wellbore trajectory, which represents a perfect vertical well in this example.
By turning on autoSpaceRadialElems="{ 1 }",the internal mesh generator automatically sets number and spacing
of elements in the radial direction, which overrides the values of nr. With useCartesianOuterBoundary="0", a
Cartesian aligned outer boundary on the outer block is enforced. In this way, a structured three-dimensional mesh is
created with 100 x 80 x 2 elements in the radial, tangential and z directions, respectively. All the elements are eight-
node hexahedral elements (C3D8) and refinement is performed to conform with the wellbore geometry. This mesh is
defined as a cell block with the name cb1.

<Mesh>

<InternalWellbore
name="mesh1"
elementTypes="{ C3D8 }"
radius="{ 0.1, 5.0 }"
theta="{ 0, 180 }"
zCoords="{ -1, 1 }"

nr="{ 40 }"
nt="{ 80 }"
I1Z=ll{ 2 }ll
trajectory="{ { 0.0, 0.0, -1.0 },
{ 0.0, 0.0, 1.0 } "

autoSpaceRadialElems="{ 1 }

useCartesianOuterBoundary="0"

cellBlockNames="{ cbl }"/>
</Mesh>
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Fig. 1.50: Generated mesh for the wellbore problem

Solid mechanics solver

GEOS is a multi-physics platform. Different combinations of physics solvers available in the code can be applied in
different regions of the domain and be functional at different stages of the simulation. The Solvers tag in the XML
file is used to list and parameterize these solvers.

To specify a coupling between two different solvers, we define and characterize each single-physics solver separately.
Then, we customize a coupling solver between these single-physics solvers as an additional solver. This approach
allows for generality and flexibility in constructing multi-physics solvers. The order of specifying these solvers is not
restricted in GEOS. Note that end-users should give each single-physics solver a meaningful and distinct name, as
GEOS will recognize these single-physics solvers based on their customized names and create user-expected coupling.

As demonstrated in this example, to setup a poromechanical coupling, we need to define three different solvers in the
XML file:

* the mechanics solver, a solver of type SolidMechanicsLagrangianFENM called here mechanicsSolver (more
information here: Solid Mechanics Solver),

<SolidMechanicsLagrangianFEM
name="mechanicsSolver"
timeIntegrationOption="QuasiStatic"
logLevel="1"
discretization="FE1"
targetRegions="{ Omega }"
>
<NonlinearSolverParameters
newtonTol = "1.0e-5"
newtonMaxIter = "15"
/>

</SolidMechanicsLagrangianFEM>

* the single-phase flow solver, a solver of type SinglePhaseFVM called here SinglePhaseFlowSolver (more
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information on these solvers at Singlephase Flow Solver),

<SinglePhaseFVM
name="SinglePhaseFlowSolver"
logLevel="1"
discretization="singlePhaseTPFA"
targetRegions="{Omega}">
<NonlinearSolverParameters
newtonTol = "1.0e-6"
newtonMaxIter = "8"
/>
</SinglePhaseFVM>
</Solvers>

¢ the coupling solver (SinglePhasePoromechanics) that will bind the two single-physics solvers above, which
is named as PoromechanicsSolver (more information at Poromechanics Solver).

<Solvers gravityVector="{0.0, 0.0, 0.0}">
<SinglePhasePoromechanics
name="PoromechanicsSolver"
solidSolverName="mechanicsSolver"
flowSolverName="SinglePhaseFlowSolver"
logLevel="1"
targetRegions="{Omega}">
<LinearSolverParameters
solverType="direct"
directParallel="0"

logLevel="0"
/>
<NonlinearSolverParameters
newtonMaxIter = "40"
/>

</SinglePhasePoromechanics>

The two single-physics solvers are parameterized as explained in their corresponding documents.

In this example, let us focus on the coupling solver. This solver (PoromechanicsSolver) uses a set of attributes that
specifically describe the coupling process within a poromechanical framework. For instance, we must point this solver
to the designated fluid solver (here: SinglePhaseFlowSolver) and solid solver (here: mechanicsSolver). These
solvers are forced to interact through the porousMaterialNames="{porousRock}" with all the constitutive models.
We specity the discretization method (FE1, defined in the NumericalMethods section), and the target regions (here,
we only have one, Omega). More parameters are required to characterize a coupling procedure (more information at
Poromechanics Solver). In this way, the two single-physics solvers will be simultaneously called and executed for
solving the wellbore problem here.

Discretization methods for multiphysics solvers

Numerical methods in multiphysics settings are similar to single physics numerical methods. In this problem, we use
finite volume for flow and finite elements for solid mechanics. All necessary parameters for these methods are defined
in the NumericalMethods section.

As mentioned before, the coupling solver and the solid mechanics solver require the specification of a discretization
method called FE1. In GEOS, this discretization method represents a finite element method using linear basis functions
and Gaussian quadrature rules. For more information on defining finite elements numerical schemes, please see the
dedicated Finite Element Discretization section.
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The finite volume method requires the specification of a discretization scheme. Here, we use a two-point flux ap-
proximation scheme (singlePhaseTPFA), as described in the dedicated documentation (found here: Finite Volume
Discretization).

<NumericalMethods>
<FiniteElements>
<FiniteElementSpace
name="FE1"
order="1"/>
</FiniteElements>
<FiniteVolume>
<TwoPointFluxApproximation
name="singlePhaseTPFA"
/>
</FiniteVolume>
</NumericalMethods>

Constitutive laws

For this test problem, the solid and fluid materials are named as rock and water respectively, whose mechanical
properties are specified in the Constitutive section. In this example, different material models, linear elastic isotropic
model (see Model: Elastic Isotropic) and Extended Drucker-Prager model (see Model: Extended Drucker-Prager), are
used to solve the mechanical deformation, which is the only difference between the poroelastic and poroplastic cases
in this example.

For the poroelastic case, PorousElasticIsotropic model is used to describe the linear elastic isotropic response
of rock to loading. And the single-phase fluid model CompressibleSinglePhaseFluid is selected to simulate the
flow of water upon injection:

<Constitutive>

<PorousElasticIsotropic
name="porousRock"
solidModelName="rock"
porosityModelName="rockPorosity"
permeabilityModelName="rockPerm"

/>

<ElasticIsotropic
name="rock"
defaultDensity="2700"
defaultBulkModulus="1.1111e10"
defaultShearModulus="8.3333e9"

/>

<CompressibleSinglePhaseFluid
name="water"
defaultDensity="1000"
defaultViscosity="0.001"
referencePressure="0e6"
referenceDensity="1000"
compressibility="2.09028227021e-10"
referenceViscosity="0.001"
viscosibility="0.0"

/>

<BiotPorosity
name="rockPorosity"

(continues on next page)
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(continued from previous page)
defaultGrainBulkModulus="1.0e27"
defaultReferencePorosity="0.3"
/>
<ConstantPermeability
name="rockPerm"
permeabilityComponents="{1.0e-20, 1.0e-20, 1.0e-20}"
/>

</Constitutive>

For the poroplastic case, PorousExtendedDruckerPrager model is used to simulate the elastoplastic behavior of
rock. And the single-phase fluid model CompressibleSinglePhaseFluid is employed to handle the storage and
flow of water:

<Constitutive>

<PorousExtendedDruckerPrager
name="porousRock"
solidModelName="rock"
porosityModelName="rockPorosity"
permeabilityModelName="rockPerm"

/>

<ExtendedDruckerPrager
name="rock"
defaultDensity="2700"
defaultBulkModulus="1.1111el10"
defaultShearModulus="8.3333e9"
defaultCohesion="1.0e6"
defaultInitialFrictionAngle="15.27"
defaultResidualFrictionAngle="23.05"
defaultDilationRatio="1.0"
defaultHardening="0.01"

/>

<CompressibleSinglePhaseFluid
name="water"
defaultDensity="1000"
defaultViscosity="0.001"
referencePressure="0e6"
referenceDensity="1000"
compressibility="2.09028227021e-10"
referenceViscosity="0.001"
viscosibility="0.0"

/>

<BiotPorosity
name="rockPorosity"
defaultGrainBulkModulus="1.0e27"
defaultReferencePorosity="0.3"

/>

<ConstantPermeability
name="rockPerm"
permeabilityComponents="{1.0e-20, 1.0e-20, 1.0e-20}"

/>

</Constitutive>

As for the material parameters, defaultInitialFrictionAngle, defaultResidualFrictionAngle and
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defaultCohesion denote the initial friction angle, the residual friction angle, and cohesion, respectively, as de-
fined by the Mohr-Coulomb failure envelope. As the residual friction angle defaultResidualFrictionAngle is
larger than the initial one defaultInitialFrictionAngle, a strain hardening model is automatically chosen, whose
hardening rate is given as defaultHardening="0.01". If the residual friction angle is set to be less than the initial
one, strain weakening will take place. defaultDilationRatio="1.0" corresponds to an associated flow rule. If
using an incompressible fluid, the user can lower the fluid compressibility compressibility to 0. The constitutive
parameters such as the density, the bulk modulus, and the shear modulus are specified in the International System of
Units. A stress-dependent porosity model rockPorosity and constant permeability rockPerm model are defined in
this section.

Initial and boundary conditions

The next step is to specify fields, including:
* The initial value (the in-situ stresses and pore pressure have to be initialized)

* The boundary conditions (traction and fluid loading at the wellbore wall and constraints of the outer boundaries
have to be set)

In this example, we need to specify anisotropic horizontal stress (o}, = -9.0 MPa and o = -11.0 MPa) and verti-
cal stress (o, = -12.0 MPa). A compressive traction (InnerMechanicalload) P, = -10 MPa and fluid loading
(InnerFluidLoad) Py = 10 MPa are applied at the wellbore wall rneg. The remaining parts of the outer bound-
aries are subjected to roller constraints. These boundary conditions are set up through the FieldSpecifications
section.

<FieldSpecifications>
<FieldSpecification

name="stressXX"
initialCondition="1"
setNames="{all}"
objectPath="ElementRegions/Omega/ch1l"
fieldName="rock_stress"
component="0"
scale="-9.0e6"

/>

<FieldSpecification
name="stressYY"
initialCondition="1"
setNames="{all}"
objectPath="ElementRegions/Omega/ch1l"
fieldName="rock_stress"
component="1"
scale="-11.0e6"
/>

<FieldSpecification
name="stresszZzZ"
initialCondition="1"
setNames="{all}"
objectPath="ElementRegions/Omega/cbh1l"
fieldName="rock_stress"
component="2"
scale="-12.0e6"
/>

(continues on next page)
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<FieldSpecification
name="initialPressure"
initialCondition="1"
setNames="{all}"
objectPath="ElementRegions/Omega/cbl"
fieldName="pressure"
scale="0e6"

/>

<FieldSpecification
name="xconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"
scale="0.0"
setNames="{xneg, xpos}"

/>

<FieldSpecification
name="yconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"
scale="0.0"
setNames="{tneg, tpos, ypos}"
/>

<FieldSpecification
name="zconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="2"
scale="0.0"
setNames="{zneg, zpos}"

/>

<Traction
name="InnerMechanicallLoad"
setNames="{ rneg }"
objectPath="faceManager"
scale="-10.0e6"
tractionType="normal"
functionName="timeFunction"

/>

<FieldSpecification
name="InnerFluidLoad"
setNames="{ rneg }"
objectPath="faceManager"
fieldName="pressure"
scale="10e6"

(continues on next page)
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functionName="timeFunction"
/>

</FieldSpecifications>

With tractionType="normal", traction is applied to the wellbore wall rneg as a pressure specified from the product
of scale scale="-10.0e6" and the outward face normal. A table function timeFunction is used to define the time-
dependent loading. The coordinates and values form a time-magnitude pair for the loading time history. In this
case, the loading magnitude is given as:

<Functions>
<TableFunction
name="timeFunction"
inputVarNames="{time}"
coordinates="{0.0, 0.1, le6}"
values="{0.0, 1.0, 1.0}"
/>

</Functions>

You may note :
¢ All initial value fields must have initialCondition field set to 1;
* The setName field points to the previously defined box to apply the fields;

* nodeManager and faceManager in the objectPath indicate that the boundary conditions are applied to the
element nodes and faces, respectively;

e fieldName is the name of the field registered in GEOS;
e Component 0, 1, and 2 refer to the X, y, and z direction, respectively;
* And the non-zero values given by scale indicate the magnitude of the loading;

* Some shorthands, such as xneg and xpos, are used as the locations where the boundary conditions are applied
in the computational domain. For instance, xneg means the portion of the computational domain located at the
left-most in the x-axis, while xpos refers to the portion located at the right-most area in the x-axis. Similar
shorthands include ypos, yneg, zpos, and zneg;

* The mud pressure loading has a negative value due to the negative sign convention for compressive stress in
GEOS.

The parameters used in the simulation are summarized in the following table, which are specified in the Constitutive
and FieldSpecifications sections.
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Symbol Parameter Unit Value

K Bulk Modulus [GPa] 11.11

G Shear Modulus [GPa] 8.33

C Cohesion [MPa] 1.0

b; Initial Friction Angle [degree] 15.27

b Residual Friction Angle [degree] 23.05

ch Hardening Rate [-] 0.01

op, Min Horizontal Stress [MPa] 9.0

OH Max Horizontal Stress [MPa] -11.0

Oy Vertical Stress [MPa] -12.0

ag Initial Well Radius [m] 0.1

P, Traction at Well [MPa] -10.0

Py Fluid Pressure at Well [MPa] 10.0

Pf Fluid Density [kg/m3]  1000.0

1 Fluid Viscosity [Pa s] 0.001

cf Fluid Compressibility [Pa'] 2.09%10°10
K Matrix Permeability [m?] 1.0¥10°%0
¢ Porosity [-] 0.3

Inspecting results

As defined in the Events section, we run this simulation for 497640 seconds. In the above examples, we requested silo-
format output files. We can therefore import these into Vislt and use python scripts to visualize the outcome. Please
note that a non-dimensional time is used in the analytical solution, and the end time here leads to a non-dimensional
end time of t* = 4.62.

Using the poroelastic solver, below figure shows the prediction of pore pressure distribution upon fluid injection.

For the above poroelastic example, an analytical solution (Detournay and Cheng, 1993) is hereby employed to verify
the accuracy of the numerical results. Following figure shows the comparisons between the numerical predictions
(marks) and the corresponding analytical solutions (solid curves) with respect to the distributions of pore pressure,
radial displacement, effective radial and tangential stresses along the minimum horizontal stress direction (x-axis).
One can observe that GEOS results correlate very well with the analytical solutions for the poroelastic case.

For the same 3D wellbore problem, the poroplastic case is thereafter tested and compared with the poroelastic one.
The figure below shows the distribution of o, in the near wellbore region for both cases. As expected, a relaxation of
the tangential stress along the direction of minimum horizontal stress is detected, which can be attributed to the plastic
response of the rock.

By using python scripts, we can extract the simulation results along any direction and provide detailed comparisons
between different cases. Here, the pore pressure, radial displacement, radial and tangential effective stresses along
the direction of minimum horizontal stress are obtained at different time steps and plotted against the corresponding
ones of the poroelastic case. Because of fluid diffusion and coupling effect, following figure shows that these solutions
evolve with time for both cases. As mentioned above, a plastic zone is developed in the vicinity of the wellbore, due
to stress concentration. As for the far field region, these two cases become almost identical, with the rock deformation
governed by poroelasticity.

To go further

Feedback on this example

This concludes the example on PoroPlasticity Model for Wellbore Problems. For any feedback on this example, please
submit a GitHub issue on the project’s GitHub page.

For more details
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Fig. 1.51: Simulation result of pore pressure distribution
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Fig. 1.52: Comparing GEOS results with analytical solutions
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Fig. 1.54: Comparing the PoroPlastic case with the PoroElastic case at different times

* More on plasticity models, please see Model: Extended Drucker-Prager.

* More on multiphysics solvers, please see Poromechanics Solver.

Pure Thermal Diffusion Around a Wellbore
Problem description

This example uses the thermal single-phase flow solver to model a pure thermal diffusion problem around a wellbore.
To mimic this specific problem, thermal convection and fluid flow are neglected by setting fluid pressure and fluid heat
capacity to zero. With a uniform temperature applied on the inner surface of the wellbore, temperature field would
radially diffuse as shown in the figure below:

Analytical results of the temperature profile along the radial direction is given by (Wang and Papamichos, 1994) :
r—= Rzn
2\/ CTt

where r is the radial coordinate, Tj,, is the temperature applied on the surface of the wellbore at r = R;,, cr is the
thermal diffusion coefficient of rock, which is defined as the ratio between the thermal conductivity and the volumetric
heat capacity of rock.

T(r) =T %erfc( )

Input file

This benchmark example uses no external input file and everything required is contained within two GEOS xml files
that are located at:

[inputFi les/singlePhaseFlow/thermalCompressible_2d_base.zxml

and
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Fig. 1.55: Sketch of the radial thermal diffusion around a wellbore
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[inputFi les/singlePhaseFlow/thermalCompressible_2d_benchmark.xml

The corresponding integrated test is

[inputFi les/singlePhaseFlow/thermalCompressible_2d_smoke.xml ]

In this example, we would focus our attention on the Constitutive and FieldSpecifications tags.

Constitutive

The volumetric heat capacity of the medium around the wellbore is defined in the SolidInternalEnergy XML block
as

<SolidInternalEnergy
name="rockInternalEnergy_linear"
referenceVolumetricHeatCapacity="1.0e6"
referenceTemperature="0"
referenceInternalEnergy="0"/>

The thermal conductivity of the medium around the wellbore is defined in the
SinglePhaseConstantThermalConductivity XML block as

<SinglePhaseThermalConductivity
name="thermalCond_linear"
defaultThermalConductivityComponents="{ 1.66, 1.66, 1.66 }"
thermalConductivityGradientComponents="{ 0, 0, 0 }"
referenceTemperature="0"/>

The volumetric heat capacity of fluid is set to a negligible value to exclude thermal convection effect. It is defined in
the ThermalCompressibleSinglePhaseFluid XML block as

<ThermalCompressibleSinglePhaseFluid
name="fluid"
defaultDensity="1000"
defaultViscosity="0.001"
referencePressure="0.0"
referenceTemperature="0"
compressibility="5e-10"
thermalExpansionCoeff="3e-4"
viscosibility="0.0"
specificHeatCapacity="1"
referenceInternalEnergy="0.99"/>

FieldSpecifications

The initial temperature, the imposed temperature at the curved wellbore surface as well as the far-field temperature are
defined as Dirichlet face boundary conditions using faceManager as

<FieldSpecification
name="initialTemperature"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/region/ch"

(continues on next page)
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fieldName="temperature"
scale="100"/>

<FieldSpecification
name="sinkTemperature"
setNames="{ rpos }"
objectPath="faceManager"
fieldName="temperature"
scale="100"/>

<FieldSpecification
name="sourceTemperature"
setNames="{ rneg }"
objectPath="faceManager"
fieldName="temperature"
scale="-20.0"/>

(continued from previous page)

Although a pure thermal diffusion problem is considered, it is also required to define specifications for fluid pressure,
as thermal transfer is always coupled with fluid flow in GEOS. In this example, fluid pressure is set to zero everywhere
to mimic a pure thermal diffusion problem as

<FieldSpecification
name="initialPressure"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/region/ch"
fieldName="pressure"
scale="0e6"/>

<FieldSpecification
name="sinkPressure"
setNames="{ rpos }"
objectPath="faceManager"
fieldName="pressure"
scale="0e6"/>

<FieldSpecification
name="sourcePressure"
setNames="{ rneg }"
objectPath="faceManager"
fieldName="pressure"
scale="0e6"/>

Results and benchmark

A good agreement between the GEOS results and analytical results is shown in the figure below:

To go further

Feedback on this example

This concludes the example of pure thermal diffusion problem around a wellbore. For any feedback on this example,

please submit a GitHub issue on the project’s GitHub page.
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Non-Linear Thermal Diffusion Around a Wellbore: The Case with Temperature Dependent Volumetric
Heat Capacity

Problem description

This example is an extension of the linear thermal diffusion problem presented in Pure Thermal Diffusion Around
a Wellbore. Tt uses the thermal single-phase flow solver to model a non-linear thermal diffusion problem around a
wellbore where the volumetric heat capacity of the solid rock depends linearly on the temperature.

Input file

This benchmark example uses no external input file and everything required is contained within two GEOS xml files
that are located at:

[inputFi les/singlePhaseFlow/thermalCompressible_2d_base.xml ]

and

inputFiles/singlePhaseFlow/thermalCompressible_
—temperatureDependentVolumetricHeatCapacity_benchmark.xml

In this example, we focus on the Constitutive tag.

Constitutive

The reference value of the volumetric heat capacity of the medium around the wellbore and its derivative with respect
to temperature are defined in the SolidInternalEnergy XML block:

<SolidInternalEnergy
name="rockInternalEnergy_nonLinear"
referenceVolumetricHeatCapacity="4.56e6"
dVolumetricHeatCapacity_dTemperature="1e6"
referenceTemperature="0"
referenceInternalEnergy="0"/>

Results and benchmark

A good agreement between the results obtained using GEOS and the reference results that are obtained by the classical
finite difference method is shown in the figure below:

To go further

Feedback on this example

This concludes the example of a non-linear thermal diffusion problem around a wellbore due to temperature dependent
volumetric heat capacity of rock. For any feedback on this example, please submit a GitHub issue on the project’s
GitHub page.

Non-Linear Thermal Diffusion Around a Wellbore: The Case with Temperature Dependent Single
Phase Thermal Conductivity

Problem description

This example is an extension of the linear thermal diffusion problem presented in Pure Thermal Diffusion Around a
Wellbore to model wellbore cooling upon CO2 injection. It uses the thermal single-phase flow solver to model a non-
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linear thermal diffusion problem around a wellbore where the single phase thermal conductivity of the porous rock
depends linearly on the temperature.

Input file

This benchmark example uses no external input file and everything required is contained within two GEOS xml files
that are located at:

[inputFi les/singlePhaseFlow/thermalCompressible_2d_base.xml

and

inputFiles/singlePhaseFlow/thermalCompressible_
—.temperatureDependentSinglePhaseThermalConductivity_benchmark.xml

In this example, we focus on the Constitutive tag.

Constitutive

The reference value of the single phase thermal conductivity of the porous medium around the wellbore and its deriva-
tive with respect to temperature are defined in the SinglePhaseThermalConductivity XML block:

<SinglePhaseThermalConductivity
name="thermalCond_nonLinear"
defaultThermalConductivityComponents="{ 1.5, 1.5, 1.5 }"
thermalConductivityGradientComponents="{ -12e-4, -12e-4, -12e-4 }"
referenceTemperature="20"/>

Results and benchmark

A good agreement between the results obtained using GEOS and the reference results that are obtained by the classical
finite difference method is shown in the figure below:

To go further

Feedback on this example

This concludes the example of a non-linear thermal diffusion problem around a wellbore due to temperature dependent
single phase thermal conductivity of porous rock. For any feedback on this example, please submit a GitHub issue on
the project’s GitHub page.

Cased ThermoElastic Wellbore Problem
Problem description

This example uses the thermal option of the SinglePhasePoromechanics solver to handle a cased wellbore problem
subject to a uniform temperature change on the inner surface of the casing. The wellbore is composed of a steel
casing, a cement sheath and rock formation. Isotropic linear thermoelastic behavior is assumed for all three materials.
No separation or thermal barrier is allowed for the casing-cement and cement-rock contact interfaces. Plane strain
condition is assumed.

Solution to this axisymmetric problem can be obtained in the cylindrical coordinate system by using an implicit 1D
finite difference method (Jane and Lee 1999). Results of such analysis will be considered as reference solutions to
validate GEOS results.

Input file
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&

Fig. 1.56: Sketch of a cased thermoelastic wellbore
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This benchmark example uses no external input files and everything required is contained within two GEOS XML files
located at:

[inputFi1es/wellbore/CasedThermoElasticWel1bore_base .xml J

and

[inputFi1es/wellbore/CasedThermoElasticWellbore_benchmark .xml

The corresponding integrated test is

[inputFiles/wellbore/CasedThermoElasticWellbore_smoke .xml

Geometry and mesh

The internal wellbore mesh generator InternalWellbore is employed to create the mesh of this wellbore problem.
The radii of the casing cylinder, the cement sheath cylinder and the far-field boundary of the surrounding rock formation
are defined by a vector radius. In the tangent direction, theta angle is specified from 0 to 90 degrees to simulate
the problem on a quarter of the wellbore geometry. The problem is under plane strain condition and therefore we only
consider radial thermal diffusion on a single horizontal layer. The trajectory of the well is defined by trajectory,
which is vertical in this case. The autoSpaceRadialElems parameters allow for optimally increasing the element size
from the wellbore to the far-field zone. In this example, the auto spacing option is only applied to the rock formation.
The useCartesianOuterBoundary with a value 3 specified for the rock layer transforms the far-field boundary to a
circular shape. The cel1BlockNames and elementTypes define the regions and related element types associated to
casing, cement sheath, and rock.

<Mesh>
<InternalWellbore

name="mesh1"
elementTypes="{ C3D8, C3D8, C3D8 }"
radius="{ 0.15707, 0.17780, 0.21272, 1.5707 }"
theta="{ 0, 90 }"
zCoords="{ 0, 0.1 }"
nr="{ 5, 5, 5 }"

nt="{ 10 }"
nz:"{ 1 }Il
trajectory="{ { 0.0,

0.0, 0.0 },

{ 0.0, 0.0, 0.1 } }"
autoSpaceRadialElems="{ 0, 0, 1 }"
cellBlockNames="{ casing, cement, rock }"
/>

</Mesh>

Material properties

The bulk and shear drained elastic moduli of the materials as well as its drained linear thermal expansion coefficient
relating stress change to temperature change are defined within the Constitutive tag as follows:

<ElasticIsotropic
name="casingSolid"
defaultDensity="7500"
defaultBulkModulus="159.4202899e9"
defaultShearModulus="86.61417323e9"

(continues on next page)
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Fig. 1.57: An optimized mesh for the cased wellbore.
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(continued from previous page)

defaultDrainedLinearTEC="1.2e-5"/>

<ElasticIsotropic
name="cementSolid"
defaultDensity="2700"
defaultBulkModulus="2.298850575e9"
defaultShearModulus="1.652892562e9"
defaultDrainedLinearTEC="2.0e-5"/>

<ElasticIsotropic
name="rockSolid"
defaultDensity="2700"
defaultBulkModulus="5.535714286e9"
defaultShearModulus="3.81147541e9"
defaultDrainedLinearTEC="2.0e-5"/>

Here the solid density is also defined but it is not used because the gravitational effect is ignored in this example. To
mimic a thermoelastic coupling without fluid flow, a negligible porosity and a zero Biot coefficient are defined as:

<BiotPorosity
name="casingPorosity"
defaultReferencePorosity="1e-6"
defaultGrainBulkModulus="159.4202899e9" />

<BiotPorosity
name="cementPorosity"
defaultReferencePorosity="1e-6"
defaultGrainBulkModulus="2.298850575e9" />

<BiotPorosity
name="rockPorosity"
defaultReferencePorosity="1e-6"
defaultGrainBulkModulus="5.535714286e9" />

In this XML block, the Biot coefficient is defined using the elastic bulk modulus K5 of the solid skeleton as bp;or =
1 — K/K,. In this example, we define a skeleton bulk modulus that is identical to the drained bulk modulus K defined
above to enforce the Biot coefficient to zero.

The thermal conductivities and the volumetric heat capacities of casing, cement, and rock are defined by following
XML blocks:

<SinglePhaseThermalConductivity
name="casingThermalCond"
defaultThermalConductivityComponents="{ 15, 15, 15 }"/>

<SinglePhaseThermalConductivity
name="cementThermalCond"
defaultThermalConductivityComponents="{ 1.0, 1.0, 1.0 }"/>

<SinglePhaseThermalConductivity
name="rockThermalCond"
defaultThermalConductivityComponents="{ 1.66, 1.66, 1.66 }"/>

and
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<SolidInternalEnergy
name="casingInternalEnergy"
referenceVolumetricHeatCapacity="1.375e6"
referenceTemperature="0"
referenceInternalEnergy="0"/>

<SolidInternalEnergy
name="cementInternalEnergy"
referenceVolumetricHeatCapacity="4.2e6"
referenceTemperature="0"
referenceInternalEnergy="0"/>

<SolidInternalEnergy
name="rockInternalEnergy"
referenceVolumetricHeatCapacity="4.56e6"
referenceTemperature="0"
referenceInternalEnergy="0"/>

An ultra-low permeability is defined for the three layers to simulate a thermoelastic problem without the impact of fluid
flow.

<ConstantPermeability
name="casingPerm"
permeabilityComponents="{ 1.0e-100, 1.0e-100, 1.0e-100 }"/>

<ConstantPermeability
name="cementPerm"
permeabilityComponents="{ 1.0e-100, 1.0e-100, 1.0e-100 }"/>

<ConstantPermeability
name="rockPerm"
permeabilityComponents="{ 1.0e-100, 1.0e-100, 1.0e-100 }"/>

Also, a negligible volumetric heat capacity is defined for the fluid to completely ignore the thermal convection effect
such that only thermal transfers via the diffusion phenomenon are considered.

<ThermalCompressibleSinglePhaseFluid
name="fluid"
defaultDensity="1000"
defaultViscosity="1e-3"
referencePressure="0.0"
referenceTemperature="20.0"
compressibility="5e-10"
thermalExpansionCoeff="1e-10"
viscosibility="0.0"
specificHeatCapacity="1"
referenceInternalEnergy="1"/>

Other fluid properties such as viscosity, thermal expansion coefficient, etc. are not relevant to this example because
fluid flow is ignored and pore pressure is zero everywhere.
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Boundary conditions

The mechanical boundary conditions are applied to ensure the axisymmetric plane strain conditions such as:

<FieldSpecification
name="tNegConstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"
scale="0.0"
setNames="{ tneg }"/>

<FieldSpecification
name="tPosConstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"
scale="0.0"
setNames="{ tpos }"/>

<FieldSpecification
name="zconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="2"
scale="0.0"
setNames="{ zneg, zpos }"/>

Besides, the far-field boundary is assumed to be fixed because the local changes on the wellbore must have negligible
effect on the far-field boundary.

<FieldSpecification
name="rPosConstraint_x"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"
scale="0.0"
setNames="{ rpos }"/>

<FieldSpecification
name="rPosConstraint_y"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"
scale="0.0"
setNames="{ rpos }"/>

The traction-free condition on the inner surface of the casing is defined by:

<Traction
name="innerPressure"
objectPath="faceManager"
tractionType="normal"
scale="0.0e6"

(continues on next page)
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(continued from previous page)
{ setNames="{ rneg }"/>

The initial reservoir temperature (that is also the far-field boundary temperature) and the temperature of a cold fluid
applied on the inner surface of the casing are defined as

<FieldSpecification
name="initialTemperature"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions"
fieldName="temperature"
scale="100"/>

<FieldSpecification
name="farfieldTemperature"
setNames="{ rpos }"
objectPath="faceManager"
fieldName="temperature"
scale="100"/>

<FieldSpecification
name="innerTemperature"
setNames="{ rneg }"
objectPath="faceManager"
fieldName="temperature"
scale="-20.0"/>

It is important to remark that the initial effective stress of each layers must be set with accordance to the initial temper-
ature: o9 = 3K adTy where oy is the initial effective principal stress, 7y is the initial temperature change, K is the
drained bulk modulus and « is the drained linear thermal expansion coefficient of the materials.

<FieldSpecification
name="initialSigma_x_casing"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/casing/casing"
fieldName="casingSolid_stress"
component="0"
scale="573913043.5"/>
<FieldSpecification
name="initialSigma_y_casing"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/casing/casing"
fieldName="casingSolid_stress"
component="1"
scale="573913043.5"/>
<FieldSpecification
name="initialSigma_z_casing"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/casing/casing"

(continues on next page)
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(continued from previous page)
fieldName="casingSolid_stress"
component="2"
scale="573913043.5"/>

Zero pore pressure is set everywhere to simulate a thermoelastic problem in which fluid flow is ignored:

<FieldSpecification
name="zeroPressure"
setNames="{ all }"
objectPath="ElementRegions"
fieldName="pressure"
scale="0e6"/>

<FieldSpecification
name="sourcePressure"
setNames="{ rneg }"
objectPath="faceManager"
fieldName="pressure"
scale="0"/>

<FieldSpecification
name="sinkPressure"
setNames="{ rpos }"
objectPath="faceManager"
fieldName="pressure"
scale="0"/>

Collecting output data

It is convenient to collect data in hdf5 format that can be easily post-processed using Python. To collect the temperature
field in the three layers for all the time steps, the following XML blocks need to be defined:

<PackCollection
name="temperatureCollection_casing"
objectPath="ElementRegions/casing/casing"
fieldName="temperature"/>

<PackCollection
name="temperatureCollection_cement"
objectPath="ElementRegions/cement/cement"
fieldName="temperature"/>

<PackCollection
name="temperatureCollection_rock"
objectPath="ElementRegions/rock/rock"
fieldName="temperature"/>

<TimeHistory
name="temperatureHistoryOutput_casing"
sources="{ /Tasks/temperatureCollection_casing }"
filename="temperatureHistory_casing"/>
<TimeHistory
name="temperatureHistoryOutput_cement"
sources="{ /Tasks/temperatureCollection_cement }"

(continues on next page)
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(continued from previous page)

filename="temperatureHistory_cement"/>
<TimeHistory

name="temperatureHistoryOutput_rock"

sources="{ /Tasks/temperatureCollection_rock }"

filename="temperatureHistory_rock"/>

Similarly, the following blocks are needed to collect the solid stress:

<PackCollection
name="stressCollection_casing"
objectPath="ElementRegions/casing/casing"
fieldName="casingSolid_stress"/>

<PackCollection
name="stressCollection_cement"
objectPath="ElementRegions/cement/cement"
fieldName="cementSolid_stress"/>

<PackCollection
name="stressCollection_rock"
objectPath="ElementRegions/rock/rock"
fieldName="rockSolid_stress"/>

<TimeHistory

name="stressHistoryOutput_casing"

sources="{ /Tasks/stressCollection_casing }"

filename="stressHistory_casing"/>
<TimeHistory

name="stressHistoryOutput_cement"

sources="{ /Tasks/stressCollection_cement }"

filename="stressHistory_cement"/>
<TimeHistory

name="stressHistoryOutput_rock"

sources="{ /Tasks/stressCollection_rock }"

filename="stressHistory_rock"/>

The displacement field can be collected for the whole domain using nodeManager as follows

<PackCollection
name="displacementCollection"
objectPath="nodeManager"
fieldName="totalDisplacement" />

<TimeHistory
name="displacementHistoryOutput"
sources="{ /Tasks/displacementCollection }"
filename="displacementHistory" />

Also, periodic events are required to trigger the collection of this data on the mesh. For example, the periodic events
for collecting the displacement field are defined as:

<PeriodicEvent
name="displacementHistoryCollection"
endTime="1e5"
(continues on next page)
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(continued from previous page)
forceDt="1e4"

target="/Tasks/displacementCollection"/>
<PeriodicEvent

name="displacementTimeHistoryOutput"

endTime="1e5"

forceDt="1e4"

target="/0Outputs/displacementHistoryOutput"/>

Results and benchmark

A good agreement between the GEOS results and analytical results for temperature distribution around the cased well-
bore is shown in the figures below:
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Fig. 1.58: Validation of the temperature.

and the validation for the radial displacement around the cased wellbore is shown below:

The validations of the total radial and hoop stress (tangent stress) components computed by GEOS against reference
results are shown in the figure below:
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Fig. 1.59: Validation of the displacement.
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To go further

Feedback on this example

This concludes the cased wellbore example. For any feedback on this example, please submit a GitHub issue on the
project’s GitHub page.

ThermoPoroElastic Wellbore Problem

Problem description

This example uses the thermal option of the SinglePhasePoromechanics solver to handle an open wellbore prob-
lem subjected to a uniform temperature change on its inner surface. Isotropic linear thermoporoelastic behavior is
considered for the rock formation around the wellbore. Plane strain and axisymmetric conditions are assumed.

Fig. 1.61: Sketch of a thermoporoelastic wellbore

Analytical solutions to this problem were first derived by (Wang and Papamichos 1994) using a one-way coupling sim-
plification. They are also reformulated for the full coupling assumption in the book of (Cheng 2016). These solutions
will be considered to validate GEOS results.

Input file

This benchmark example uses no external input files and everything required is contained within two GEOS xml files
that are located at:

[inputFi1es/wellbore/ThermoPoroElasticWellbore_base .xml

and
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[inputFi1es/wel1bore/ThermoPoroE1asticWellbore_benchmark .xml

The corresponding integrated test is

[inputFi1es/wellbore/ThermoPoroElasticWellbore_smoke .xml

Geometry and mesh

The internal wellbore mesh generator InternalWellbore is employed to create the mesh of this wellbore problem.
The radii of the open wellbore and the far-field boundary of the surrounding rock formation are defined by a vector
radius. In the tangent direction, theta angle is specified from 0 to 90 degrees to simulate the problem on a quarter of
the wellbore geometry. The problem is under plane strain condition and therefore we only consider thermal diffusion
along the radial direction within a single horizontal layer. The trajectory of the well is defined by trajectory, which
is vertical in this case. The autoSpaceRadialElems parameters allow for optimally increasing the element size from

the near wellbore zone to the far-field one.

<Mesh>
<InternalWellbore
name="mesh1"
elementTypes="{ C3D8 }"
radius="{ 0.1, 5.0 }"
theta="{ 0, 90 }"
zCoords="{ 0, 0.1 }"

nr="{ 100 }"

nt="{ 40 }"

nz="{ 1 }"

trajectory="{ { 0.0, 0.0, 0.0 },
{ 0.0, 0.0, 0.1 }

autoSpaceRadialElems="{ 1 }"

cellBlockNames="{ rock }"
/>
</Mesh>

Material properties

The bulk and shear drained elastic moduli of rock as well as its drained linear thermal expansion coefficient relating

stress change to temperature variation are defined

within the Constitutive tag as follows:

<ElasticIsotropic
name="rockSolid"
defaultDensity="2700"
defaul tBulkModulus="20.7e9"
defaultShearModulus="12.4e9"
defaultDrainedLinearTEC="4e-5"/>

Here the solid density is also defined, but it is not used as the gravitational effect is ignored in this example. The
porosity and the elastic bulk modulus K of the solid skeleton are defined as:

<BiotPorosity
name="rockPorosity"
defaultReferencePorosity="0.001"
defaultGrainBulkModulus="23.5e9"
defaultPorosityTEC="4e-5"/>
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Fig. 1.62: An optimized mesh for the open wellbore.
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The thermal conductivities and the volumetric heat capacities of rock are defined by following XML blocks:

<SinglePhaseThermalConductivity
name="rockThermalCond"
defaultThermalConductivityComponents="{ 6.6, 6.6, 6.6 }"/>

and

<SolidInternalEnergy
name="rockInternalEnergy"
referenceVolumetricHeatCapacity="1.89e6"
referenceTemperature="0"
referenceInternalEnergy="0"/>

The permeability of rock is defined by:

<ConstantPermeability
name="rockPerm"
permeabilityComponents="{ 1.0e-21, 1.0e-21, 1.0e-21 }"/>

Fluid properties such as viscosity, thermal expansion coefficient, etc. are defined by the XML block below. A negligible
volumetric heat capacity is defined for fluid to ignore the thermal convection effect. This way, only thermal transfer via
the diffusion phenomenon is considered.

<ThermalCompressibleSinglePhaseFluid
name="fluid"
defaultDensity="1000"
defaultViscosity="1e-3"
referencePressure="0.0"
referenceTemperature="20.0"
compressibility=">5e-10"
thermalExpansionCoeff="3e-4"
viscosibility="0.0"
specificHeatCapacity="1"
referenceInternalEnergy="1"/>

Boundary conditions

The mechanical boundary conditions are applied to ensure the axisymmetric plane strain conditions such as:

<FieldSpecification
name="tNegConstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"
scale="0.0"
setNames="{ tneg }"/>

<FieldSpecification
name="tPosConstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"
scale="0.0"

(continues on next page)
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setNames="{ tpos }"/>

<FieldSpecification
name="zconstraint"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="2"
scale="0.0"
setNames="{ zneg, zpos }"/>

(continued from previous page)

Besides, the far-field boundary is assumed to be fixed because the local changes on the wellbore must have negligible

effect on the far-field boundary.

<FieldSpecification
name="rPosConstraint_x"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="0"
scale="0.0"
setNames="{ rpos }"/>

<FieldSpecification
name="rPosConstraint_y"
objectPath="nodeManager"
fieldName="totalDisplacement"
component="1"
scale="0.0"
setNames="{ rpos }"/>

The traction-free condition on the inner surface of the wellbore is defined by:

<Traction
name="innerTraction"
objectPath="faceManager"
tractionType="normal"
scale="0.0e6"
setNames="{ rneg }"/>

The initial temperature (that is also the far-field boundary temperature) and the temperature applied on the inner surface

of the wellbore are defined as

<FieldSpecification
name="initialTemperature"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions"
fieldName="temperature"
scale="0"/>

<FieldSpecification
name="farfieldTemperature"
setNames="{ rpos }"
objectPath="faceManager"

(continues on next page)
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(continued from previous page)
fieldName="temperature"
scale="0"/>

<FieldSpecification
name="innerTemperature"
setNames="{ rneg }"
objectPath="faceManager"
fieldName="temperature"
scale="100.0"/>

It is important to remark that the initial effective stress of rock must be set with accordance to the initial temperature
change: o¢g = 3K adT, where oy is the initial effective principal stress, §7y is the initial temperature change, K is the
drained bulk modulus and « is the drained linear thermal expansion coefficient of the materials. In this example, the
initial effective stresses are set to zero because the initial temperature change is set to zero.

<FieldSpecification
name="initialSigma_x_rock"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/rock/rock"
fieldName="rockSolid_stress"
component="0"
scale="0"/>

<FieldSpecification
name="initialSigma_y_rock"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/rock/rock"
fieldName="rockSolid_stress"
component="1"
scale="0"/>

<FieldSpecification
name="initialSigma_z_rock"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions/rock/rock"
fieldName="rockSolid_stress"
component="2"
scale="0"/>

The initial and boundary conditions for pore pressure are defined in the block below:

<FieldSpecification
name="initialPressure"
initialCondition="1"
setNames="{ all }"
objectPath="ElementRegions"
fieldName="pressure"
scale="0e6"/>

<FieldSpecification
name="innerPressure"

(continues on next page)
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setNames="{ rneg }"
objectPath="faceManager"
fieldName="pressure"
scale="0e6"/>

<FieldSpecification
name="farfieldPressure"
setNames="{ rpos }"
objectPath="faceManager"
fieldName="pressure"
scale="0"/>

(continued from previous page)

Collecting output data

It is convenient to collect data in hdf5 format that can be easily post-processed using Python

field for all the time steps, the following XML blocks need to be defined:

. To collect the temperature

<PackCollection
name="temperatureCollection_rock"
objectPath="ElementRegions/rock/rock"
fieldName="temperature"/>

<TimeHistory
name="temperatureHistoryOutput_rock"
sources="{ /Tasks/temperatureCollection_rock }"
filename="temperatureHistory_rock"/>

Similarly, the following blocks are needed to collect the effective stress field across the domain:

<PackCollection
name="stressCollection_rock"
objectPath="ElementRegions/rock/rock"
fieldName="rockSolid_stress"/>

<TimeHistory
name="stressHistoryOutput_rock"
sources="{ /Tasks/stressCollection_rock }"
filename="stressHistory_rock"/>

The displacement field can be collected using nodeManager as follows

<PackCollection
name="displacementCollection"
objectPath="nodeManager"
fieldName="totalDisplacement" />

<TimeHistory
name="displacementHistoryOutput"
sources="{ /Tasks/displacementCollection }"
filename="displacementHistory"/>
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Also, periodic events are required to trigger the collection of this data during the entire simulation. For example, the
periodic events for collecting the displacement field are defined as:

<PeriodicEvent
name="displacementHistoryCollection"
beginTime="0"
endTime="360"
forceDt="60"
target="/Tasks/displacementCollection"/>
<PeriodicEvent
name="displacementTimeHistoryOutput_1"
beginTime="0"
endTime="360"
forceDt="60"
target="/Outputs/displacementHistoryOutput"/>
<PeriodicEvent
name="displacementHistoryCollection_2"
beginTime="360"
endTime="3700"
forceDt="360"
target="/Tasks/displacementCollection"/>
<PeriodicEvent
name="displacementTimeHistoryOutput_2"
beginTime="360"
endTime="3700"
forceDt="360"
target="/Outputs/displacementHistoryOutput"/>

Results and benchmark

A good agreement between the GEOS results and analytical results for temperature and pore pressure distribution
around the wellbore is shown in the figures below:

and the validation for the radial displacement around the cased wellbore is shown below:
The validations of the total radial and hoop stress (tangent stress) components computed by GEOS against reference

results are shown in the figure below:

To go further

Feedback on this example
This concludes the cased wellbore example. For any feedback on this example, please submit a GitHub issue on the

project’s GitHub page.

Cased Elastic Wellbore with Imperfect Interfaces
Problem description

This example uses the LagrangianContact solver to handle a cased wellbore problem with imperfect contact in-
terfaces. The completed wellbore is composed of a steel casing, a cement sheath, and rock formation. All the three
materials are assumed to exhibit isotropic linear elastic behavior. The contact surfaces between these materials are
simulated using a Lagrangian contact model.

Under a compressional loading in the radial direction, the imperfect contact interfaces behave like the perfect ones (see
Cased Elastic Wellbore Problem). When a radial tension acting on the inner face of the wellbore, the casing debonds
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Fig. 1.63: Validation of temperature and pore pressure.
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Fig. 1.65: Validation of the radial and tangent stresses.

from the cement layer. Analytical results of the radial displacement w,. in the casing is expressed as (Hervé and Zaoui,
1995) :

u, = Ar — B
r
where r is the radial coordinate, A and B are constants that are obtained by solving the boundary conditions, as detailed
in the post-processing script. The outer face of the casing as well as the inner face of the cement layer are free of stress
because of the debonding at the casing-cement interface. Therefore, the displacement jump at the cement-rock interface
is nil, and the displacement jump across the casing-cement interface is equal to w, (r = Tout, asing)> Where Toyt, asing
is the outer radius of the casing.

Input file

This benchmark example does not use any external input files and everything required is contained within two GEOS
XML files located at:

[inputFi1es/wellbore/CasedElasticWellbore_ImperfectInterfaces_base .xml

and

[inputFi1es/we1lbore/CasedElasticWellbore_ImperfectInterfaces_benchmark .xml

The corresponding integrated test is

[inputFiles/wellbore/CasedElasticWellbore_ImperfectInterfaces_smoke .xml

In this example, we should focus on following XML blocks:
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Fig. 1.66: A cased wellbore with imperfect casing-cement and cement-rock interfaces
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Cylinder geometry

The nodesets that define the casing-cement and cement-rock interfaces are curved. In this example, we use the
Cylinder geometry to select these nodesets. This geometry is defined by the centers of the two plane faces,
firstFaceCenter and secondFaceCenter, and its inner and outer radii, innerRadius and outerRadius. Note
that the inner radius is optional as it is only needed for defining a hollow cylinder (i.e. an annulus). The inner radius is
required in this example to select only the nodes on the casing-cement and the cement-rock interfaces.

<Geometry>
<Cylinder
name="casingCementInterface"
firstFaceCenter="{ 0.0, 0.0, -0.001 }"
secondFaceCenter="{ 0.0, 0.0, 0.101 }"
outerRadius="0.1061"
innerRadius="0.1059"

/>

<Cylinder
name="cementRockInterface"
firstFaceCenter="{ 0.0, 0.0, -0.001 }"
secondFaceCenter="{ 0.0, 0.0, 0.101 }"
outerRadius="0.1331"
innerRadius="0.1329"

/>

</Geometry>

Events

In this example, we need to define a solo event for generating the imperfect contact surfaces as shown below:

<SoloEvent
name="preFracture"
target="/Solvers/SurfaceGen" />

where the surface generation solver is defined as follows:

<SurfaceGenerator
name="SurfaceGen"
fractureRegion="Fracture"
targetRegions="{ casing, cement, rock }"
initialRockToughness="1.0e6"
mpiCommOrder="1"/>

Here, rockToughness is defined by default but has been omitted in this simulation.

To collect the displacement jump across the imperfect interfaces, we also define two periodic events as shown below:

<PeriodicEvent
name="displacement JumpHistoryCollection"
endTime="2.0"
forceDt="0.1"
target="/Tasks/displacement]JumpCollection"/>
<PeriodicEvent
name="displacement JumpTimeHistoryOutput"

(continues on next page)
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(continued from previous page)
endTime="2.0"
forceDt="0.1"
target="/Outputs/displacementJumpHistoryOutput"/>

The corresponding Tasks and Outputs targets must be defined in conjunction with these events.

Numerical Methods

The stabilizationName that is required in the LagrangianContact solver is defined by:

<FiniteVolume>
<TwoPointFluxApproximation
name="TPFAstabilization"/>
</FiniteVolume>

Contact region and material

The imperfect contact surfaces between casing, cement, and rock layers are defined as Fracture as shown below:

<ElementRegions>
<SurfaceElementRegion
name="Fracture"
faceBlock="faceElementSubRegion"
defaultAperture="1e-6"
materiallList="{ fractureContact }"/>

Here, the faceBlock name, faceElementSubRegion, is needed to define Tasks for collecting displacement jumps
across the contact surfaces. The defaultAperture defined in this block is the default hydraulic aperture that should
not be confused with the mechanical aperture. For this purely mechanical problem, the default hydraulic aperture
parameter is omitted. The fracture material given in the materialList is defined as follows:

<Coulomb
name="fractureContact"
cohesion="0"
frictionCoefficient="0.5"/>

For this purely mechanical problem, without fluid flow and shearing stress acting on the contact surface, all the param-
eters defined in this block are omitted.

Results and benchmark

The GEOS results of displacement jump across the casing-cement and cement-rock interfaces are shown in the figure
below:

As expected, we observe a zero-displacement jump at the cement-rock interface under a tension stress on the inner
surface of the casing. Indeed, the stress applied here does not cause any strain on the cement and rock layers after
debonding has occurred at the casing-cement interface. The displacement jump at the casing-cement interface is ho-
mogeneous and varies over time because the tension stress on the inner surface of the casing varies with time, as defined
in the XML file. A perfect comparison between GEOS results and theoretical results is shown in the figure below:
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Fig. 1.67: Displacement jumps across the casing-cement and cement-rock interfaces
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To go further

Feedback on this example

This concludes the cased wellbore example. For any feedback on this example, please submit a GitHub issue on the
project’s GitHub page.

Cased ThermoElastic Wellbore Problem with Imperfect Contact Interfaces
Problem description

This example uses the coupled THM solver in GEOS to handle a cased wellbore problem subject to a temperature
reduction at the casing surface due to cold CO2 injection. The wellbore consists of a steel casing, a cement sheath, and
a rock formation. We assume an isotropic linear thermo-elastic behavior for all three materials.

In this example, we do not model any fluid flow. All heat transfers between the casing, cement layer, and rock formation
are due only to conduction, and no heat convection is not considered. While GEOS could also simulate convection, we
chose to simulate a simplified conduction-only case because semi-analytical solutions exist for this problem. Debonding
(separation) is allowed for the casing-cement and cement-rock contact interfaces.

This example is an extension of the pure mechanical debonding example:ref:AdvancedExampleCasedElasticWellbore
and the THM problem without debonding Cased ThermoElastic Wellbore Problem. A large portion of the XML files
are inherited from those two examples.

Analytical results for the temperature field, the radial displacement, and the radial and hoop stresses can be derived
for the axisymmetric plane strain problem with assumptions of debonding at casing-cement or cement-rock interfaces.
Note that solutions to this problem are not available in the literature for citation, as it is newly derived by the GEOS
team for verifying the numerical results.

Input file

This benchmark example uses no external input files and everything required is contained within two GEOS XML files
located at:

[inputFiles/wellbore/CasedThermoElasticWellbore_ImperfectInterfaces_base .xml

and

[inputFiles/wellbore/CasedThermoElasticWellbore_ImperfectInterfaces_benchmark .xml

The corresponding integrated test is

[inputFi les/wellbore/CasedThermoElasticWellbore_ImperfectInterfaces_smoke.xml

Geometry and mesh

The geometry and mesh are defined similarly to the ones in the example Cased ThermoElastic Wellbore Problem. To
define the imperfect interfaces between the casing, cement and rock layers, we added the following blocks:

<Geometry>

<Cylinder
name="casingCementInterface"
firstFaceCenter="{ 0.0, 0.0, -0.001 }"
secondFaceCenter="{ 0.0, 0.0, 0.101 }"
outerRadius="0.17781"
innerRadius="0.17779"

/>

(continues on next page)
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(continued from previous page)

<Cylinder
name="cementRockInterface"
firstFaceCenter="{ 0.0, 0.0, -0.001 }"
secondFaceCenter="{ 0.0, 0.0, 0.101 }"
outerRadius="0.21273"
innerRadius="0.21271"

/>

</Geometry>

Here, we use the Cylinder geometry to select these nodesets. A detailed explanation of the inputs in this block is
given in the example Cased Elastic Wellbore Problem.

Material properties

Besides the THM properites of casing, cement and rock as defined in the example Cased ThermoElastic Wellbore
Problem, we define properties for the contact interfaces. The mechanical properties of the contact surfaces are defined
similarly to the example Cased Elastic Wellbore Problem. Additionally, following blocks define the thermal conduc-
tivity of the contact interface.

<SinglePhaseThermalConductivity
name="contactThermalCond"
defaultThermalConductivityComponents="{ 1.0, 1.0, 1.0 }"/>

These properties are used for defining the imperfect contact surfaces as follows:

<SurfaceElementRegion
name="Fracture"
faceBlock="faceElementSubRegion"
materiallList="{ fluid, fractureFilling, frictionLaw, contactThermalCond,..
—hApertureModel }"
defaultAperture="5.0e-4"/>

As we are using the fully coupled THM solver to solve the thermo-elastic coupled problem, it is also required to define
the flow properties for the contact surfaces as follows:

<CompressibleSolidParallelPlatesPermeability
name="fractureFilling"
solidModelName="nullSolid"
porosityModelName="fracturePorosity"
permeabilityModelName="fracturePerm"
solidInternalEnergyModelName="rockInternalEnergy" />

<NullModel
name="nullSolid"/>

<PressurePorosity
name="fracturePorosity"
defaultReferencePorosity="1.00"
referencePressure="0.0"
compressibility="0.0"/>

(continues on next page)
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(continued from previous page)

<ParallelPlatesPermeability
name="{fracturePerm"/>

Boundary and initial conditions

The boundary condition at the casing inner surface and in the far-field are defined identically to the ones of the example
Cased ThermoElastic Wellbore Problem. The in-situ initial conditions are also defined in the same way as described in
that example. The additional specifications for the contact surfaces are defined identically to the example Cased Elastic
Wellbore Problem.

Solvers

The solver for simulating this THM problem with imperfect contact interfaces is defined as follows:

<SinglePhasePoromechanicsConformingFractures
name="fractureThermoPoroElasticSolver"
targetRegions="{ casing, cement, rock, Fracture }"
initialDt="1e-3"
flowSolverName="flowSolver"
solidSolverName="1lagrangiancontact"
logLevel="1"
isThermal="1">
<NonlinearSolverParameters
newtonTol="1.0e-5"
newtonMaxIter="10"
maxTimeStepCuts="4"/>
<LinearSolverParameters
directParallel="0"
solverType="direct"/>
</SinglePhasePoromechanicsConformingFractures>

where the Lagrangian contact solver is identical to the one used in the example Cased Elastic Wellbore Problem and
the THM coupled solver is the same as that of the example Cased ThermoElastic Wellbore Problem.

Results and benchmark

The GEOS results of displacement jump across the casing-cement and cement-rock interfaces at 1e5 seconds are shown
in the figure below:

The GEOS results and analytical results for temperature distribution around the cased wellbore are shown in the figures
below:

and the radial displacement around the wellbore is shown below:

The total radial and hoop stress (tangential stress) components computed by GEOS and the reference results are shown
in the figure below:

We can observe a good agreement between GEOS results and the analytical results.

To go further

Feedback on this example

This concludes the cased wellbore example. For any feedback on this example, please submit a GitHub issue on the
project’s GitHub page.
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Fig. 1.68: Displacement jumps across the casing-cement and cement-rock interfaces at 1e5 seconds.
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Fig. 1.69: Temperature field.
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