

GEOSX Documentation

Welcome to our documentation pages!

GEOSX is a code framework focused on enabling streamlined development of
physics simulations on high performance computing platforms. Our documentation
is organized into several separate guides, given that different users will have
different needs.

We recommend all users begin with the Quick Start guide, which
will walk you through downloading and compiling the code. Application focused
users may then want to explore our Tutorials, which provide an introduction to the
basic capabilities of the code. More detailed descriptions of these capabilities can
then be found in the User Guide.

For those interested in developing new capabilities in GEOSX, we provide a Developer Guide.
The code itself is also documented inline using doxygen. The Build Guide
contains more detailed information about third-party dependencies, the build
system, and the continuous integration system. Finally, GEOSX has a self-documenting
data structure. The Datastructure Index is an automatically generated list of
all available input parameters and data structures in the code. This is a
comprehensive resource, but probably not the place to start.

High quality documentation is a critical component of a successful code. If
you have suggestions for improving the guides below, please post an issue on our
issue tracker [https://github.com/GEOSX/GEOSX/issues].

	Quick Start Guide
	Frequently Asked Questions

	Repository Organization

	Username and Authentication

	Download

	Configuration

	Compilation

	Running

	Testing

	Tutorials
	Tutorial 1: First Steps

	Tutorial 2: External Meshes

	Tutorial 3: Regions and Property Specifications

	Tutorial 4: Boundary Conditions and Time-Dependent Functions

	Basic Examples
	Multiphase Flow

	Multiphase Flow with Wells

	CO 2 Injection

	Poromechanics

	Hydraulic Fracturing

	Advanced Examples
	Validation and Verification Studies

	Performance Benchmarks

	Application Studies

	pygeosx Examples

	User Guide
	Input Files

	Meshes

	Physics Solvers

	Constitutive Models

	Initial and Boundary Conditions

	Event Management

	Tasks Manager

	Functions

	Linear Solvers

	Numerical Methods

	Parallel Partitioning

	Outputs

	pygeosx — GEOSX in Python

	Indices and tables

	Developer Guide
	Contributing

	Code Components

	Doxygen

	Build Guide
	System prerequisites

	Third-party dependencies

	Building GEOSX

	Spack and Uberenv

	Continuous Integration process

	Datastructure Index
	Input Schema Definitions

	Element: AcousticSEM

	Element: Aquifer

	Element: Benchmarks

	Element: BiotPorosity

	Element: BlackOilFluid

	Element: Blueprint

	Element: BoundedPlane

	Element: Box

	Element: BrooksCoreyBakerRelativePermeability

	Element: BrooksCoreyCapillaryPressure

	Element: BrooksCoreyRelativePermeability

	Element: CO2BrineFluid

	Element: CarmanKozenyPermeability

	Element: CellElementRegion

	Element: ChomboIO

	Element: CompositeFunction

	Element: CompositionalMultiphaseFVM

	Element: CompositionalMultiphaseFluid

	Element: CompositionalMultiphaseHybridFVM

	Element: CompositionalMultiphaseReservoir

	Element: CompositionalMultiphaseWell

	Element: CompressibleSinglePhaseFluid

	Element: CompressibleSolidCarmanKozenyPermeability

	Element: CompressibleSolidConstantPermeability

	Element: CompressibleSolidParallelPlatesPermeability

	Element: ConstantPermeability

	Element: Constitutive

	Element: Contact

	Element: Coulomb

	Element: Cylinder

	Element: DamageElasticIsotropic

	Element: DamageSpectralElasticIsotropic

	Element: DamageVolDevElasticIsotropic

	Element: DeadOilFluid

	Element: DelftEgg

	Element: Dirichlet

	Element: DruckerPrager

	Element: ElasticIsotropic

	Element: ElasticIsotropicPressureDependent

	Element: ElasticOrthotropic

	Element: ElasticTransverseIsotropic

	Element: ElementRegions

	Element: EmbeddedSurfaceGenerator

	Element: Events

	Element: ExtendedDruckerPrager

	Element: FieldSpecification

	Element: FieldSpecifications

	Element: File

	Element: FiniteElementSpace

	Element: FiniteElements

	Element: FiniteVolume

	Element: FlowProppantTransport

	Element: Functions

	Element: Geometry

	Element: HaltEvent

	Element: HybridMimeticDiscretization

	Element: Hydrofracture

	Element: Included

	Element: InternalMesh

	Element: InternalWell

	Element: InternalWellbore

	Element: LagrangianContact

	Element: LaplaceFEM

	Element: LaplaceVEM

	Element: LinearSolverParameters

	Element: Mesh

	Element: ModifiedCamClay

	Element: MultiphasePoromechanics

	Element: NonlinearSolverParameters

	Element: NullModel

	Element: NumericalMethods

	Element: Outputs

	Element: PAMELAMeshGenerator

	Element: PackCollection

	Element: ParallelPlatesPermeability

	Element: Parameter

	Element: Parameters

	Element: ParticleFluid

	Element: Perforation

	Element: PeriodicEvent

	Element: PermeabilityBase

	Element: PhaseFieldDamageFEM

	Element: PhaseFieldFracture

	Element: PorousDruckerPrager

	Element: PorousElasticIsotropic

	Element: PorousElasticOrthotropic

	Element: PorousElasticTransverseIsotropic

	Element: PorousExtendedDruckerPrager

	Element: PressurePorosity

	Element: Problem

	Element: ProppantPermeability

	Element: ProppantPorosity

	Element: ProppantSlurryFluid

	Element: ProppantSolidProppantPermeability

	Element: ProppantTransport

	Element: Python

	Element: Restart

	Element: Run

	Element: Silo

	Element: SinglePhaseFVM

	Element: SinglePhaseHybridFVM

	Element: SinglePhasePoromechanics

	Element: SinglePhasePoromechanicsEmbeddedFractures

	Element: SinglePhaseProppantFVM

	Element: SinglePhaseReservoir

	Element: SinglePhaseWell

	Element: SolidMechanicsEmbeddedFractures

	Element: SolidMechanicsLagrangianSSLE

	Element: SolidMechanics_LagrangianFEM

	Element: SoloEvent

	Element: Solvers

	Element: SourceFlux

	Element: StrainDependentPermeability

	Element: SurfaceElementRegion

	Element: SurfaceGenerator

	Element: SymbolicFunction

	Element: TableCapillaryPressure

	Element: TableFunction

	Element: TableRelativePermeability

	Element: Tasks

	Element: ThickPlane

	Element: TimeHistory

	Element: Traction

	Element: TriaxialDriver

	Element: TwoPointFluxApproximation

	Element: VTK

	Element: VanGenuchtenBakerRelativePermeability

	Element: VanGenuchtenCapillaryPressure

	Element: WellControls

	Element: WellElementRegion

	Element: lassen

	Element: quartz

	Datastructure: AcousticSEM

	Datastructure: Aquifer

	Datastructure: Benchmarks

	Datastructure: BiotPorosity

	Datastructure: BlackOilFluid

	Datastructure: Blueprint

	Datastructure: BoundedPlane

	Datastructure: Box

	Datastructure: BrooksCoreyBakerRelativePermeability

	Datastructure: BrooksCoreyCapillaryPressure

	Datastructure: BrooksCoreyRelativePermeability

	Datastructure: CO2BrineFluid

	Datastructure: CarmanKozenyPermeability

	Datastructure: CellElementRegion

	Datastructure: ChomboIO

	Datastructure: CompositeFunction

	Datastructure: CompositionalMultiphaseFVM

	Datastructure: CompositionalMultiphaseFluid

	Datastructure: CompositionalMultiphaseHybridFVM

	Datastructure: CompositionalMultiphaseReservoir

	Datastructure: CompositionalMultiphaseWell

	Datastructure: CompressibleSinglePhaseFluid

	Datastructure: CompressibleSolidCarmanKozenyPermeability

	Datastructure: CompressibleSolidConstantPermeability

	Datastructure: CompressibleSolidParallelPlatesPermeability

	Datastructure: ConstantPermeability

	Datastructure: Constitutive

	Datastructure: ConstitutiveModels

	Datastructure: Contact

	Datastructure: Coulomb

	Datastructure: Cylinder

	Datastructure: DamageElasticIsotropic

	Datastructure: DamageSpectralElasticIsotropic

	Datastructure: DamageVolDevElasticIsotropic

	Datastructure: DeadOilFluid

	Datastructure: DelftEgg

	Datastructure: Dirichlet

	Datastructure: DruckerPrager

	Datastructure: ElasticIsotropic

	Datastructure: ElasticIsotropicPressureDependent

	Datastructure: ElasticOrthotropic

	Datastructure: ElasticTransverseIsotropic

	Datastructure: ElementRegions

	Datastructure: EmbeddedSurfaceGenerator

	Datastructure: Events

	Datastructure: ExtendedDruckerPrager

	Datastructure: FaceManager

	Datastructure: FieldSpecification

	Datastructure: FieldSpecifications

	Datastructure: File

	Datastructure: FiniteElementSpace

	Datastructure: FiniteElements

	Datastructure: FiniteVolume

	Datastructure: FlowProppantTransport

	Datastructure: Functions

	Datastructure: Geometry

	Datastructure: HaltEvent

	Datastructure: HybridMimeticDiscretization

	Datastructure: Hydrofracture

	Datastructure: Included

	Datastructure: InternalMesh

	Datastructure: InternalWell

	Datastructure: InternalWellbore

	Datastructure: LagrangianContact

	Datastructure: LaplaceFEM

	Datastructure: LaplaceVEM

	Datastructure: Level0

	Datastructure: LinearSolverParameters

	Datastructure: Mesh

	Datastructure: MeshBodies

	Datastructure: ModifiedCamClay

	Datastructure: MultiphasePoromechanics

	Datastructure: NonlinearSolverParameters

	Datastructure: NullModel

	Datastructure: NumericalMethods

	Datastructure: Outputs

	Datastructure: PAMELAMeshGenerator

	Datastructure: PackCollection

	Datastructure: ParallelPlatesPermeability

	Datastructure: Parameter

	Datastructure: Parameters

	Datastructure: ParticleFluid

	Datastructure: Perforation

	Datastructure: PeriodicEvent

	Datastructure: PermeabilityBase

	Datastructure: PhaseFieldDamageFEM

	Datastructure: PhaseFieldFracture

	Datastructure: PorousDruckerPrager

	Datastructure: PorousElasticIsotropic

	Datastructure: PorousElasticOrthotropic

	Datastructure: PorousElasticTransverseIsotropic

	Datastructure: PorousExtendedDruckerPrager

	Datastructure: PressurePorosity

	Datastructure: Problem

	Datastructure: ProppantPermeability

	Datastructure: ProppantPorosity

	Datastructure: ProppantSlurryFluid

	Datastructure: ProppantSolidProppantPermeability

	Datastructure: ProppantTransport

	Datastructure: Python

	Datastructure: Restart

	Datastructure: Run

	Datastructure: Silo

	Datastructure: SinglePhaseFVM

	Datastructure: SinglePhaseHybridFVM

	Datastructure: SinglePhasePoromechanics

	Datastructure: SinglePhasePoromechanicsEmbeddedFractures

	Datastructure: SinglePhaseProppantFVM

	Datastructure: SinglePhaseReservoir

	Datastructure: SinglePhaseWell

	Datastructure: SolidMechanicsEmbeddedFractures

	Datastructure: SolidMechanicsLagrangianSSLE

	Datastructure: SolidMechanics_LagrangianFEM

	Datastructure: SoloEvent

	Datastructure: Solvers

	Datastructure: SourceFlux

	Datastructure: StrainDependentPermeability

	Datastructure: SurfaceElementRegion

	Datastructure: SurfaceGenerator

	Datastructure: SymbolicFunction

	Datastructure: TableCapillaryPressure

	Datastructure: TableFunction

	Datastructure: TableRelativePermeability

	Datastructure: Tasks

	Datastructure: ThickPlane

	Datastructure: TimeHistory

	Datastructure: Traction

	Datastructure: TriaxialDriver

	Datastructure: TwoPointFluxApproximation

	Datastructure: VTK

	Datastructure: VanGenuchtenBakerRelativePermeability

	Datastructure: VanGenuchtenCapillaryPressure

	Datastructure: WellControls

	Datastructure: WellElementRegion

	Datastructure: WellElementRegionuniqueSubRegion

	Datastructure: cellBlocks

	Datastructure: cellManager

	Datastructure: commandLine

	Datastructure: domain

	Datastructure: edgeManager

	Datastructure: elementRegionsGroup

	Datastructure: elementSubRegions

	Datastructure: embeddedSurfacesEdgeManager

	Datastructure: embeddedSurfacesNodeManager

	Datastructure: finiteVolumeStencils

	Datastructure: lassen

	Datastructure: neighborData

	Datastructure: nodeManager

	Datastructure: quartz

	Datastructure: sets

	Datastructure: wellElementSubRegion

	Contributors

	Publications
	Preprints and Early-Views

	2021

	2020

	2019

	Acknowledgements

Indices and tables

	Index

	Module Index

	Search Page

Quick Start Guide

The goal of this page is to get you started as quickly as possible using GEOSX.
We will walk you through downloading the source, compiling the code, and testing the installation.

Before jumping to the installation process, we want to first address some frequently asked questions we get from new users.
If you are itching to get started, feel free to jump ahead to the relevant sections.

Frequently Asked Questions

Does GEOSX have a graphical user interface?:

Given the focus on rapid development and HPC environments, GEOSX does not have a graphical user interface.
This is consistent with many other high performance computing packages, but we recognize it can be a deal-breaker for certain users.
For those who can get past this failing, we promise we still have a lot to offer.
In a typical workflow, you will prepare an XML-based input file describing your problem.
You may also prepare a mesh file containing geometric and property information describing, say, a reservoir you would like to simulate.
There is no shortage of GUI tools that can help you in this model building stage.
The resulting input deck is then consumed by GEOSX to run the simulation and produce results.
This may be done in a terminal of your local machine or by submitting a job to a remote server.
The resulting output files can then be visualized by any number of graphical visualization programs (typically VisIt [https://wci.llnl.gov/simulation/computer-codes/visit/] or paraview [https://www.paraview.org/]).
Thus, while GEOSX is GUI free, the typical workflow is not.

Do I need to be a code developer to use GEOSX?:

For the moment, most users will
need to download and compile the code from source, which we readily admit this requires
a certain level of development expertise. We try to make this process as easy as
possible, and we are working on additional deployment options to make this process easier.
Once installed, however, our goal is to make GEOSX accessible to developers and non-developers alike.
Our target audience includes engineers and scientists who want to solve tough application problems, but could care less about the insides of the tool.
For those of you who are interested in scientific computing, however, GEOSX is an open source project and we welcome external contributions.

What are the system requirements?:

GEOSX is primarily written in C++, with a focus on standards compliance and platform-to-platform portability.
It is designed to run on everything from commodity laptops to the world’s most powerful supercomputers.
We regularly test the code across a variety of operating systems and compilers.
Most of these operating systems are Linux/UNIX based (e.g. Ubuntu, CentOS, Mac OSX).
We do have developers working in Windows environments, but they use a Virtual Machine or work within a docker image rather than directly in the Windows environment.
In the instructions below, we assume you have access to fairly standard development tools.
Using advanced features of GEOSX, like GPU-acceleration, will of course introduce additional hardware and software requirements.

Help, I get errors while trying to download/compile/run!:

Unfortunately, no set of instructions is foolproof.
It is simply impossible to anticipate every system configuration or user.
If you run into problems during the installation, we recommend the following five-step process:

	Take a moment to relax, and then re-read the instructions carefully.
Perhaps you overlooked a key step? Re-read the error message(s) closely.
Modern compilation tools are often quite helpful in reporting exactly why things fail.

	Type a few keywords from your error into a search engine.
It is possible someone else out there has encountered your problem before, and a well-chosen keyword can often produce an instant solution.
Note that when a compilation fails, you may get pages and pages of errors. Try to identify the first one to occur and fix that.
One error will often trigger subsequent errors, and looking at the last error on the screen may not be so helpful.

	If you encounter problems building one of the third-party libraries we depend on, check out their support pages.
They may be able to help you more directly than we can.

	Still stuck? Check out our issues tracker [https://github.com/GEOSX/GEOSX/issues], searching current or closed issues that may address your problem.
Perhaps someone has had an identical issue, or something close. The issue tracker has a convenient search bar where you can search for relevant keywords.
Remember to remove the default is:open keyword to search both open and closed issues.

	If you have exhausted the options above, it is time to seek help from the developers.
Post an issue on our issue tracker.
Be specific, providing as much information as possible about your system setup and the error you are encountering.
Please be patient in this process, as we may need to correspond a few times and ask you to run additional tests.
Most of the time, users have a slightly unusual system configuration that we haven’t encountered yet, such as an older version of a particular library.
Other times there is a legitimate bug in GEOSX to be addressed.
Take pride in the fact that you may be saving the next user from wasted time and frustration.

Repository Organization

The source for GEOSX and related tools are hosted on Github [https://github.com].
We use Git workflows [https://git-scm.com] to version control our code and manage the entire development process.
On Github, we have a GEOSX Organization [https://github.com/GEOSX] that hosts several related repositories.

You should sign up for a free Github account, particularly if you are interested in posting issues to our issue tracker and communicating with the developers.
The main repository of interest is obviously GEOSX itself: GEOSX [https://github.com/GEOSX/GEOSX]

We also rely on two types of dependencies: first-party and third-party.
First-party dependencies are projects directly associated with the GEOSX effort, but kept in separate repositories because they form stand-alone tools.
For example, there is a geologic mesh handling package called PAMELA [https://github.com/GEOSX/PAMELA] and an equation-of-state package called PVTPackage [https://github.com/GEOSX/PVTPackage].
These packages are handled as Git Submodules [https://git-scm.com/book/en/v2/Git-Tools-Submodules], which provides a transparent way of coordinating multiple code development projects.
Most users will never have to worry that these modules are in fact separate projects from GEOSX.

We also rely on several open-source Third-Party Libraries (TPLs) (see thirdPartyLibs [https://github.com/GEOSX/thirdPartyLibs]).
These are well-respected projects developed externally to GEOSX.
We have found, however, that many compilation issues stem from version incompatibilities between different packages.
To address this, we provide a mirror of these TPLs, with version combinations we know play nicely together.
We also provide a build script that conveniently and consistently builds those dependencies.

Our build system will automatically use the mirror package versions by default.
You are welcome to tune your configuration, however, to point to different versions installed on your system.
If you work on an HPC platform, for example, common packages may already be available and optimized for platform hardware.
For new users, however, it may be safer to begin with the TPL mirror.

Note

If you are working on an HPC platform with several other GEOSX users, we often compile the TPLs in a shared location so individual users don’t have to waste their storage quota.
Inquire with your institution’s point-of-contact whether this option already exists.
For all LLNL systems, the answer is yes.

Finally, there are also several private repositories only accessible to the core development team, which we use for behind-the-scene testing and maintenance of the code.

Username and Authentication

New users should sign up for a free Github account [https://github.com].

If you intend to develop in the GEOSX codebase, you may benefit from setting up your git credentials (see Git Workflow).

Download

It is possible to directly download the source code as a zip file.
We strongly suggest, however, that users don’t rely on this option.
Instead, most users should use Git to either clone or fork the repository.
This makes it much easier to stay up to date with the latest releases and bug fixes.
If you are not familiar with the basics of Git, here is a helpful resource [https://git-scm.com] to get you started.

The tutorial here assumes you will use a https clone with no specific credentials.
Using an ssh connection pattern requires a very slight modification.
See the Additional Notes at the end of this section for details.

If you do not already have Git installed on your system, you will need to install it.
We recommend using a relatively recent version of Git, as there have been some notable improvements over the past few years.
You can check if Git is already available by opening a terminal and typing

git --version

You’ll also need the git-lfs [https://git-lfs.github.com/] large file extension.

The first task is to clone the GEOSX and thirdPartyLibs repositories.
If you do not tell it otherwise, the build system will expect the GEOSX and thirdPartyLibs to be parallel to each other in the directory structure.
For example,

codes/
├── GEOSX/
└── thirdPartyLibs/

where the toplevel codes directory can be re-named and located wherever you like.
It is possible to customize the build system to expect a different structure, but for now let us assume you take the simplest approach.

First, using a terminal, create the codes directory wherever you like.

cd /insert/your/desired/path/
mkdir codes
cd codes

Inside this directory, we can clone the GEOSX repository.
We will also use some Git commands to initialize and download the submodules (e.g. PAMELA).
Note that most users will not have access to our integrated tests repository, and so we “deinit” (deactivate) this submodule.
Developers who will be working with the integratedTests repository should skip this line.

git clone https://github.com/GEOSX/GEOSX.git
cd GEOSX
git lfs install
git submodule init
git submodule deinit integratedTests
git submodule update
cd ..

If all goes well, you should have a complete copy of the GEOSX source at this point.
The most common errors people encounter here have to do with Github not recognizing their authentication settings and/or repository permissions.
See the previous section for tips on ensuring your SSH is working properly.

Note: The integratedTests submodule is not publicly available, with access limited to the core development team.
This may cause the git submodule update command to fail
if you forget the git submodule deinit integratedTests step above.
This submodule is not required for building GEOSX. If you see an error message here, however, you may need to initialize and update the submodules manually:

cd GEOSX
git submodule update --init src/coreComponents/LvArray
git submodule update --init src/coreComponents/fileIO/coupling/hdf5_interface
git submodule update --init src/externalComponents/PAMELA
git submodule update --init src/externalComponents/PVTPackage
cd ..

Once we have grabbed GEOSX, we do the same for the thirdPartyLibs repository. From the codes directory, type

git clone https://github.com/GEOSX/thirdPartyLibs.git
cd thirdPartyLibs
git lfs install
git pull
git submodule init
git submodule update
cd ..

Again, if all goes well you should now have a copy of all necessary TPL packages.

Additional Notes:

#. git-lfs may not function properly (or may be very slow) if your version of git and git-lfs are not current.
If you are using an older version, you may need to add git lfs pull after git pull in the above procedures.

#. You can adapt the commands if you use an ssh connection instead.
The clone https://github.com/GEOSX/GEOSX.git becomes git clone git@github.com:GEOSX/GEOSX.git.
You may also be willing to insert your credentials in the command line (less secure) git clone https://${USER}:${TOKEN}@github.com/GEOSX/GEOSX.git.

Configuration

At a minimum, you will need a relatively recent compiler suite installed on your system (e.g. GCC [https://gcc.gnu.org], Clang [https://clang.llvm.org]) as well as CMake [https://cmake.org].
If you want to run jobs using MPI-based parallelism, you will also need an MPI implementation (e.g. OpenMPI [https://www.open-mpi.org], MVAPICH [https://mvapich.cse.ohio-state.edu]).
Note that GEOSX supports a variety of parallel computing models, depending on the hardware and software environment.
Advanced users are referred to the Build Guide for a discussion of the available configuration options.

Before beginning, it is a good idea to have a clear idea of the flavor and version of the build tools you are using.
If something goes wrong, the first thing the support team will ask you for is this information.

cpp --version
mpic++ --version
cmake --version

Here, you may need to replace cpp with the full path to the C++ compiler you would like to use, depending on how your path and any aliases are configured.

GEOSX compilations are driven by a cmake host-config file, which tells the build system about the compilers you are using, where various packages reside, and what options you want to enable.
We have created a number of default hostconfig files for common systems.
You should browse them to see if any are close to your needs:

cd GEOSX/host-configs

We maintain host configs (ending in .cmake) for HPC systems at various institutions, as well as ones for common personal systems.
If you cannot find one that matches your needs, we suggest beginning with one of the shorter ones and modifying as needed.
A typical one may look like:

file: your-platform.cmake

detect host and name the configuration file
site_name(HOST_NAME)
set(CONFIG_NAME "your-platform" CACHE PATH "")
message("CONFIG_NAME = ${CONFIG_NAME}")

set paths to C, C++, and Fortran compilers. Note that while GEOSX does not contain any Fortran code,
some of the third-party libraries do contain Fortran code. Thus a Fortran compiler must be specified.
set(CMAKE_C_COMPILER "/usr/bin/clang" CACHE PATH "")
set(CMAKE_CXX_COMPILER "/usr/bin/clang++" CACHE PATH "")
set(CMAKE_Fortran_COMPILER "/usr/local/bin/gfortran" CACHE PATH "")
set(ENABLE_FORTRAN OFF CACHE BOOL "" FORCE)

enable MPI and set paths to compilers and executable.
Note that the MPI compilers are wrappers around standard serial compilers.
Therefore, the MPI compilers must wrap the appropriate serial compilers specified
in CMAKE_C_COMPILER, CMAKE_CXX_COMPILER, and CMAKE_Fortran_COMPILER.
set(ENABLE_MPI ON CACHE PATH "")
set(MPI_C_COMPILER "/usr/local/bin/mpicc" CACHE PATH "")
set(MPI_CXX_COMPILER "/usr/local/bin/mpicxx" CACHE PATH "")
set(MPI_Fortran_COMPILER "/usr/local/bin/mpifort" CACHE PATH "")
set(MPIEXEC "/usr/local/bin/mpirun" CACHE PATH "")

disable CUDA and OpenMP
set(CUDA_ENABLED "OFF" CACHE PATH "" FORCE)
set(ENABLE_OPENMP "OFF" CACHE PATH "" FORCE)

enable PAMELA and PVTPackage
set(ENABLE_PAMELA ON CACHE BOOL "" FORCE)
set(ENABLE_PVTPackage ON CACHE BOOL "" FORCE)

enable tests
set(ENABLE_GTEST_DEATH_TESTS ON CACHE BOOL "" FORCE)

The various set() commands are used to set environment variables that control the build.
You will see in the above example that we set the C++ compiler to /user/bin/clang++ and so forth.
We also disable CUDA and OpenMP, but enable PAMELA and PVTPackage.
The final line is related to our unit test suite. See the Build Guide for more details on available options.

Note

If you develop a new host-config for a particular platform that may be useful for other users, please consider sharing it with the developer team.

Compilation

We will begin by compiling the TPLs, followed by the main code.
If you work on an HPC system with other GEOSX developers, check with them to see if the TPLs have already been compiled in a shared directory.
If this is the case, you can skip ahead to just compiling the main code.
If you are working on your own machine, you will need to compile both.

We strongly suggest that GEOSX and TPLs be built with the same hostconfig file.
Below, we assume that you keep it in, say, GEOSX/host-configs/your-platform.cmake, but this is up to you.

We begin with the third-party libraries, and use a python config-build.py script to configure and build all of the TPLs.
Note that we will request a Release build type, which will enable various optimizations.
The other option is a Debug build, which allows for debugging but will be much slower in production mode.
The TPLS will then be built in a build directory named consistently with your hostconfig file.

cd thirdPartyLibs
python scripts/config-build.py -hc ../GEOSX/host-configs/your-platform.cmake -bt Release
cd build-your-platform-release
make

Note that building all of the TPLs can take quite a while, so you may want to go get a cup of coffee at this point.
Also note that you should not use a parallel make -j N command to try and speed up the build time.

The next step is to compile the main code.
Again, the config-build.py sets up cmake for you, so the process is very similar.

cd ../../GEOSX
python scripts/config-build.py -hc host-configs/your-platform.cmake -bt Release
cd build-your-platform-release
make -j4
make install

The host-config file is the place to set all relevant configuration options.
Note that the path to the previously installed third party libraries is typically specified within this file.
An alternative is to set the path GEOSX_TPL_DIR via a cmake command line option, e.g.

python scripts/config-build.py -hc host-configs/your-platform.cmake -bt Release -D GEOSX_TPL_DIR=/full/path/to/thirdPartyLibs

We highly recommend using full paths, rather than relative paths, whenever possible.
The parallel make -j 4 will use four processes for compilation, which can substantially speed up the build if you have a multi-processor machine.
You can adjust this value to match the number of processors available on your machine.
The make install command then installs GEOSX to a default location unless otherwise specified.

If all goes well, a geosx executable should now be available:

GEOSX/install-your-platform-release/bin/geosx

Running

We can do a quick check that the geosx executable is working properly by calling the executable with our help flag

./bin/geosx --help

This should print out a brief summary of the available command line arguments:

USAGE: geosx -i input.xml [options]

Options:
-?, --help
-i, --input, Input xml filename (required)
-r, --restart, Target restart filename
-x, --x-partitions, Number of partitions in the x-direction
-y, --y-partitions, Number of partitions in the y-direction
-z, --z-partitions, Number of partitions in the z-direction
-s, --schema, Name of the output schema
-b, --use-nonblocking, Use non-blocking MPI communication
-n, --name, Name of the problem, used for output
-s, --suppress-pinned Suppress usage of pinned memory for MPI communication buffers
-o, --output, Directory to put the output files
-t, --timers, String specifying the type of timer output.
An input xml must be specified!

Obviously this doesn’t do much interesting, but it will at least confirm that the executable runs.
In typical usage, an input XML must be provided describing the problem to be run, e.g.

./bin/geosx -i your-problem.xml

In a parallel setting, the command might look something like

mpirun -np 8 ./bin/geosx -i your-problem.xml -x 2 -y 2 -z 2

Note that we provide a series of Tutorials to walk you through the actual usage of the code, with several input examples.
Once you are comfortable the build is working properly, we suggest new users start working through these tutorials.

Testing

It is wise to run our unit test suite as an additional check that everything is working properly.
You can run them in the build folder you just created.

cd GEOSX/build-your-platform-release
ctest -V

This will run a large suite of simple tests that check various components of the code.
If you have access, you may also consider running the integrated tests.
Please refer to Integrated Tests for further information.

Note

If all of the unit tests fail, there is likely something wrong with your installation.
Refer to the FAQs above for how best to proceed in this situation.
If only a few tests fail, it is possible that your platform configuration has exposed some issue that our existing platform tests do not catch.
If you suspect this is the case, please consider posting an issue to our issue tracker (after first checking whether other users have encountered a similar issue).

Tutorials

The easiest way to learn to use GEOSX is through worked examples.
Here, we have included tutorials showing how to run some common problems.
After working through these examples, you should have a good understanding of how to set up and solve your own models.

Note that these tutorials are intended to be followed in sequence, as each step introduces a few new skills.
Most of the tutorial models are also quite small, so that large computational resources are not required.

	Tutorial 1: First Steps

	Tutorial 2: External Meshes

	Tutorial 3: Regions and Property Specifications

	Tutorial 4: Boundary Conditions and Time-Dependent Functions

Tutorial 1: First Steps

Context

In this tutorial, we use a single-phase flow solver (see Singlephase Flow Solver)
to solve for pressure propagation on a 10x10x10 cube mesh
with anisotropic permeability values.
The pressure source is the lowest-left corner element, and the pressure sink sits at the opposite top corner.

[image: ../../../../_images/source_sink.png]
Objectives

At the end of this tutorial you will know:

	the basic structure of XML input files used by GEOSX,

	how to run GEOSX on a simple case requiring no external input files,

	the basic syntax of a solver block for single-phase problems,

	how to control output and visualize results.

Input file

GEOSX runs by reading user input information from one or more XML files.
For this tutorial, we only need a single GEOSX input file located at:

inputFiles/singlePhaseFlow/3D_10x10x10_compressible_smoke.xml

Running GEOSX

If our XML input file is called my_input.xml, GEOSX runs this file by executing:

/path/to/geosx -i /path/to/my_input.xml

The -i flag indicates the path to the XML input file.
To get help on what other command line input flags GEOSX supports, run geosx --help.

Input file structure

XML files store information in a tree-like structure using nested blocks of information called elements.
In GEOSX, the root of this tree structure is the element called Problem.
All elements in an XML file are defined by an opening tag (<ElementName>) and end by a corresponding closing tag (</ElementName>). Elements can have properties defined as attributes with key="value" pairs.
A typical GEOSX input file contains the following tags:

	Solver

	Mesh

	Geometry

	Events

	NumericalMethods

	ElementRegions

	Constitutive

	FieldSpecifications

	Outputs

XML validation tools

If you have not already done so, please use or enable an XML validation tool (see User Guide/Input Files/Input Validation).
Such tools will help you identify common issues that may occur when working with XML files.

Note

Common errors come from the fact that XML is case-sensitive, and all opened tags must be properly closed.

Single-phase solver

GEOSX is a multiphysics simulator. To find the solution to different physical problems
such as diffusion or mechanical deformation, GEOSX uses one or more physics solvers.
The Solvers tag is used to define and parameterize these solvers.
Different combinations of solvers can be applied
in different regions of the domain at different moments of the simulation.

In this first example, we use one type of solver in the entire domain and
for the entire duration of the simulation.
The solver we are specifying here is a single-phase flow solver.
In GEOSX, such a solver is created using a SinglePhaseFVM element.
This type of solver is one among several cell-centered single-phase finite volume methods.

The XML block used to define this single-phase finite volume solver is shown here:

 <Solvers>
 <SinglePhaseFVM
 name="SinglePhaseFlow"
 logLevel="1"
 discretization="singlePhaseTPFA"
 fluidNames="{ water }"
 solidNames="{ rock }"
 permeabilityNames="{ rockPerm }"
 targetRegions="{ mainRegion }">
 <NonlinearSolverParameters
 newtonTol="1.0e-6"
 newtonMaxIter="8"/>
 <LinearSolverParameters
 solverType="gmres"
 krylovTol="1.0e-10"/>
 </SinglePhaseFVM>
 </Solvers>

Each type of solver has a specific set of parameters that are required and
some parameters that are optional. Optional values are usually set with sensible default values.

name

First, we register a solver of type SinglePhaseFVM with a user-chosen name,
here SinglePhaseFlow. This unique user-defined name can be almost anything.
However, some symbols are known to cause issues in names : avoid commas, slashes, curly braces.
GEOSX is case-sensitive: it makes a distinction between two SinglePhaseFVM solvers called mySolver and MySolver.
Giving elements a name is a common practice in GEOSX:
users need to give unique identifiers to objects they define.
That name is the handle to this instance of a solver class.

logLevel

Then, we set a solver-specific level of console logging (logLevel set to 1 here).
Notice that the value (1) is between double-quotes.
This is a general convention for all attributes:
we write key="value" regardless of the value type (integers, strings, lists, etc.).

For logLevel, higher values lead to more console output or intermediate results saved to files.
When debugging, higher logLevel values is often convenient.
In production runs, you may want to suppress most console output.

discretization

For solvers of the SinglePhaseFVM family, one required attribute is a discretization scheme.
Here, we use a Two-Point Flux Approximation (TPFA) finite volume discretization scheme called singlePhaseTPFA.
To know the list of admissible values of an attribute, please see GEOSX’s XML schema.
This discretization type must know how to find permeability values that it uses internally to compute transmissibilities.
The permeabilityNames attribute tells the solver the user-defined name (the handle)
of the permeability values that will be defined elsewhere in the input file.
Note that the order of attributes inside an element is not important.

fluidNames, solidNames, targetRegions

Here, we specify a collection of fluids, rocks, and
target regions of the mesh on which the solver will apply.
Curly brackets are used in GEOSX inputs to indicate collections of values (sets or lists).
The curly brackets used here are necessary, even if the collection contains a single value.
Commas are used to separate members of a set.

Nested elements

Finally, note that other XML elements can be nested inside the Solvers element.
Here, we use specific XML elements to set values for numerical tolerances.
The solver stops when numerical residuals are smaller than
the specified tolerances (convergence is achieved)
or when the maximum number of iterations allowed is exceeded (convergence not achieved).

Mesh

To solve this problem, we need to define a mesh for our numerical calculations.
This is the role of the Mesh element.

There are two approaches to specifying meshes in GEOSX: internal or external.

	The external approach allows to import mesh files created outside GEOSX, such as a corner-point grid or an unstructured grid representing complex shapes and structures.

	The internal approach uses GEOSX’s built-in capability to create simple meshes from a small number of parameters. It does not require any external file information. The geometric complexity of internal meshes is limited, but many practical problems can be solved on such simple grids.

In this tutorial, to keep things self-contained,
we use the internal mesh generator. We parameterize it with the InternalMesh element.

 <Mesh>
 <InternalMesh
 name="mesh"
 elementTypes="{ C3D8 }"
 xCoords="{ 0, 10 }"
 yCoords="{ 0, 10 }"
 zCoords="{ 0, 10 }"
 nx="{ 10 }"
 ny="{ 10 }"
 nz="{ 10 }"
 cellBlockNames="{ cellBlock }"/>
 </Mesh>

name

Just like for solvers, we register the InternalMesh element using a unique name attribute.
Here the InternalMesh object is instantiated with the name mesh.

elementTypes

We specify the collection of elements types that this mesh contains.
Tetrahedra, hexahedra, wedges, prisms are examples of element types.
If a mesh contains different types of elements (a hybrid mesh),
we should indicate this here by listing all unique types of elements in curly brackets.
Keeping things simple, our element collection has only one type of element: a C3D8 type representing a hexahedral element (linear 8-node brick).

A mesh can contain several geometrical types of elements.
For numerical convenience, elements are aggregated by types into cellBlocks.
Here, we only linear 8-node brick elements, so the entire domain is one object called cellBlock.

xCoords, yCoords, zCoords, nx, ny, nz

This specifies the spatial arrangement of the mesh elements.
The mesh defined here goes from coordinate x=0 to x=10 in the x-direction, with nx=10 subdivisions along this segment.
The same is true for the y-dimension and the z-dimension.
Our mesh is a cube of 10x10x10=1,000 elements with a bounding box defined by corner coordinates (0,0,0) and (10,10,10).

[image: ../../../../_images/mesh6.png]

Geometry

The Geometry tag allows users to capture subregions of a mesh and assign them a unique name.
Here, we name two Box elements, one for the location of the source and one for the sink.
Pressure values are assigned to these named regions elsewhere in the input file.

The pressure source is the element in the (0,0,0) corner of the domain, and the sink is the element in the (10,10,10) corner.

For an element to be inside a geometric region,
it must have all its vertices strictly inside that region.
Consequently, we need to extend the geometry limits a small amount beyond the actual coordinates of the elements to catch all vertices. Here, we use a safety padding of 0.01.

 <Geometry>
 <Box
 name="source"
 xMin="{ -0.01, -0.01, -0.01 }"
 xMax="{ 1.01, 1.01, 1.01 }"/>

 <Box
 name="sink"
 xMin="{ 8.99, 8.99, 8.99 }"
 xMax="{ 10.01, 10.01, 10.01 }"/>
 </Geometry>

There are several methods to achieve similar conditions (Dirichlet boundary condition on faces, etc.).
The Box defined here is one of the simplest approaches.

[image: ../../../../_images/source_sink.png]

Events

In GEOSX, we call Events anything that happens at a set time or frequency.
Events are a central element for time-stepping in GEOSX,
and a dedicated section just for events is necessary to give them the treatment they deserve.

For now, we focus on three simple events: the time at which we wish the simulation to end (maxTime),
the times at which we want the solver to perform updates,
and the times we wish to have simulation output values reported.

In GEOSX, all times are specified in seconds, so here maxTime=5000.0 means that the simulation will run from time 0 to time 5,000 seconds.

If we focus on the PeriodicEvent elements, we see :

	A periodic solver application: this event is named solverApplications. With the attribute forceDt=20, it tells the solver to compute results at 20-second time intervals. We know what this event does by looking at its target attribute: here, from time 0 to maxTime and with a forced time step of 20 seconds, we instruct GEOSX to call the solver registered as SinglePhaseFlow. Note the hierarchical structure of the target formulation, using ‘/’ to indicate a specific named instance (SinglePhaseFlow) of an element (Solvers). If the solver needs to take smaller time steps, it is allowed to do so, but it will have to compute results for every 20-second increment between time zero and maxTime regardless of possible intermediate time steps.

	An output event: this event is used for reporting purposes and instructs GEOSX to write out results at specific frequencies. Here, we need to see results at every 100-second increment. This event triggers a full application of solvers, even if solvers were not summoned by the previous event. In other words, an output event will force an application of solvers, possibly in addition to the periodic events requested directly.

 <Events maxTime="5000.0">
 <PeriodicEvent
 name="solverApplications"
 forceDt="20.0"
 target="/Solvers/SinglePhaseFlow"/>
 <PeriodicEvent
 name="outputs"
 timeFrequency="100.0"
 target="/Outputs/siloOutput"/>
 </Events>

Numerical methods

GEOSX comes with several useful numerical methods.
In the Solvers elements, for instance, we had specified to use a two-point flux approximation
as discretization scheme for the finite volume single-phase solver.
Now to use this scheme, we need to supply more details in the NumericalMethods element.

 <NumericalMethods>
 <FiniteVolume>
 <TwoPointFluxApproximation
 name="singlePhaseTPFA"
 fieldName="pressure"
 coefficientName="permeability"
 coefficientModelNames="{ rockPerm }"/>
 </FiniteVolume>
 </NumericalMethods>

The fieldName attribute specifies which property will be used for flux computations,
and also specifies that for Dirichlet boundary conditions, the pressure value at the element face is used.
The coefficientName attribute is used for the stencil transmissibility computations.

Note that in GEOSX, there is a difference between physics solvers and numerical methods.
Their parameterizations are thus independent. We can have
multiple solvers using the same numerical scheme but with different tolerances, for instance.

Regions

In GEOSX, ElementsRegions are used to attach material properties
to regions of elements.
Here, we use only one CellElementRegion to represent the entire domain (user name: mainRegion).
It contains all the blocks called cellBlock defined in the mesh section.
We specify the materials contained in that region using a materialList.
Several materials coexist in cellBlock, and we list them using their user-defined names: water, rockPorosity, and rockPerm, etc. What these names mean, and the physical properties that they are attached to are defined next.

 <ElementRegions>
 <CellElementRegion
 name="mainRegion"
 cellBlocks="{ cellBlock }"
 materialList="{ water, rock }"/>
 </ElementRegions>

Constitutive models

The Constitutive element attaches physical properties to all materials contained in the domain.

The physical properties of the materials
defined as water, rockPorosity, and rockPerm are provided here,
each material being derived from a different material type:
CompressibleSinglePhaseFluid
for the water, PressurePorosity for the rock porosity, and
ConstantPermeability for rock permeability.
The list of attributes differs between these constitutive materials.

 <Constitutive>
 <CompressibleSinglePhaseFluid
 name="water"
 defaultDensity="1000"
 defaultViscosity="0.001"
 referencePressure="0.0"
 compressibility="5e-10"
 viscosibility="0.0"/>

 <CompressibleSolidConstantPermeability
 name="rock"
 solidModelName="nullSolid"
 porosityModelName="rockPorosity"
 permeabilityModelName="rockPerm"/>

 <NullModel
 name="nullSolid"/>

 <PressurePorosity
 name="rockPorosity"
 defaultReferencePorosity="0.05"
 referencePressure="0.0"
 compressibility="1.0e-9"/>

 <ConstantPermeability
 name="rockPerm"
 permeabilityComponents="{ 1.0e-12, 1.0e-12, 1.0e-15 }"/>
 </Constitutive>

The names water, rockPorosity and rockPerm are defined by the user
as handles to specific instances of physical materials.
GEOSX uses S.I. units throughout, not field units.
Pressures, for instance, are in Pascal, not psia.
The x- and y-permeability are set to 1.0e-12 m2 corresponding to approximately to 1 Darcy.

We have used the handles water, rockPorosity and rockPerm in the input file
in the ElementRegions section of the XML file,
before the registration of these materials took place here, in Constitutive element.

Note

This highlights an important aspect of using XML in GEOSX:
the order in which objects are registered and used in the XML file is not important.

Defining properties

In the FieldSpecifications section, properties such as source and sink pressures are set.
GEOSX offers a lot of flexibility to specify field values through space and time.

Spatially, in GEOSX, all field specifications are associated
to a target object on which the field values are mounted.
This allows for a lot of freedom in defining fields:
for instance, one can have volume property values attached to
a subset of volume elements of the mesh,
or surface properties attached to faces of a subset of elements.

For each FieldSpecification, we specify a name, a fieldName (this name is used by solvers or numerical methods), an objectPath, setNames and a scale. The ObjectPath is important and it reflects the internal class hierarchy of the code.
Here, for the fieldName pressure, we assign the value defined by scale (5e6 Pascal)
to one of the ElementRegions (class) called mainRegions (instance).
More specifically, we target the elementSubRegions called cellBlock
(this contains all the C3D8 elements, effectively all the domain). The setNames allows to use the elements defined in Geometry, or use everything in the object path (using the all).

 <FieldSpecifications>
 <FieldSpecification
 name="initialPressure"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/mainRegion/elementSubRegions/cellBlock"
 fieldName="pressure"
 scale="5e6"/>

 <FieldSpecification
 name="sourceTerm"
 objectPath="ElementRegions/mainRegion/elementSubRegions/cellBlock"
 fieldName="pressure"
 scale="1e7"
 setNames="{ source }"/>

 <FieldSpecification
 name="sinkTerm"
 objectPath="ElementRegions/mainRegion/elementSubRegions/cellBlock"
 fieldName="pressure"
 scale="0.0"
 setNames="{ sink }"/>
 </FieldSpecifications>

The image below shows the pressures after the very first time step, with the domain initialized at 5 MPa, the sink at 0 MPa on the top right, and the source in the lower left corner at 10 MPa.

[image: ../../../../_images/initial_pressure.png]

Output

In order to retrieve results from a simulation,
we need to instantiate one or multiple Outputs.

Here, we define a single object of type Silo.
Silo [https://wci.llnl.gov/simulation/computer-codes/silo] is a library and a format for reading and writing a wide variety of scientific data.
Data in Silo format can be read by VisIt [https://wci.llnl.gov/simulation/computer-codes/visit/].

This Silo output object is called siloOutput.
We had referred to this object already in the Events section:
it was the target of a periodic event named outputs.
You can verify that the Events section is using this object as a target.
It does so by pointing to /Outputs/siloOutput.

 <Outputs>
 <Silo
 name="siloOutput"/>
 </Outputs>

GEOSX currently supports outputs that are readable by VisIt [https://wci.llnl.gov/simulation/computer-codes/visit/] and Kitware’s Paraview, as well as other visualization tools.
In this example, we only request a Silo format compatible with VisIt.

All elements are now in place to run GEOSX.

Running GEOSX

The command to run GEOSX is

path/to/geosx -i path/to/this/xml_file.xml

Note that all paths for files included in the XML file are relative to this XML file.

While running GEOSX, it logs status information on the console output with a verbosity
that is controlled at the object level, and
that can be changed using the logLevel flag.

The first few lines appearing to the console are indicating that the XML elements are read and registered correctly:

Adding Solver of type SinglePhaseFVM, named SinglePhaseFlow
Adding Mesh: InternalMesh, mesh
Adding Geometric Object: Box, source
Adding Geometric Object: Box, sink
Adding Event: PeriodicEvent, solverApplications
Adding Event: PeriodicEvent, outputs
Adding Output: Silo, siloOutput
Adding Object CellElementRegion named mainRegion from ObjectManager::Catalog.
 mainRegion/cellBlock/water is allocated with 1 quadrature points.
 mainRegion/cellBlock/rock is allocated with 1 quadrature points.
 mainRegion/cellBlock/rockPerm is allocated with 1 quadrature points.
 mainRegion/cellBlock/rockPorosity is allocated with 1 quadrature points.
 mainRegion/cellBlock/nullSolid is allocated with 1 quadrature points.

Then, we go into the execution of the simulation itself:

Time: 0s, dt:20s, Cycle: 0
 Attempt: 0, NewtonIter: 0
 (R) = (5.65e+00) ;
 Attempt: 0, NewtonIter: 1
 (R) = (2.07e-04) ;
 Last LinSolve(iter,res) = (63, 8.96e-11) ;
 Attempt: 0, NewtonIter: 2
 (R) = (9.86e-11) ;
 Last LinSolve(iter,res) = (70, 4.07e-11) ;

Each time iteration at every 20s interval is logged to console, until the end of the simulation at maxTime=5000:

Time: 4980s, dt:20s, Cycle: 249
 Attempt: 0, NewtonIter: 0
 (R) = (4.74e-09) ;
 Attempt: 0, NewtonIter: 1
 (R) = (2.05e-14) ;
 Last LinSolve(iter,res) = (67, 5.61e-11) ;
SinglePhaseFlow: Newton solver converged in less than 4 iterations, time-step required will be doubled.
Cleaning up events
Umpire HOST sum across ranks: 14.8 MB
Umpire HOST rank max: 14.8 MB
total time 5.658s
initialization time 0.147s
run time 3.289s

All newton iterations are logged along with corresponding nonlinear residuals for each time iteration.
In turn, for each newton iteration, LinSolve provides the number of linear iterations and the final residual reached by the linear solver.
Information on run times, initialization times, and maximum amounts of
memory (high water mark) are given at the end of the simulation, if successful.

Congratulations on completing this first run!

Visualization

Here, we have requested results to be written in Silo, a format compatible with VisIt [https://wci.llnl.gov/simulation/computer-codes/visit/]. To visualize results, open VisIt
and directly load the database of simulation output files.

After a few time step, pressure between the source and sink are in equilibrium, as shown on the representation below.

[image: ../../../../_images/final_pressure.png]

To go further

Feedback on this tutorial

This concludes the single-phase internal mesh tutorial.
For any feedback on this tutorial, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

For more details

	More on single-phase flow solvers, please see Singlephase Flow Solver.

	More on meshes, please see Meshes.

	More on events, please see Event Management.

Tutorial 2: External Meshes

Context

In this tutorial, we use a simple single-phase flow solver (see Singlephase Flow Solver)
to solve for pressure propagation on a mesh that is imported into GEOSX.
The main goal of this tutorial is to learn how to work with external meshes,
and to learn how easy it is to swap meshes on the same physical problem in GEOSX.
This makes GEOSX a powerful tool to solve real field applications with complex geometries
and perform assessments of mesh geometry and resolution effects.

Objectives

At the end of this tutorial you will know:

	the syntax and format of input meshes,

	how to input external files into a GEOSX input XML file,

	how to run the same physical problem with two different meshes,

	how to use and visualize hexahedral and tetrahedral meshes.

Input Files

This tutorial uses an XML file containing the main input for GEOSX
and a separate file with all the mesh information.
As we will see later, the main XML file points to the external
mesh file with an include statement.
The XML input file for this test case is located at:

inputFiles/singlePhaseFlow/pamela_test/3D_10x10x10_compressible_pamela_hex_gravity_smoke.xml

The mesh file format used in this tutorial is called MSH [https://gmsh.info/doc/texinfo/gmsh.html#MSH-file-format].
This format is a standard scientific meshing format not specific to GEOSX.
It is maintained as the native format of the meshing tool Gmsh [https://gmsh.info].
MSH is designed for unstructured meshes and contains a
compact and complete representation of the mesh geometry and of its properties.
The mesh file used here is human-readable ASCII.
It contains a list of nodes with their (x,y,z) coordinates,
and a list of elements that are constructed from these nodes.

Hexahedral elements

In the first part of the tutorial, we will run flow simulations
on a mesh made of hexahedral elements. These types of elements
are used in classical cartesian grids (sugar cubes)
or corner-point grids or pillar grids.

Brief discussion about hexahedral meshes in GEOSX

Although closely related, the hexahedral grids that GEOSX
can process are slightly different
than either structured grid or corner-point grids.
The differences are worth pointing out here. In GEOSX:

	hexahedra can have irregular shapes: no pillars are needed and
vertices can be anywhere in space. This is useful for grids that turn, fold,
or are heavily bent. Hexahedral blocks should nevertheless not be deprecated
and have 8 distinct vertices.
Some tolerance exists for deprecation to wedges or prisms
in some solvers (finite element solvers), but it is best to avoid such situations
and label elements according to their actual shape.
Butterfly cells, flat cells, negative or zero volume cells will cause problems.

	the mesh needs to be conformal: in 3D, this means that neighboring
grid blocks have to share exactly a complete face. Note that corner-point
grids do not have this requirement and neighboring blocks can be offset.
When importing grids
from commonly-used geomodeling packages, this is an important consideration. This
problem is solved by splitting shifted grid blocks to restore conformity.
While it may seem convenient to be able to have offset grid blocks at first,
the advantages
of conformal grids used in GEOSX are worth the extra meshing effort:
by using conformal grids,
GEOSX can run finite element and finite volume simulations on the same mesh
without problems, going seamlessly from one numerical method to the other.
This is key to enabling multiphysics simulation.

	there is no assumption of overall structure: GEOSX does not need to know
a number of block in the X, Y, Z direction (no NX, NY, NZ) and does not assume that the
mesh is a full cartesian domain that the interesting parts of the reservoir
must be carved out from.
Blocks are numbered by indices that assume
nothing about spatial positioning and there is no concept of (i,j,k).
This approach also implies that
no “masks” are needed to remove inactive or dead cells, as often done
in cartesian grids to get the actual reservoir contours from a bounding box,
and here we only need to specify grid blocks that are active.
For performance and flexibility, this lean approach to meshes is important.

Importing an external mesh with PAMELA

In this first part of the tutorial, we use a hexahedral mesh provided with GEOSX.
This hexahedral mesh is strictly identical to the grid used in the first tutorial (Tutorial 1: First Steps), but instead of using
the internal grid generator GEOSX, we specify it with spatial node coordinates in MSH format.

The process by which grids are imported into GEOSX is worth explaining.
To import external grid into GEOSX, we use an external component (submodule) called PAMELA.
PAMELA (Parallel Meshing Library) was developed as a stand-alone utility to import grids
in multiple formats and write them into memory for GEOSX.
Although PAMELA is not necessary to run GEOSX (the internal grid
generator of GEOSX has plenty of interesting features), you need
PAMELA if you want to import external grids.

So here, our mesh consists of a simple sugar-cube stack of size 10x10x10.
We inject fluid from one vertical face of a cube (the face corresponding to x=0),
and we let the pressure equilibrate in the closed domain.
The displacement is a single-phase, compressible fluid subject to gravity forces,
so we expect the pressure to be constant on the injection face,
and to be close to hydrostatic on the opposite plane (x=10).
We use GEOSX to compute the pressure inside each grid block over a period of time
of 100 seconds.

[image: ../../../../_images/hex_mesh.png]
To see how to import such a mesh,
we inspect the following XML file:

inputFiles/singlePhaseFlow/pamela_test/3D_10x10x10_compressible_pamela_hex_gravity_smoke.xml

In the XML Mesh tag, instead of an InternalMesh tag,
we have a PAMELAMeshGenerator tag.
We see that a file called cube_10x10x10_hex.msh is
imported using PAMELA, and this object is instantiated with a user-defined name value.
The file here contains geometric information in
MSH [http://gmsh.info]
format (it can also contain properties, as we will see in the next tutorial).

 <Mesh>
 <PAMELAMeshGenerator
 name="CubeHex"
 file="cube_10x10x10_hex.msh"/>
 </Mesh>

Here are the first few lines of the msh file :

Listing 1 cube_10x10x10_hex.msh

$MeshFormat
2.2 0 8
$EndMeshFormat
$Nodes
1331
1	0	0	0
2	10	0	0
3	10	10	0
4	0	10	0
5	0	0	10
6	10	0	10
7	10	10	10
8	0	10	10
9	1	0	0
10	2	0	0
11	3	0	0
12	4	0	0
13	5	0	0
14	6	0	0
15	7	0	0

GEOSX can run different physical solvers on different regions of the mesh at different times.
Here, to keep things simple, we run one solver (single-phase flow)
on the entire domain throughout the simulation.
Even this is trivial, we need to define and name a region encompassing the entire domain
and assign it to the single-phase flow solver.
We also need to provide material properties to the regions.
This is done by specifying ElementRegions.
Here, the entire field is one region called Domain,
and contains multiple constitutive models, including water, rockPorosity, and rockPerm.

 <ElementRegions>
 <CellElementRegion
 name="Domain"
 cellBlocks="{ DEFAULT_HEX }"
 materialList="{ water, rock }"/>
 </ElementRegions>

Running GEOSX

The command to run GEOSX is

path/to/geosx -i ../../../../../inputFiles/singlePhaseFlow/pamela_test/3D_10x10x10_compressible_pamela_hex_gravity_smoke.xml

Note that all paths for files included in the XML file are relative
to this XML file, not to the GEOSX executable.
When running GEOSX, console messages will provide indications regarding the
status of the simulation.

In our case, the first lines are:

Adding Solver of type SinglePhaseFlow, named SinglePhaseFlow
Adding Mesh: PAMELAMeshGenerator, CubeHex
Adding Geometric Object: Box, all
Adding Geometric Object: Box, left
Adding Event: PeriodicEvent, solverApplications
Adding Event: PeriodicEvent, outputs
Adding Event: PeriodicEvent, restarts
Adding Output: Silo, siloWellPump
Adding Output: Restart, restartOutput
Adding Object CellElementRegion named Domain from ObjectManager::Catalog.

This indicates initialization of GEOSX.
The mesh preprocessing tool PAMELA is launched next,
with console messages as follows.

0 >>> **
0 >>> PAMELA Library Import tool
0 >>> **
0 >>> GMSH FORMAT IDENTIFIED
0 >>> *** Importing Gmsh mesh format...
0 >>> Reading nodes...
0 >>> Done0
0 >>> Reading elements...
0 >>> Number of nodes = 1331
0 >>> Number of triangles = 0
0 >>> Number of quadrilaterals = 0
0 >>> Number of tetrahedra = 0
0 >>> Number of hexahedra = 1000
0 >>> Number of pyramids = 0
0 >>> Number of prisms = 0
0 >>> *** Done
0 >>> *** Creating Polygons from Polyhedra...
0 >>> 3300 polygons have been created
0 >>> *** Done
0 >>> *** Perform partitioning...
0 >>> TRIVIAL partioning...
0 >>> Ghost elements...
0 >>> Clean mesh...
0 >>> *** Done...
0 >>> Clean Adjacency...
0 >>> *** Done...
Writing into the GEOSX mesh data structure
Running simulation

Notice the specification of the number of nodes (1331), and hexahedra (1000).
After the adjacency calculations, GEOSX starts the simulation itself.
with the time-step increments specified in the XML file.

At the end of your simulation, you should see something like:

Time: 99s, dt:1s, Cycle: 99
Cleaning up events
Writing out restart file at 3D_10x10x10_compressible_pamela_hex_gravity_smoke_restart_000000100/rank_0000000.hdf5

init time = 0.081181s, run time = 5.4595s

Once this is done, GEOSX is finished and we can inspect the outcome.

Visualization of results in VisIt

All results are written in a format compatible with VisIt [https://wci.llnl.gov/simulation/computer-codes/visit/].
To load the results, point VisIt to the database file written in the Silo output folder.

[image: ../../../../_images/hex_final.png]
We see that the face x=0 shown here in the back of the illustration applies a constant
pressure boundary condition (colored in red), whereas the face across from it
displays a pressure field under gravity effect, equilibrated and hydrostatic.
These results are consistent with what we expect.

Let us now see if a tetrahedral mesh, under the same exact physical conditions,
can reproduce these results.

Externally Generated Tetrahedral Elements

In the second part of the tutorial, we discretize the
same cubic domain but with tetrahedral elements.
Tetrahedral meshes are not yet common in geomodeling
but offer tremendous flexibility
in modeling fracture planes, faults, complex reservoir
horizons and boundaries.
Just like for hexahedral meshes,
and for the same reasons (compatibility with finite volume and finite element methods),
tetrahedral meshes in GEOSX must be conformal.

As stated previously, the problem we wish to solve here
is the exact same physical problem as with hexahedral grid blocks.
We apply a constant pressure condition (injection)
from the x=0 vertical face of the domain, and we let pressure
equilibrate over time. We observe the opposite side of the cube and expect
to see hydrostatic pressure profiles because of the gravitational effect.
The displacement is a single phase, compressible flow subject to gravity forces.
We use GEOSX to compute the pressure inside each grid block.

The set-up for this problem is almost identical to
the hexahedral mesh set-up. We simply point our Mesh tag to
include a tetrahedral grid. The beauty of not relying on I,J,K indices
for any property specification or well trajectory
makes it easy to try different meshes for the same physical problems with GEOSX.
Swapping out meshes without requiring other modifications
to the input files makes mesh refinement studies easy to perform with GEOSX.

Like before, the XML file for this problem is the following:

inputFiles/singlePhaseFlow/pamela_test/3D_10x10x10_compressible_pamela_tetra_gravity_smoke.xml

The only difference, is that now, the Mesh tag points GEOSX to
a different mesh file called cube_10x10x10_tet.msh.
This file contains nodes and tetrahedral elements in Gmsh [https://gmsh.info] format,
representing a different discretization of the exact same 10x10x10 cubic domain.

 <Mesh>
 <PAMELAMeshGenerator
 name="CubeTetra"
 file="cube_10x10x10_tet.msh"/>
 </Mesh>

The mesh now looks like this:

[image: ../../../../_images/tetra_mesh.png]
And the MSH file starts as follows (notice the tetrahedral point coordinates as real numbers):

Listing 2 cube_10x10x10_tet.msh

$MeshFormat
2.2 0 8
$EndMeshFormat
$Nodes
366
1 0 0 10
2 0 0 0
3 0 10 10
4 0 10 0
5 10 0 10
6 10 0 0
7 10 10 10
8 10 10 0
9 0 0 1.666666666666662
10 0 0 3.333333333333323
11 0 0 4.999999999999986
12 0 0 6.666666666666647
13 0 0 8.333333333333321
14 0 1.666666666666662 10
15 0 3.333333333333323 10

Again, the entire field is one region called Domain and contains water and rock only.

 <ElementRegions>
 <CellElementRegion
 name="Domain"
 cellBlocks="{ DEFAULT_TETRA }"
 materialList="{ water, rock }"/>
 </ElementRegions>

Running GEOSX

The command to run GEOSX is

path/to/geosx -i ../../../../../inputFiles/singlePhaseFlow/pamela_test/3D_10x10x10_compressible_pamela_tetra_gravity_smoke.xml

Again, all paths for files included in the XML file are relative
to this XML file, not to the GEOSX executable.
When running GEOSX, console messages will provide indications regarding the
status of the simulation.
In our case, the first lines are:

Adding Solver of type SinglePhaseFVM, named SinglePhaseFlow
Adding Mesh: PAMELAMeshGenerator, CubeTetra
Adding Geometric Object: Box, left
Adding Event: PeriodicEvent, solverApplications
Adding Event: PeriodicEvent, outputs
Adding Event: PeriodicEvent, restarts
Adding Output: Silo, siloWellPump
Adding Output: Restart, restartOutput
Adding Object CellElementRegion named Domain from ObjectManager::Catalog.
Reading external mesh from /****/inputFiles/singlePhaseFlow/pamela_test/cube_10x10x10_tet.msh

Followed by:

0 >>> **
0 >>> PAMELA Library Import tool
0 >>> **
0 >>> GMSH FORMAT IDENTIFIED
0 >>> *** Importing Gmsh mesh format...
0 >>> Reading nodes...
0 >>> Done0
0 >>> Reading elements...
0 >>> Number of nodes = 366
0 >>> Number of triangles = 624
0 >>> Number of quadrilaterals = 0
0 >>> Number of tetrahedra = 1153
0 >>> Number of hexahedra = 0
0 >>> Number of pyramids = 0
0 >>> Number of prisms = 0
0 >>> *** Done
0 >>> *** Creating Polygons from Polyhedra...
0 >>> 1994 polygons have been created
0 >>> *** Done
0 >>> *** Perform partitioning...
0 >>> TRIVIAL partioning...
0 >>> Ghost elements...
0 >>> Clean mesh...
0 >>> *** Done...
0 >>> Clean Adjacency...
0 >>> *** Done...
Writing into the GEOSX mesh data structure
 Domain/DEFAULT_TETRA/water is allocated with 1 quadrature points.
 Domain/DEFAULT_TETRA/rock is allocated with 1 quadrature points.
 Domain/DEFAULT_TETRA/rockPerm is allocated with 1 quadrature points.
 Domain/DEFAULT_TETRA/rockPorosity is allocated with 1 quadrature points.
 Domain/DEFAULT_TETRA/nullSolid is allocated with 1 quadrature points.
PAMELAMeshGenerator CubeTetra: importing field data from mesh dataset

We see that we have now 366 nodes and 1153 tetrahedral elements.
And finally, when the simulation is successfully done we see:

Time: 0s, dt:1s, Cycle: 0
Time: 1s, dt:1s, Cycle: 1
Time: 2s, dt:1s, Cycle: 2
Time: 3s, dt:1s, Cycle: 3
Time: 4s, dt:1s, Cycle: 4
Time: 5s, dt:1s, Cycle: 5
...
Time: 95s, dt:1s, Cycle: 95
Time: 96s, dt:1s, Cycle: 96
Time: 97s, dt:1s, Cycle: 97
Time: 98s, dt:1s, Cycle: 98
Time: 99s, dt:1s, Cycle: 99
Cleaning up events
Umpire HOST sum across ranks: 4.9 MB
Umpire HOST rank max: 4.9 MB
total time 3.164s
initialization time 0.178s
run time 2.659s

Visualization of results in VisIt

All results are written in a format compatible with VisIt [https://wci.llnl.gov/simulation/computer-codes/visit/] by default.
If we load into VisIt the .database file found in the Silo folder, we observe the following results:

[image: ../../../../_images/tetra_final.png]
Here, we can see that despite the different mesh sizes and shapes,
we are able to recover our pressure profile without any problems,
or degradation in runtime performance.

To go further

Feedback on this tutorial

This concludes the single-phase external mesh tutorial.
For any feedback on this tutorial, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

For more details

	A complete description of the Internal Mesh generator is found here Meshes.

	PAMELA being an external submodule has less documentation, but the same Meshes page may get you started.

	GEOSX can handle tetrahedra, hexahedra, prisms, pyramids, wedges, and any combination thereof in one mesh.
For more information on how MSH formats can help you specify these mesh types, see the Gmsh [https://gmsh.info] website.

Tutorial 3: Regions and Property Specifications

Context

In this tutorial, we set up a simple field case for single-phase flow simulation (see Singlephase Flow Solver). We demonstrate how to run a basic flow simulation in the reservoir layer. We do not consider any coupling with wells. Injection and production will be specified by imposing a high pressure in the cells close to the injection area and a low pressure in the cells close to the production area.

Objectives

At the end of this tutorial you will know:

	how to import external mesh information and properties,

	how to run a specific solver (here, flow) in a specific region only,

	the basic method of using boxes to set up boundary conditions,

	how to use TableFunction to import fields varying in time and/or space,

	how to control output frequency and export results for visualization.

Input file

The XML input file for this test case is located at:

inputFiles/singlePhaseFlow/FieldCaseTutorial3_base.xml

inputFiles/singlePhaseFlow/FieldCaseTutorial3_smoke.xml

We consider the following mesh as a numerical support to the simulations in this tutorial:

[image: ../../../../_images/full_mesh.png]
This mesh contains three continuous regions:

	a Top region (overburden, elementary tag = Overburden)

	a Middle region (reservoir layer, elementary tag = Reservoir)

	a Bottom region (underburden, elementary tag = Underburden)

[image: ../../../../_images/reservoir_transparent.png]

The mesh is defined using the GMSH file format (see Meshes for more information on
the supported mesh file format). Each tetrahedron is associated to a unique tag.

The XML file considered here follows the typical structure of the GEOSX input files:

	Solver

	Mesh

	Geometry

	Events

	NumericalMethods

	ElementRegions

	Constitutive

	FieldSpecifications

	Outputs

	Functions

Single-phase solver

Let us inspect the Solver XML tags.

 <Solvers
 gravityVector="{ 0.0, 0.0, 0.0 }">
 <SinglePhaseFVM
 name="SinglePhaseFlow"
 discretization="singlePhaseTPFA"
 fluidNames="{ water }"
 solidNames="{ rock }"
 permeabilityNames="{ rockPerm }"
 targetRegions="{ Reservoir }">
 <NonlinearSolverParameters
 newtonTol="1.0e-6"
 newtonMaxIter="8"/>
 <LinearSolverParameters
 solverType="gmres"
 preconditionerType="amg"
 krylovTol="1.0e-10"/>
 </SinglePhaseFVM>
 </Solvers>

This node gathers all the information previously defined.
We use a classical SinglePhaseFVM Finite Volume Method,
with the two-point flux approximation
as will be defined in the NumericalMethods tag.
The targetRegions refers only
to the Reservoir region because we only solve for flow in this region.
The fluidNames and solidNames refer the materials defined
in the Constitutive tag.

The NonlinearSolverParameters and LinearSolverParameters are used to set usual
numerical solver parameters such as the linear and nonlinear tolerances, the preconditioner and solver types or the maximum number of nonlinear iterations.

Mesh

Here, we use the PAMELAMeshGenerator to load the mesh (see Importing the Mesh).
The syntax to import external meshes is simple : in the XML file,
the mesh file is included with its relative or absolute path to the location of the GEOSX XML file and a user-specified name label for the mesh object.

 <Mesh>
 <PAMELAMeshGenerator
 name="SyntheticMesh"
 file="synthetic.msh"/>
 </Mesh>

Geometry

Here, we are using definition of source and sink boxes in addition to the all box in order to flag sets of nodes or cells which will act as injection or production.

 <Geometry>
 <Box
 name="all"
 xMin="{ -1e9, -1e9, -1e9 }"
 xMax="{ 1e9, 1e9, 1e9 }"/>

 <Box
 name="source"
 xMin="{ -0.1, 9700, 4499.9 }"
 xMax="{ 300, 10000.01, 5500.1 }"/>

 <Box
 name="sink"
 xMin="{ 19700, -0.1, 4499.9 }"
 xMax="{ 20000.1, 300, 5500.1 }"/>
 </Geometry>

In order to define a box, the user defines xMax and xMin, two diagonally opposite nodes of the box.

[image: ../../../../_images/reservoir_structure.png]

Events

The events are used here to guide the simulation through time,
and specify when outputs must be triggered.

 <Events
 maxTime="500.0e6">
 <PeriodicEvent
 name="solverApplications"
 forceDt="2.0e6"
 target="/Solvers/SinglePhaseFlow"/>

 <PeriodicEvent
 name="outputs"
 timeFrequency="10.0e6"
 target="/Outputs/syntheticReservoirVizFile"/>
 </Events>

The Events tag is associated with the maxTime keyword defining the maximum time.
If this time is ever reached or exceeded, the simulation ends.

Two PeriodicEvent are defined.
- The first one, solverApplications, is associated with the solver. The forceDt keyword means that there will always be time-steps of 23 days (2 000 000 seconds).
- The second, outputs, is associated with the output. The timeFrequency keyword means that it will be executed every 116 days (10 000 000 seconds).

Numerical methods

Defining the numerical method used in the solver, we will provide information on how to discretize our equations. Here a classical two-point flux approximation (TPFA) scheme is used to discretize water fluxes over faces.

 <NumericalMethods>
 <FiniteVolume>
 <TwoPointFluxApproximation
 name="singlePhaseTPFA"
 targetRegions="{ Reservoir }"
 fieldName="pressure"
 coefficientName="permeability"/>
 </FiniteVolume>
 </NumericalMethods>

The TwoPointFluxApproximation node should specify
the primary field to solve for as fieldName.
For a flow problem, this field is the pressure.
Here we specified targetRegions as we only solve flow for reservoir.
The field under coefficientName is used during TPFA transmissibilities construction.

Regions

Assuming that the overburden and the underburden are impermeable,
and flow only takes place in the reservoir, we need to define regions.

There are two methods to achieve this regional solve.

	The first solution is to define a unique CellElementRegion corresponding to the reservoir.

<ElementRegions>
 <CellElementRegion
 name="Reservoir"
 cellBlocks="{Reservoir_TETRA}"
 materialList="{ water, rock, rockPerm, rockPorosity, nullSolid }"/>
</ElementRegions>

	The second solution is to define all the CellElementRegions as they are in the GMSH file, but defining the solvers only on the reservoir layer. In this case, the ElementRegions tag is :

 <ElementRegions>
 <CellElementRegion
 name="Reservoir"
 cellBlocks="{ Reservoir_TETRA }"
 materialList="{ water, rock }"/>

 <CellElementRegion
 name="Burden"
 cellBlocks="{ Overburden_TETRA, Underburden_TETRA }"
 materialList="{ water, rock }"/>
 </ElementRegions>

We opt for the latest as it allows to visualize over- and underburdens and to change regions handling in their tag without needing to amend the ElementRegion tag.

Note

The material list here was set for a single-phase flow problem. This list is subject
to change if the problem is not a single-phase flow problem.

Constitutive models

We simulate a single-phase flow in the reservoir layer, hence with multiple types of materials, a fluid (water) and solid (rock permeability and porosity).

 <Constitutive>
 <CompressibleSinglePhaseFluid
 name="water"
 defaultDensity="1000"
 defaultViscosity="0.001"
 referencePressure="0.0"
 compressibility="1e-9"
 viscosibility="0.0"/>

 <CompressibleSolidConstantPermeability
 name="rock"
 solidModelName="nullSolid"
 porosityModelName="rockPorosity"
 permeabilityModelName="rockPerm"/>

 <NullModel
 name="nullSolid"/>

 <PressurePorosity
 name="rockPorosity"
 defaultReferencePorosity="0.05"
 referencePressure="0.0"
 compressibility="1.0e-9"/>

 <ConstantPermeability
 name="rockPerm"
 permeabilityComponents="{ 1.0e-14, 1.0e-14, 1.0e-18 }"/>
 </Constitutive>

The constitutive parameters such as the density, the viscosity, and the compressibility are specified in the International System of Units.

Note

To consider an incompressible fluid, the user has to set the compressibility to 0.

Note

GEOSX handles permeability as a diagonal matrix, so the three values of the permeability tensor are set individually using the component field.

Defining properties

The next step is to specify fields, including:

	The initial value (here, the pressure has to be initialized)

	The static properties (here, we have to define the permeability tensor and the porosity)

	The boundary conditions (here, the injection and production pressure have to be set)

 <FieldSpecifications>
 <FieldSpecification
 name="initialPressure"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/Reservoir/Reservoir_TETRA"
 fieldName="pressure"
 scale="1"
 functionName="initialPressureFunc"/>

 <FieldSpecification
 name="sourceTerm"
 objectPath="ElementRegions/Reservoir/Reservoir_TETRA"
 fieldName="pressure"
 scale="1e7"
 setNames="{ source }"
 functionName="timeInj"/>

 <FieldSpecification
 name="sinkTerm"
 objectPath="ElementRegions/Reservoir/Reservoir_TETRA"
 fieldName="pressure"
 scale="0.0"
 setNames="{ sink }"/>
 </FieldSpecifications>

You may note :

	All static parameters and initial value fields must have initialCondition field set to 1.

	The objectPath refers to the ElementRegion in which the field has its value,

	The setName field points to the box previously defined to apply the fields,

	name and fieldName have a different meaning: name is used to give a name to the XML block. This name must be unique. fieldName is the name of the field registered in GEOSX. This value has to be set according to the expected input fields of each solver.

Output

The Outputs XML tag is used to trigger the writing of visualization files.
Here, we write files in a format natively readable by Paraview under the tag VTK:

 <Outputs>
 <!-- <Silo name="syntheticReservoirVizFile"/> -->
 <VTK
 name="syntheticReservoirVizFile"/>
 </Outputs>

Note

The name keyword defines the name of the output directory.

Using functions to specify properties

Eventually, one can define varying properties using TableFunction (Functions) under the Functions tag:

 <Functions>
 <TableFunction
 name="timeInj"
 inputVarNames="{ time }"
 coordinates="{ 200e6, 250e6, 500e6 }"
 values="{ 1, 0.01, 0.00001 }"/>

 <TableFunction
 name="initialPressureFunc"
 inputVarNames="{ elementCenter }"
 coordinateFiles="{ tables_FieldCaseTuto/xlin.geos, tables_FieldCaseTuto/ylin.geos, tables_FieldCaseTuto/zlin.geos }"
 voxelFile="tables_FieldCaseTuto/pressure.geos"/>

 <TableFunction
 name="permxFunc"
 inputVarNames="{ elementCenter }"
 coordinateFiles="{ tables_FieldCaseTuto/xlin.geos, tables_FieldCaseTuto/ylin.geos, tables_FieldCaseTuto/zlin.geos }"
 voxelFile="tables_FieldCaseTuto/permx.geos"
 interpolation="nearest"/>

 <TableFunction
 name="permyFunc"
 inputVarNames="{ elementCenter }"
 coordinateFiles="{ tables_FieldCaseTuto/xlin.geos, tables_FieldCaseTuto/ylin.geos, tables_FieldCaseTuto/zlin.geos }"
 voxelFile="tables_FieldCaseTuto/permy.geos"
 interpolation="nearest"/>

 <TableFunction
 name="permzFunc"
 inputVarNames="{ elementCenter }"
 coordinateFiles="{ tables_FieldCaseTuto/xlin.geos, tables_FieldCaseTuto/ylin.geos, tables_FieldCaseTuto/zlin.geos }"
 voxelFile="tables_FieldCaseTuto/permz.geos"
 interpolation="nearest"/>
 </Functions>

Here, the injection pressure is set to vary with time. Attentive reader might have
noticed that sourceTerm was bound to a TableFunction named timeInj under
FieldSpecifications tag definition. The initial pressure is set based on the values
contained in the table formed by the files which are specified. In particular,
the files xlin.geos, ylin.geos and zlin.geos define a regular meshing of
the bounding box containing the reservoir. The pressure.geos file then defines the values of the pressure at those points.

We proceed in a similar manner as for pressure.geos to map a heterogeneous permeability field (here the 5th layer of the SPE 10 test case) onto our unstructured grid. This mapping will use a nearest point interpolation rule.

[image: ../../../../_images/mapping_perm.png]

Note

The varying values imposed in values or passed through voxelFile are premultiplied by the scale attribute from FieldSpecifications.

Running GEOSX

The simulation can be launched with:

geosx -i FieldCaseTutorial1.xml

One can notice the correct load of the field function among the starting output messages

Adding Mesh: PAMELAMeshGenerator, SyntheticMesh
Adding Solver of type SinglePhaseFVM, named SinglePhaseFlow
Adding Geometric Object: Box, all
Adding Geometric Object: Box, source
Adding Geometric Object: Box, sink
Adding Output: VTK, syntheticReservoirVizFile
Adding Event: PeriodicEvent, solverApplications
Adding Event: PeriodicEvent, outputs
 TableFunction: timeInj
 TableFunction: initialPressureFunc
 TableFunction: permxFunc
 TableFunction: permyFunc
 TableFunction: permzFunc
Adding Object CellElementRegion named Reservoir from ObjectManager::Catalog.
Adding Object CellElementRegion named Burden from ObjectManager::Catalog.

Visualization of results

We can open the file syntheticReservoirVizFile.pvd with Paraview to visualize the simulation
results. The initial pressure field in the reservoir region is provided below as an example.

[image: ../../../../_images/pressure_initial.png]
Since, in the event block, we have asked for the output to be generated at regular
intervals throughout the simulation, we can also visualize the pressure
distribution at different simulation times, showing the variation in the injection control.

[image: ../../../../_images/pressure_5e8.png]

To go further

Feedback on this tutorial

This concludes this tutorial. For any feedback, please submit a GitHub issue on
the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

For more details

	More on meshes, please see Meshes.

	More on events, please see Event Management.

Tutorial 4: Boundary Conditions and Time-Dependent Functions

Context

In this tutorial, we use a small strain linear elastic based solid mechanics solver
(see Solid Mechanics Solver) from GEOSX to solve for the bending problem of
a three-dimensional cantilever beam. The beam is fixed at one end, and subjects to a traction force pointing to the y-positive direction on the other end. The beam is deformed in the x-y plane.

Objectives

At the end of this tutorial, you will know:

	how to use the solid mechanics solver to solve a quasistatic problem,

	how to set up displacement boundary condition at element nodes,

	how to set up traction boundary condition on element surfaces,

	how to use a table function to control time-dependent loading.

Input file

This tutorial uses no external input files and everything required is
contained within a single GEOSX input file.
The xml input file for this test case is located at:

src/coreComponents/physicsSolvers/solidMechanics/integratedTests/beamBending_base.xml
src/coreComponents/physicsSolvers/solidMechanics/integratedTests/beamBending_benchmark.xml

Discretized computational domain

The following mesh is used in this tutorial:

[image: ../../../../_images/initial_beam_bending.png]
This mesh contains 80 x 8 x 4 eight-node brick elements in the x, y and z directions, respectively.
Here, the InternalMesh
is used to generate a structured three-dimensional mesh with C3D8 as
the elementTypes. This mesh is defined as a cell block with the name
cb1.

Gravity

The gravity is turned off explicitly at the beginning of the input file:

 <Solvers
 gravityVector="{ 0.0, 0.0, 0.0 }">

Solid mechanics solver

The solid mechanics solver is based on the small strain Lagrangian finite element formulation.
The problem is run as QuasiStatic without considering the beam inertial. The computational
domain is discretized by FE1,
which is defined in the NumericalMethods block. The material is designated as
shale, whose properties are defined in the
Constitutive block.

 <SolidMechanicsLagrangianSSLE
 name="lagsolve"
 timeIntegrationOption="QuasiStatic"
 discretization="FE1"
 targetRegions="{ Region2 }"
 solidMaterialNames="{ shale }">

Finite element discretization

The computational domain is discretized by C3D8 elements with the first order interpolation
functions at each direction in the parent domain. The 2 x 2 x 2 Gauss quadrature rule is adopted to be
compatible with the first order interpolation functions.

 <NumericalMethods>
 <FiniteElements>
 <FiniteElementSpace
 name="FE1"
 order="1"/>
 </FiniteElements>
 </NumericalMethods>

Constitutive model

Recall that in the SolidMechanicsLagrangianSSLE block,
shale is designated as the material in the computational domain. Here, the material
is defined as linear isotropic.

 <ElasticIsotropic
 name="shale"
 defaultDensity="2700"
 defaultBulkModulus="5.5556e9"
 defaultShearModulus="4.16667e9"/>

Boundary conditions

As aforementioned, the beam is fixed on one end, and subjects to surface traction on
the other end. These boundary conditions are set up through the FieldSpecifications block.
Here, nodeManager and
faceManager
in the objectPath indicate that the boundary conditions are applied to the element nodes and faces, respectively.
Component 0, 1, and 2 refer to the x, y, and z direction, respectively. And the non-zero values given by
Scale indicate the magnitude of the loading. Some shorthands, such as
xneg and xpos, are used as the locations where the boundary conditions are applied in the computational domain.
For instance, xneg means the portion of the computational domain located at the left-most in the x-axis, while
xpos refers to the portion located at the right-most area in the x-axis. Similar shorthands include ypos, yneg,
zpos, and zneg. Particularly, the time-dependent loading applied at the beam tip is defined through a function with
the name timeFunction.

 <FieldSpecifications>
 <FieldSpecification
 name="xnegconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="0"
 scale="0.0"
 setNames="{ xneg }"/>

 <FieldSpecification
 name="yconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="1"
 scale="0.0"
 setNames="{ xneg }"/>

 <FieldSpecification
 name="zconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="2"
 scale="0.0"
 setNames="{ zneg, zpos }"/>

 <Traction
 name="xposconstraint"
 objectPath="faceManager"
 scale="1.0e6"
 direction="{ 0, 1, 0 }"
 functionName="timeFunction"
 setNames="{ xpos }"/>
 </FieldSpecifications>

Table function

A table function is used to define the time-dependent loading at the beam tip. The coordinates and values form a time-magnitude
pair for the loading time history. In this case, the loading magnitude increases linearly as the time evolves.

 <Functions>
 <TableFunction
 name="timeFunction"
 inputVarNames="{ time }"
 coordinates="{ 0.0, 10.0 }"
 values="{ 0.0, 10.0 }"/>
 </Functions>

Execution

Finally, the execution of the simulation is set up in the Events block, where
target points to the solid mechanics solver defined in the Solvers block, and
the time increment forceDt is set as 1.0s.

 <PeriodicEvent
 name="solverApplications"
 forceDt="1.0"
 target="/Solvers/lagsolve"/>

Result

The deformed beam is shown as following (notice that the displacement is visually magnified):

[image: ../../../../_images/final_beam_bending.png]

To go further

Feedback on this tutorial

This concludes the solid mechanics for small-strain linear elasticity tutorial.
For any feedback on this tutorial, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

For more details

	More on meshes, please see Meshes.

	More on events, please see Event Management.

Basic Examples

	Multiphase Flow

	Multiphase Flow with Wells

	CO 2 Injection

	Poromechanics

	Hydraulic Fracturing

Multiphase Flow

Context

In this example, we set up a multiphase, multicomponent test case (see Compositional Multiphase Flow Solver).
The permeability field corresponds to the two bottom layers (layers 84 and 85) of the SPE10 test case.
The thermodynamic behavior of the fluid mixture is specified using a simple immiscible two-phase (Dead-Oil) model.
Injection and production are simulated using boundary conditions.

Objective

The main objective of this example is to review the main elements of a simple two-phase simulation in GEOSX, including:

	the compositional multiphase flow solver,

	the multiphase constitutive models,

	the specifications of multiphase boundary conditions.

Input file

This example is based on the XML file located at

inputFiles/compositionalMultiphaseFlow/benchmarks/SPE10/deadOilSpe10Layers84_85_base_iterative.xml

The XML file considered here follows the typical structure of the GEOSX input files:

	Solver

	Mesh

	Geometry

	Events

	NumericalMethods

	ElementRegions

	Constitutive

	FieldSpecifications

	Outputs

	Tasks

Multiphase flow solver

In GEOSX, the setup of a multiphase simulation starts in the Solvers XML block of the input file.
This example relies on a solver of type CompositionalMultiphaseFVM that implements a fully implicit finite-volume
scheme based on the standard two-point approximation of the flux (TPFA).
More information on this solver can be found at Compositional Multiphase Flow Solver.

Let us have a closer look at the Solvers XML block displayed below.
The solver has a name (here, compflow) that can be chosen by the user and is not imposed by GEOSX.
Note that this name is used in the Events XML block to trigger the application of the solver.
Using the targetRegions attribute, the solver defines the target regions on which it is applied.
In this example, there is only one region, named reservoir.

The constitutive models defined on these target regions must be listed in the CompositionalMultiphaseFVM block.
This is done by passing the name of the fluid PVT model using the fluidNames attribute, the name of the solid compressibility model
using the solidNames attribute, the name of the rock permeability model using the permeabilityNames attribute, and the name of
the relative permeability model using the relPermNames attribute.
If a capillary pressure model is employed in the simulation, its name must also be passed here, using the capPressureNames attribute.
All the constitutive model names passed here must be defined in the Constitutive block of the XML file (see below).

The CompositionalMultiphaseFVM block contains two important sub-blocks, namely NonlinearSolverParameters and LinearSolverParameters.
In NonlinearSolverParameters, one can finely tune the nonlinear tolerance, the application of the linear search algorithm, and the heuristics used to increase the time step size.
In LinearSolverParameters, the user can specify the linear tolerance, the type of (direct or iterative) linear solver, and the
type of preconditioner, if any.
For large multiphase flow problems, we recommend using an iterative linear solver (solverType="gmres" or solverType="fgmres") combined
with the multigrid reduction (MGR) preconditioner (preconditionerType="mgr"). More information about the MGR preconditioner can be found in Linear Solvers.

Note

For non-trivial simulations, we recommend setting the initialDt attribute to a small value (relative to the time scale of the problem) in seconds. If the simulation appears to be slow, use logLevel="1" in CompositionalMultiphaseFVM to detect potential Newton convergence problems. If the Newton solver struggles, please set lineSearchAction="Attempt" in NonlinearSolverParameters. If the Newton convergence is good, please add logLevel="1" in the LinearSolverParameters block to detect linear solver problems, especially if an iterative linear solver is used.

Note

To use the linear solver options of this example, you need to ensure that GEOSX is configured to use the Hypre linear solver package.

 <Solvers>

 <CompositionalMultiphaseFVM
 name="compflow"
 logLevel="1"
 discretization="fluidTPFA"
 fluidNames="{ fluid }"
 solidNames="{ rock }"
 relPermNames="{ relperm }"
 permeabilityNames="{ rockPerm }"
 targetRegions="{ reservoir }"
 temperature="300"
 useMass="1"
 initialDt="1e3"
 maxCompFractionChange="0.1"
 computeCFLNumbers="1">
 <NonlinearSolverParameters
 newtonTol="1.0e-4"
 newtonMaxIter="40"
 maxTimeStepCuts="10"
 lineSearchAction="None"/>
 <LinearSolverParameters
 solverType="fgmres"
 preconditionerType="mgr"
 krylovTol="1.0e-5"/>
 </CompositionalMultiphaseFVM>

 </Solvers>

Mesh

In this simulation, we define a simple mesh generated internally using the InternalMesh generator, as
illustrated in the previous examples.
The mesh dimensions and cell sizes are chosen to be those specified in the SPE10 test case, but are limited to the two bottom layers.
The mesh description must be done in meters.

 <Mesh>
 <InternalMesh
 name="mesh"
 elementTypes="{ C3D8 }"
 xCoords="{ 0, 365.76 }"
 yCoords="{ 0, 670.56 }"
 zCoords="{ 0, 1.22 }"
 nx="{ 60 }"
 ny="{ 220 }"
 nz="{ 2 }"
 cellBlockNames="{ block }"/>
 </Mesh>

Geometry

As in the previous examples, the Geometry XML block is used to select the cells in which the boundary conditions are applied.
To mimic the setup of the original SPE10 test case, we place a source term in the middle of the domain, and a sink term in each corner.
The specification of the boundary conditions applied to the selected mesh cells is done in the FieldSpecifications block of the XML file
using the names of the boxes defined here.

 <Geometry>

 <Box
 name="source"
 xMin="{ 182.85, 335.25, -0.01 }"
 xMax="{ 189.00, 338.35, 2.00 }"/>
 <Box
 name="sink1"
 xMin="{ -0.01, -0.01, -0.01 }"
 xMax="{ 6.126, 3.078, 2.00 }"/>
 <Box
 name="sink2"
 xMin="{ -0.01, 667.482, -0.01 }"
 xMax="{ 6.126, 670.60, 2.00 }"/>
 <Box
 name="sink3"
 xMin="{ 359.634, -0.01, -0.01 }"
 xMax="{ 365.8, 3.048, 2.00 }"/>
 <Box
 name="sink4"
 xMin="{ 359.634, 667.482, -0.01 }"
 xMax="{ 365.8, 670.60, 2.00 }"/>

 </Geometry>

Events

In the Events XML block of this example, we specify two types of PeriodicEvents
serving different purposes, namely solver application and result output.

The periodic event named solverApplications triggers the application of the solver on its target region.
This event must point to the solver by name.
In this example, the name of the solver is compflow and was defined in the Solvers block.
The time step is initialized using the initialDt attribute of the flow solver.
Then, if the solver converges in more than a certain number of nonlinear iterations (by default, 40% of the
maximum number of nonlinear iterations), the time step will be increased until it reaches the maximum
time step size specified with maxEventDt.
If the time step fails, the time step will be cut. The parameters defining the time stepping strategy
can be finely tuned by the user in the flow solver block.
Note that all times are in seconds.

The output event forces GEOSX to write out the results at the frequency specified by the attribute
timeFrequency.
Here, we choose to output the results using the VTK format (see Tutorial 2: External Meshes
for a tutorial that uses the Silo output file format).
Using targetExactTimestep=1 in this XML block forces GEOSX to adapt the time stepping to
ensure that an output is generated exactly at the time frequency requested by the user.
In the target attribute, we must use the name defined in the VTK XML tag
inside the Output XML section, as documented at the end of this example (here, vtkOutput).

More information about events can be found at Event Management.

 <Events
 maxTime="5e7">

 <PeriodicEvent
 name="outputs"
 timeFrequency="4e7"
 targetExactTimestep="1"
 target="/Outputs/vtkOutput"/>

 <PeriodicEvent
 name="solverApplications"
 maxEventDt="1e6"
 target="/Solvers/compflow"/>

 <PeriodicEvent
 name="restarts"
 timeFrequency="2.5e7"
 targetExactTimestep="0"
 target="/Outputs/restartOutput"/>

 </Events>

Numerical methods

In the NumericalMethods XML block, we select a two-point flux approximation (TPFA) finite-volume scheme to
discretize the governing equations on the reservoir mesh.
TPFA is currently the only numerical scheme that can be used with a flow solver of type
CompositionalMultiphaseFVM.

 <NumericalMethods>
 <FiniteVolume>
 <TwoPointFluxApproximation
 name="fluidTPFA"
 fieldName="pressure"
 targetRegions="{ reservoir }"
 coefficientName="permeability"
 coefficientModelNames="{ rockPerm }"/>
 </FiniteVolume>
 </NumericalMethods>

Reservoir region

In the ElementRegions XML block, we define a CellElementRegion named reservoir corresponding to the
reservoir mesh.
The attribute cellBlocks is set to block to point this element region
to the hexahedral mesh defined internally.

The CellElementRegion must also point to the constitutive models that are used to update
the dynamic rock and fluid properties in the cells of the reservoir mesh.
The names fluid, rock, and relperm used for this in the materialList
correspond to the attribute name of the Constitutive block.

 <ElementRegions>
 <CellElementRegion
 name="reservoir"
 cellBlocks="{ block }"
 materialList="{ fluid, rock, relperm }"/>
 </ElementRegions>

Constitutive models

For a simulation performed with the CompositionalMultiphaseFVM physics solver,
at least four types of constitutive models must be specified in the Constitutive XML block:

	a fluid model describing the thermodynamics behavior of the fluid mixture,

	a relative permeability model,

	a rock permeability model,

	a rock porosity model.

All these models use SI units exclusively.
A capillary pressure model can also be specified in this block but is omitted here for simplicity.

Here, we introduce a fluid model describing a simplified mixture thermodynamic behavior.
Specifically, we use an immiscible two-phase (Dead Oil) model by placing the XML tag DeadOilFluid.
Other fluid models can be used with the CompositionalMultiphaseFVM solver, as explained in Fluid Models.

With the tag BrooksCoreyRelativePermeability, we define a relative permeability model.
A list of available relative permeability models can be found at
Relative Permeability Models.

The properties are chosen to match those of the original SPE10 test case.

Note

The names and order of the phases listed for the attribute phaseNames must be identical in the fluid model
(here, DeadOilFluid) and the relative permeability model (here, BrooksCoreyRelativePermeability).
Otherwise, GEOSX will throw an error and terminate.

We also introduce models to define rock compressibility and permeability.
This step is similar to what is described in the previous examples
(see for instance Tutorial 1: First Steps).

We remind the reader that the attribute name of the constitutive models defined here
must be used in the ElementRegions and Solvers XML blocks to point the element
regions and the physics solvers to their respective constitutive models.

 <Constitutive>

 <DeadOilFluid
 name="fluid"
 phaseNames="{ oil, water }"
 surfaceDensities="{ 800.0, 1022.0 }"
 componentMolarWeight="{ 114e-3, 18e-3 }"
 hydrocarbonFormationVolFactorTableNames="{ B_o_table }"
 hydrocarbonViscosityTableNames="{ visc_o_table }"
 waterReferencePressure="30600000.1"
 waterFormationVolumeFactor="1.03"
 waterCompressibility="0.00000000041"
 waterViscosity="0.0003"/>

 <CompressibleSolidConstantPermeability
 name="rock"
 solidModelName="nullSolid"
 porosityModelName="rockPorosity"
 permeabilityModelName="rockPerm"/>

 <NullModel
 name="nullSolid"/>

 <PressurePorosity
 name="rockPorosity"
 defaultReferencePorosity="0.1"
 referencePressure="1.0e7"
 compressibility="1e-10"/>

 <BrooksCoreyRelativePermeability
 name="relperm"
 phaseNames="{ oil, water }"
 phaseMinVolumeFraction="{ 0.0, 0.0 }"
 phaseRelPermExponent="{ 2.0, 2.0 }"
 phaseRelPermMaxValue="{ 1.0, 1.0 }"/>

 <ConstantPermeability
 name="rockPerm"
 permeabilityComponents="{ 1.0e-14, 1.0e-14, 1.0e-18 }"/>

 </Constitutive>

Initial and boundary conditions

In the FieldSpecifications section, we define the initial and boundary conditions as well
as the geological properties (porosity, permeability).
All this is done using SI units.
Here, we focus on the specification of the initial and boundary conditions for
a simulation performed with the CompositionalMultiphaseFVM solver.
We refer to Tutorial 1: First Steps for a more general
discussion on the FieldSpecification XML blocks.

For a simulation performed with the CompositionalMultiphaseFVM solver,
we have to set the initial pressure as well as the initial global component
fractions (in this case, the oil and water component fractions).
The component attribute of the FieldSpecification XML block must use the
order in which the phaseNames have been defined in the DeadOilFluid
XML block. In other words, component=0 is used to initialize the oil
global component fraction and component=1 is used to initialize the water global
component fraction, because we previously set phaseNames="{oil, water}"
in the DeadOilFluid XML block.

To specify the sink terms, we use the FieldSpecification mechanism in a similar
fashion to impose the sink pressure and composition.
This is done to mimic a pressure-controlled well (before breakthrough).
To specify the source term, we use a SourceFlux block to impose a fixed mass
injection rate of component 1 (water) to mimic a rate-controlled well.

 <FieldSpecifications>
 <FieldSpecification
 name="permx"
 component="0"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/reservoir/block"
 fieldName="rockPerm_permeability"
 functionName="permxFunc"
 scale="9.869233e-16"/>
 <FieldSpecification
 name="permy"
 component="1"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/reservoir/block"
 fieldName="rockPerm_permeability"
 functionName="permyFunc"
 scale="9.869233e-16"/>
 <FieldSpecification
 name="permz"
 component="2"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/reservoir/block"
 fieldName="rockPerm_permeability"
 functionName="permzFunc"
 scale="9.869233e-16"/>

 <FieldSpecification
 name="referencePorosity"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/reservoir/block"
 fieldName="rockPorosity_referencePorosity"
 functionName="poroFunc"
 scale="1.0"/>

 <FieldSpecification
 name="initialPressure"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/reservoir/block"
 fieldName="pressure"
 scale="4.1369e+7"/>
 <FieldSpecification
 name="initialComposition_oil"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/reservoir/block"
 fieldName="globalCompFraction"
 component="0"
 scale="0.9995"/>
 <FieldSpecification
 name="initialComposition_water"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/reservoir/block"
 fieldName="globalCompFraction"
 component="1"
 scale="0.0005"/>

 <SourceFlux
 name="sourceTerm"
 objectPath="ElementRegions/reservoir/block"
 scale="-0.07279"
 component="1"
 setNames="{ source }"/>

 <FieldSpecification
 name="sinkPressure"
 setNames="{ sink1, sink2, sink3, sink4 }"
 objectPath="ElementRegions/reservoir/block"
 fieldName="pressure"
 scale="2.7579e+7"/>
 <FieldSpecification
 name="sinkComposition_oil"
 setNames="{ sink1, sink2, sink3, sink4 }"
 objectPath="ElementRegions/reservoir/block"
 fieldName="globalCompFraction"
 component="0"
 scale="0.9995"/>
 <FieldSpecification
 name="sinkComposition_water"
 setNames="{ sink1, sink2, sink3, sink4 }"
 objectPath="ElementRegions/reservoir/block"
 fieldName="globalCompFraction"
 component="1"
 scale="0.0005"/>

 </FieldSpecifications>

Output

In this section, we request an output of the results in VTK format.
Note that the name defined here must match the names used in the Events XML block to define the output frequency.

 <Outputs>
 <VTK
 name="vtkOutput"/>

 <Restart
 name="restartOutput"/>

 </Outputs>

All elements are now in place to run GEOSX.

Running GEOSX

The first few lines appearing to the console are indicating that the XML elements are read and registered correctly:

Adding Solver of type CompositionalMultiphaseFVM, named compflow
Adding Mesh: InternalMesh, mesh
Adding Geometric Object: Box, source
Adding Geometric Object: Box, sink1
Adding Geometric Object: Box, sink2
Adding Geometric Object: Box, sink3
Adding Geometric Object: Box, sink4
Adding Event: PeriodicEvent, outputs
Adding Event: PeriodicEvent, solverApplications
TableFunction: permxFunc
TableFunction: permyFunc
TableFunction: permzFunc
TableFunction: poroFunc
TableFunction: B_o_table
TableFunction: visc_o_table
Adding Output: VTK, vtkOutput
Adding Object CellElementRegion named region from ObjectManager::Catalog.
region/block/fluid is allocated with 1 quadrature points.
region/block/rock is allocated with 1 quadrature points.
aaregion/block/relperm is allocated with 1 quadrature points.

At this point, we are done with the case set-up and
the code steps into the execution of the simulation itself:

Time: 0s, dt:1000s, Cycle: 0

 Attempt: 0, NewtonIter: 0
 (Rfluid) = (2.28e+00) ; (R) = (2.28e+00) ;
 Attempt: 0, NewtonIter: 1
 (Rfluid) = (8.83e-03) ; (R) = (8.83e-03) ;
 Last LinSolve(iter,res) = (2, 2.74e-03) ;
 Attempt: 0, NewtonIter: 2
 (Rfluid) = (8.86e-05) ; (R) = (8.86e-05) ;
 Last LinSolve(iter,res) = (2, 8.92e-03) ;

compflow: Max phase CFL number: 0.00399585
compflow: Max component CFL number: 0.152466
compflow: Newton solver converged in less than 16 iterations, time-step required will be doubled.

Visualization

A file compatible with Paraview is produced in this example.
It is found in the output folder, and usually has the extension .pvd.
More details about this file format can be found
here [https://www.paraview.org/Wiki/ParaView/Data_formats#PVD_File_Format].
We can load this file into Paraview directly and visualize results:

[image: pic1] [image: pic2]

To go further

Feedback on this example

This concludes the example on setting up an immiscible two-phase flow simulation in a channelized permeability field.
For any feedback on this example, please submit
a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

For more details

	A complete description of the reservoir flow solver is found here: Compositional Multiphase Flow Solver.

	The available constitutive models are listed at Constitutive Models.

Multiphase Flow with Wells

Context

In this example, we build on the concepts presented in Multiphase Flow
to show how to set up a multiphase water injection problem with wells in
the three-dimensional Egg model [https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/gdj3.21].
The twelve wells (four producers and eight injectors) are placed according to the description
of the original test case.

Objectives

In this example, we re-use many GEOSX features already presented in
Multiphase Flow, but we now focus on:

	how to import an external mesh with embedded geological properties (permeability) in the GMSH format (.msh),

	how to set up the wells.

Input file

This example is based on the XML file located at

../../../../../inputFiles/compositionalMultiphaseWell/benchmarks/Egg/deadOilEgg_base_iterative.xml

The mesh file corresponding to the Egg model is stored in the GEOSXDATA repository.
Therefore, you must first download the GEOSXDATA repository in the same folder
as the GEOSX repository to run this test case.

Note

GEOSXDATA is a separate repository in which we store large mesh files in order to keep the main GEOSX repository lightweight.

The XML file considered here follows the typical structure of the GEOSX input files:

	Solver

	Mesh

	Events

	NumericalMethods

	ElementRegions

	Constitutive

	FieldSpecifications

	Outputs

	Tasks

Coupling the flow solver with wells

In GEOSX, the simulation of reservoir flow with wells is set up by combining three solvers
listed and parameterized in the Solvers XML block of the input file.
We introduce separately a flow solver and a well solver acting on different regions of the
domain—respectively, the reservoir region and the well regions.
To drive the simulation and bind these single-physics solvers, we also specify a coupling solver
between the reservoir flow solver and the well solver.
This coupling of single-physics solvers is the generic approach used in GEOSX to
define multiphysics problems.
It is illustrated in Poromechanics for a poroelastic test case.

The three solvers employed in this example are:

	the single-physics reservoir flow solver, a solver of type CompositionalMultiphaseFVM named compositionalMultiphaseFlow (more information on this solver at Compositional Multiphase Flow Solver),

	the single-physics well solver, a solver of type CompositionalMultiphaseWell named compositionalMultiphaseWell (more information on this solver at Compositional Multiphase Well Solver),

	the coupling solver that binds the two single-physics solvers above, an object of type CompositionalMultiphaseReservoir named coupledFlowAndWells.

The Solvers XML block is shown below.
The coupling solver points to the two single-physics solvers using the attributes
flowSolverName and wellSolverName.
These names can be chosen by the user and are not imposed by GEOSX.
The flow solver is applied to the reservoir and the well solver is applied to the wells,
as specified by their respective targetRegions attributes.

The simulation is fully coupled and driven by the coupled solver. Therefore, the time stepping
information (here, initialDt, but there may be other parameters used to fine-tune the time
stepping strategy), the nonlinear solver parameters, and the linear solver parameters must be
specified at the level of the coupling solver.
There is no need to specify these parameters at the level of the single-physics solvers.
Any solver information specified in the single-physics XML blocks will not be taken into account.

Note

It is worth repeating the logLevel="1" parameter at the level of the well solver to make sure that a notification is issued when the well control is switched (from rate control to BHP control, for instance).

Here, we instruct GEOSX to perform at most newtonMaxIter = "10" Newton iterations.
GEOSX will adjust the time step size as follows:

	if the Newton solver converges in dtIncIterLimit x newtonMaxIter = 5 iterations or fewer, GEOSX will double the time step size for the next time step,

	if the Newton solver converges in dtCutIterLimit x newtonMaxIter = 8 iterations or more, GEOSX will reduce the time step size for the next time step by a factor timestepCutFactor = 0.1,

	if the Newton solver fails to converge in newtonMaxIter = 10, GEOSX will cut the time step size by a factor timestepCutFactor = 0.1 and restart from the previous converged time step.

The maximum number of time step cuts is specified by the attribute maxTimeStepCuts.
Note that a backtracking line search can be activated by setting the attribute lineSearchAction to Attempt or Require.
If lineSearchAction = "Attempt", we accept the nonlinear iteration even if the line search does not reduce the residual norm.
If lineSearchAction = "Require", we cut the time step if the line search does not reduce the residual norm.

Note

To use the linear solver options of this example, you need to ensure that GEOSX is configured to use the Hypre linear solver package.

 <Solvers>
 <CompositionalMultiphaseReservoir
 name="coupledFlowAndWells"
 flowSolverName="compositionalMultiphaseFlow"
 wellSolverName="compositionalMultiphaseWell"
 logLevel="1"
 initialDt="1e4"
 targetRegions="{ reservoir, wellRegion1, wellRegion2, wellRegion3, wellRegion4, wellRegion5, wellRegion6, wellRegion7, wellRegion8, wellRegion9, wellRegion10, wellRegion11, wellRegion12 }">
 <NonlinearSolverParameters
 newtonTol="1.0e-4"
 newtonMaxIter="25"
 dtCutIterLimit="0.9"
 dtIncIterLimit="0.6"
 timestepCutFactor="0.1"
 maxTimeStepCuts="10"
 lineSearchAction="None"/>
 <LinearSolverParameters
 solverType="fgmres"
 preconditionerType="mgr"
 krylovTol="1e-4"
 krylovAdaptiveTol="1"
 krylovWeakestTol="1e-2"/>
 </CompositionalMultiphaseReservoir>

 <CompositionalMultiphaseFVM
 name="compositionalMultiphaseFlow"
 targetRegions="{ reservoir }"
 discretization="fluidTPFA"
 fluidNames="{ fluid }"
 solidNames="{ rock }"
 permeabilityNames="{ rockPerm }"
 relPermNames="{ relperm }"
 temperature="297.15"
 maxCompFractionChange="0.3"
 logLevel="1"
 useMass="1"/>

 <CompositionalMultiphaseWell
 name="compositionalMultiphaseWell"
 targetRegions="{ wellRegion1, wellRegion2, wellRegion3, wellRegion4, wellRegion5, wellRegion6, wellRegion7, wellRegion8, wellRegion9, wellRegion10, wellRegion11, wellRegion12 }"
 fluidNames="{ fluid }"
 relPermNames="{ relperm }"
 wellTemperature="297.15"
 maxCompFractionChange="0.5"
 logLevel="1"
 useMass="1">
 <WellControls
 name="wellControls1"
 type="producer"
 control="BHP"
 referenceElevation="28"
 targetBHP="3.9e7"
 targetPhaseRate="1e6"
 targetPhaseName="oil"/>
 <WellControls
 name="wellControls2"
 type="producer"
 control="BHP"
 referenceElevation="28"
 targetBHP="3.9e7"
 targetPhaseRate="1e6"
 targetPhaseName="oil"/>

Mesh definition and well geometry

In the presence of wells, the Mesh block of the XML input file includes two parts:

	a sub-block PAMELAMeshGenerator defining the reservoir mesh (see Tutorial 2: External Meshes for more on this),

	a collection of sub-blocks InternalWell defining the geometry of the wells.

The reservoir mesh is imported from a .msh file that contains the mesh geometry
and also includes the permeability values in the x, y, and z directions.
These quantities must be specified using the metric unit system, i.e., in meters
for the well geometry and square meters for the permeability field.
We note that the mesh file only contains the active cells, so there is no keyword
needed in the XML file to define them.

Each well is defined internally (i.e., not imported from a file) in a separate InternalWell
XML sub-block. An InternalWell sub-block must point to the reservoir mesh that the well perforates
using the attribute meshName, to the region corresponding to this well using the attribute
wellRegionName, and to the control of this well using the attribute wellControl.
Each block InternalWell must point to the reservoir mesh
(using the attribute meshName), the corresponding well region (using
the attribute wellRegionName), and the corresponding well control
(using the attribute wellControlName).

Each well is defined using a vertical polyline going through the seven layers of the
mesh, with a perforation in each layer.
The well placement implemented here follows the pattern of the original test case.
The well geometry must be specified in meters.

The location of the perforations is found internally using the linear distance along the wellbore
from the top of the well, specified by the attribute distanceFromHead.
It is the responsibility of the user to make sure that there is a perforation in the bottom cell
of the well mesh otherwise an error will be thrown and the simulation will terminate.
For each perforation, the well transmissibility factors employed to compute the perforation rates are calculated
internally using the Peaceman formulation.

[image: ../../../../_images/egg_model.png]
 <Mesh>
 <PAMELAMeshGenerator
 name="mesh"
 file="../../../../../GEOSXDATA/DataSets/Egg/egg.msh"
 fieldsToImport="{ PERM }"
 fieldNamesInGEOSX="{ rockPerm_permeability }"/>

 <InternalWell
 name="wellProducer1"
 wellRegionName="wellRegion1"
 wellControlsName="wellControls1"
 meshName="mesh"
 polylineNodeCoords="{ { 124, 340, 28 },
 { 124, 340, 0 } }"
 polylineSegmentConn="{ { 0, 1 } }"
 radius="0.1"
 numElementsPerSegment="7">
 <Perforation
 name="producer1_perf1"
 distanceFromHead="2"/>
 <Perforation
 name="producer1_perf2"
 distanceFromHead="6"/>
 <Perforation
 name="producer1_perf3"
 distanceFromHead="10"/>
 <Perforation
 name="producer1_perf4"
 distanceFromHead="14"/>
 <Perforation
 name="producer1_perf5"
 distanceFromHead="18"/>
 <Perforation
 name="producer1_perf6"
 distanceFromHead="22"/>
 <Perforation
 name="producer1_perf7"
 distanceFromHead="26"/>
 </InternalWell>

 <InternalWell
 name="wellProducer2"
 wellRegionName="wellRegion2"
 wellControlsName="wellControls2"
 meshName="mesh"
 polylineNodeCoords="{ { 276, 316, 28 },
 { 276, 316, 0 } }"
 polylineSegmentConn="{ { 0, 1 } }"
 radius="0.1"
 numElementsPerSegment="7">
 <Perforation
 name="producer2_perf1"
 distanceFromHead="2"/>
 <Perforation
 name="producer2_perf2"
 distanceFromHead="6"/>
 <Perforation
 name="producer2_perf3"
 distanceFromHead="10"/>
 <Perforation
 name="producer2_perf4"
 distanceFromHead="14"/>
 <Perforation
 name="producer2_perf5"
 distanceFromHead="18"/>
 <Perforation
 name="producer2_perf6"
 distanceFromHead="22"/>
 <Perforation
 name="producer2_perf7"
 distanceFromHead="26"/>
 </InternalWell>

Events

In the Events XML block, we specify four types of PeriodicEvents.

The periodic event named solverApplications notifies GEOSX that the
coupled solver coupledFlowAndWells has to be applied to its target
regions (here, reservoir and wells) at every time step.
The time stepping strategy has been fully defined in the CompositionalMultiphaseReservoir
coupling block using the initialDt attribute and the NonlinearSolverParameters
nested block.

We also define an output event instructing GEOSX to write out .vtk files at the time frequency specified
by the attribute timeFrequency.
Here, we choose to output the results using the VTK format (see Tutorial 2: External Meshes
for a example that uses the Silo output file format).
The target attribute must point to the VTK sub-block of the Outputs
block (defined at the end of the XML file) by name (here, vtkOutput).

We define the events involved in the collection and output of the well production rates following the procedure defined in Tasks Manager.
The time history collection events trigger the collection of the well rates at the desired frequency, while the time history output events trigger the output of the HDF5 files containing the time series.
These events point by name to the corresponding blocks of the Tasks and Outputs XML blocks, respectively. Here, these names are wellRateCollection1 and timeHistoryOutput1.

 <Events
 maxTime="1.5e7">
 <PeriodicEvent
 name="vtk"
 timeFrequency="2e6"
 target="/Outputs/vtkOutput"/>

 <PeriodicEvent
 name="timeHistoryOutput1"
 timeFrequency="1.5e7"
 target="/Outputs/timeHistoryOutput1"/>

 <PeriodicEvent
 name="timeHistoryOutput2"
 timeFrequency="1.5e7"
 target="/Outputs/timeHistoryOutput2"/>

 <PeriodicEvent
 name="timeHistoryOutput3"
 timeFrequency="1.5e7"
 target="/Outputs/timeHistoryOutput3"/>

 <PeriodicEvent
 name="timeHistoryOutput4"
 timeFrequency="1.5e7"
 target="/Outputs/timeHistoryOutput4"/>

 <PeriodicEvent
 name="solverApplications"
 maxEventDt="5e5"
 target="/Solvers/coupledFlowAndWells"/>

 <PeriodicEvent
 name="timeHistoryCollection1"
 timeFrequency="1e6"
 target="/Tasks/wellRateCollection1"/>

 <PeriodicEvent
 name="timeHistoryCollection2"
 timeFrequency="1e6"
 target="/Tasks/wellRateCollection2"/>

 <PeriodicEvent
 name="timeHistoryCollection3"
 timeFrequency="1e6"
 target="/Tasks/wellRateCollection3"/>

 <PeriodicEvent
 name="timeHistoryCollection4"
 timeFrequency="1e6"
 target="/Tasks/wellRateCollection4"/>

 <PeriodicEvent
 name="restarts"
 timeFrequency="7.5e6"
 targetExactTimestep="0"
 target="/Outputs/restartOutput"/>

 </Events>

Numerical methods

In the NumericalMethods XML block, we instruct GEOSX to use a TPFA finite-volume
numerical scheme.
This part is similar to the corresponding section of Multiphase Flow, and has been adapted to match the specifications of the Egg model.

 <NumericalMethods>
 <FiniteVolume>
 <TwoPointFluxApproximation
 name="fluidTPFA"
 fieldName="pressure"
 coefficientName="permeability"/>
 </FiniteVolume>
 </NumericalMethods>

Reservoir and well regions

In this section of the input file, we follow the procedure already described in
Multiphase Flow for the definition of the reservoir region with multiphase constitutive models.

We associate a CellElementRegion named reservoir to the reservoir mesh.
Since we have imported a mesh with one region consisting of hexahedral cells, we
must set the attribute cellBlocks to DEFAULT_HEX.

Note

If you use a name that is not DEFAULT_HEX for this attribute, GEOSX will throw an error at the beginning of the simulation.

We also associate a WellElementRegion to each well. As the CellElementRegion,
it contains a materialList that must point (by name) to the constitutive models
defined in the Constitutive XML block.

 <ElementRegions>
 <CellElementRegion
 name="reservoir"
 cellBlocks="{ DEFAULT_HEX }"
 materialList="{ fluid, rock, relperm }"/>

 <WellElementRegion
 name="wellRegion1"
 materialList="{ fluid, relperm }"/>

 <WellElementRegion
 name="wellRegion2"
 materialList="{ fluid, relperm }"/>

Constitutive models

The CompositionalMultiphaseFVM physics solver relies on at least four types of constitutive
models listed in the Constitutive XML block:

	a fluid model describing the thermodynamics behavior of the fluid mixture,

	a relative permeability model,

	a rock permeability model,

	a rock porosity model.

All the parameters must be provided using the SI unit system.

This part is identical to that of Multiphase Flow.

 <Constitutive>
 <DeadOilFluid
 name="fluid"
 phaseNames="{ oil, water }"
 surfaceDensities="{ 848.9, 1025.2 }"
 componentMolarWeight="{ 114e-3, 18e-3 }"
 tableFiles="{ pvdo.txt, pvtw.txt }"/>

 <BrooksCoreyRelativePermeability
 name="relperm"
 phaseNames="{ oil, water }"
 phaseMinVolumeFraction="{ 0.1, 0.2 }"
 phaseRelPermExponent="{ 4.0, 3.0 }"
 phaseRelPermMaxValue="{ 0.8, 0.75 }"/>

 <CompressibleSolidConstantPermeability
 name="rock"
 solidModelName="nullSolid"
 porosityModelName="rockPorosity"
 permeabilityModelName="rockPerm"/>

 <NullModel
 name="nullSolid"/>

 <PressurePorosity
 name="rockPorosity"
 defaultReferencePorosity="0.2"
 referencePressure="0.0"
 compressibility="1.0e-13"/>

 <ConstantPermeability
 name="rockPerm"
 permeabilityComponents="{ 1.0e-12, 1.0e-12, 1.0e-12 }"/>
 </Constitutive>

Initial conditions

We are ready to specify the reservoir initial conditions of the problem in the FieldSpecifications
XML block.
The well variables do not have to be initialized here since they will be defined internally.

The formulation of the CompositionalMultiphaseFVM physics solver (documented
at Compositional Multiphase Flow Solver) requires the definition of the initial pressure field
and initial global component fractions.
We define here a uniform pressure field that does not satisfy the hydrostatic equilibrium,
but a hydrostatic initialization of the pressure field is possible using Functions:.
For the initialization of the global component fractions, we remind the user that their component
attribute (here, 0 or 1) is used to point to a specific entry of the phaseNames attribute
in the DeadOilFluid block.

Note that we also define the uniform porosity field here since it is not included in the mesh file
imported by the PAMELAMeshGenerator.

 <FieldSpecifications>
 <FieldSpecification
 name="initialPressure"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/reservoir/DEFAULT_HEX"
 fieldName="pressure"
 scale="4e7"/>

 <FieldSpecification
 name="initialComposition_oil"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/reservoir/DEFAULT_HEX"
 fieldName="globalCompFraction"
 component="0"
 scale="0.9"/>

 <FieldSpecification
 name="initialComposition_water"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/reservoir/DEFAULT_HEX"
 fieldName="globalCompFraction"
 component="1"
 scale="0.1"/>
 </FieldSpecifications>

Outputs

In this section, we request an output of the results in VTK format and an output of the rates for each producing well.
Note that the name defined here must match the name used in the Events XML block to define the output frequency.

 <Outputs>
 <VTK
 name="vtkOutput"/>

 <TimeHistory
 name="timeHistoryOutput1"
 sources="{ /Tasks/wellRateCollection1 }"
 filename="wellRateHistory1"/>

 <TimeHistory
 name="timeHistoryOutput2"
 sources="{ /Tasks/wellRateCollection2 }"
 filename="wellRateHistory2"/>

 <TimeHistory
 name="timeHistoryOutput3"
 sources="{ /Tasks/wellRateCollection3 }"
 filename="wellRateHistory3"/>

 <TimeHistory
 name="timeHistoryOutput4"
 sources="{ /Tasks/wellRateCollection4 }"
 filename="wellRateHistory4"/>

 <Restart
 name="restartOutput"/>

 </Outputs>

Tasks

In the Events block, we have defined four events requesting that a task periodically collects the rate for each producing well.
This task is defined here, in the PackCollection XML sub-block of the Tasks block.
The task contains the path to the object on which the field to collect is registered (here, a WellElementSubRegion) and the name of the field (here, wellElementMixtureConnectionRate).
The details of the history collection mechanism can be found in Tasks Manager.

 <Tasks>
 <PackCollection
 name="wellRateCollection1"
 objectPath="ElementRegions/wellRegion1/wellRegion1uniqueSubRegion"
 fieldName="wellElementMixtureConnectionRate"/>

 <PackCollection
 name="wellRateCollection2"
 objectPath="ElementRegions/wellRegion2/wellRegion2uniqueSubRegion"
 fieldName="wellElementMixtureConnectionRate"/>

 <PackCollection
 name="wellRateCollection3"
 objectPath="ElementRegions/wellRegion3/wellRegion3uniqueSubRegion"
 fieldName="wellElementMixtureConnectionRate"/>

 <PackCollection
 name="wellRateCollection4"
 objectPath="ElementRegions/wellRegion4/wellRegion4uniqueSubRegion"
 fieldName="wellElementMixtureConnectionRate"/>
 </Tasks>

All elements are now in place to run GEOSX.

Running GEOSX

The first few lines appearing to the console are indicating that the XML elements are read and registered correctly:

Adding Solver of type CompositionalMultiphaseReservoir, named coupledFlowAndWells
Adding Solver of type CompositionalMultiphaseFVM, named compositionalMultiphaseFlow
Adding Solver of type CompositionalMultiphaseWell, named compositionalMultiphaseWell
Adding Mesh: PAMELAMeshGenerator, mesh
Adding Mesh: InternalWell, wellProducer1
Adding Mesh: InternalWell, wellProducer2
Adding Mesh: InternalWell, wellProducer3
Adding Mesh: InternalWell, wellProducer4
Adding Mesh: InternalWell, wellInjector1
Adding Mesh: InternalWell, wellInjector2
Adding Mesh: InternalWell, wellInjector3
Adding Mesh: InternalWell, wellInjector4
Adding Mesh: InternalWell, wellInjector5
Adding Mesh: InternalWell, wellInjector6
Adding Mesh: InternalWell, wellInjector7
Adding Mesh: InternalWell, wellInjector8
Adding Event: PeriodicEvent, solverApplications
Adding Event: PeriodicEvent, vtk
Adding Output: VTK, vtkOutput
Adding Object CellElementRegion named reservoir from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion1 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion2 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion3 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion4 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion5 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion6 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion7 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion8 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion9 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion10 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion11 from ObjectManager::Catalog.
Adding Object WellElementRegion named wellRegion12 from ObjectManager::Catalog.

This is followed by the creation of the 18553 hexahedral cells of the imported mesh:

0 >>> **
0 >>> PAMELA Library Import tool
0 >>> **
0 >>> GMSH FORMAT IDENTIFIED
0 >>> *** Importing Gmsh mesh format...
0 >>> Reading nodes...
0 >>> Done0
0 >>> Reading elements...
0 >>> Reading element data...
0 >>> Number of nodes = 22227
0 >>> Number of triangles = 0
0 >>> Number of quadrilaterals = 0
0 >>> Number of tetrahedra = 0
0 >>> Number of hexahedra = 18553
0 >>> Number of pyramids = 0
0 >>> Number of prisms = 0
0 >>> *** Done
0 >>> *** Creating Polygons from Polyhedra...
0 >>> 59205 polygons have been created
0 >>> *** Done
0 >>> *** Perform partitioning...
0 >>> TRIVIAL partitioning...
0 >>> Ghost elements...
0 >>> Clean mesh...
0 >>> *** Done...
0 >>> Clean Adjacency...
0 >>> *** Done...

At this point, we are done with the case set-up and
the code steps into the execution of the simulation itself:

Time: 0s, dt:10000s, Cycle: 0

 Attempt: 0, NewtonIter: 0
 (Rfluid) = (9.39e+01) ; (R) = (1.06e+02) ;
 Attempt: 0, NewtonIter: 1
 (Rfluid) = (2.14e+00) ; (R) = (2.20e+00) ;
 Last LinSolve(iter,res) = (2, 3.62e-03) ;
 Attempt: 0, NewtonIter: 2
 (Rfluid) = (3.23e-01) ; (R) = (3.37e-01) ;
 Last LinSolve(iter,res) = (4, 1.82e-03) ;
 Attempt: 0, NewtonIter: 3
 (Rfluid) = (1.07e-02) ; (R) = (1.16e-02) ;
 Last LinSolve(iter,res) = (2, 6.13e-03) ;
 Attempt: 0, NewtonIter: 4
 (Rfluid) = (7.46e-05) ; (R) = (7.50e-05) ;
 Last LinSolve(iter,res) = (3, 5.09e-03) ;

coupledFlowAndWells: Newton solver converged in less than 15 iterations, time-step required will be doubled.

Visualization

A file compatible with Paraview is produced in this example.
It is found in the output folder, and usually has the extension .pvd.
More details about this file format can be found
here [https://www.paraview.org/Wiki/ParaView/Data_formats#PVD_File_Format].
We can load this file into Paraview directly and visualize results:

[image: pic1] [image: pic2]

We have instructed GEOSX to output the time series of rates for each producer.
The data contained in the corresponding hdf5 files can be extracted and plotted
as shown below.

(Source code)

[image: ../../../../_images/Example-1_01_0016.png]

To go further

Feedback on this example

This concludes the example on setting up a Dead-Oil simulation in the Egg model.
For any feedback on this example, please submit
a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

For more details

	A complete description of the reservoir flow solver is found here: Compositional Multiphase Flow Solver.

	The well solver is description at Compositional Multiphase Well Solver.

	The available constitutive models are listed at Constitutive Models.

CO 2 Injection

Context

In this example, we show how to set up a multiphase simulation of CO 2 injection.

Objectives

At the end of this example you will know:

	how to set up a CO 2 injection scenario with a well,

	how to run a case using MPI-parallelism.

Input file

The XML file for this test case is located at :

inputFiles/compositionalMultiphaseWell/simpleCo2InjTutorial_base.xml

inputFiles/compositionalMultiphaseWell/simpleCo2InjTutorial_smoke.xml

This mesh is a simple internally generated regular grid (50 x 1 x 150).
A single CO 2 injection well is at the center of the reservoir.

The XML file considered here follows the typical structure of the GEOSX input files:

	Solver

	Mesh

	Events

	NumericalMethods

	ElementRegions

	Constitutive

	FieldSpecifications

	Outputs

	Tasks

Multiphase flow and well solvers

Let us inspect the Solver XML tags.
They consist of three blocks CompositionalMultiphaseFVM, CompositionalMultiphaseWell and CompositionalMultiphaseReservoir, which are respectively handling the solution from multiphase flow in the reservoir, multiphase flow in the wells, and coupling between those two parts.

 <Solvers>
 <CompositionalMultiphaseReservoir
 name="coupledFlowAndWells"
 flowSolverName="compositionalMultiphaseFlow"
 wellSolverName="compositionalMultiphaseWell"
 logLevel="1"
 initialDt="1e2"
 targetRegions="{ reservoir, wellRegion }">
 <NonlinearSolverParameters
 newtonTol="1.0e-4"
 lineSearchAction="Attempt"
 maxTimeStepCuts="10"
 newtonMaxIter="40"/>
 <LinearSolverParameters
 solverType="fgmres"
 preconditionerType="mgr"
 krylovTol="1e-4"
 krylovAdaptiveTol="1"
 krylovWeakestTol="1e-2"/>
 </CompositionalMultiphaseReservoir>

 <CompositionalMultiphaseFVM
 name="compositionalMultiphaseFlow"
 targetRegions="{ reservoir }"
 discretization="fluidTPFA"
 fluidNames="{ fluid }"
 solidNames="{ rock }"
 permeabilityNames="{ rockPerm }"
 relPermNames="{ relperm }"
 temperature="368.15"
 maxCompFractionChange="0.2"
 logLevel="1"
 useMass="1"/>

 <CompositionalMultiphaseWell
 name="compositionalMultiphaseWell"
 targetRegions="{ wellRegion }"
 fluidNames="{ fluid }"
 relPermNames="{ relperm }"
 wellTemperature="368.15"
 logLevel="1"
 useMass="1">
 <WellControls
 name="wellControls"
 type="injector"
 control="totalVolRate"
 referenceElevation="7500"
 targetBHP="1e8"
 targetTotalRate="5e-2"
 injectionStream="{ 0.995, 0.005 }"/>
 </CompositionalMultiphaseWell>
 </Solvers>

In the CompositionalMultiphaseFVM (Compositional Multiphase Flow Solver), a classical multiphase compositional solver with a TPFA discretization is described.
The flow solver definition includes a list of names to point to fluid constitutive data through fluidNames, solid constitutive data through solidNames, permeability data through permeabilityNames and relative permeability constitutive data through relPermNames attributes.

The CompositionalMultiphaseWell (Compositional Multiphase Well Solver) consists of wellbore specifications (see Multiphase Flow with Wells for detailed example). As its reservoir counterpart, it includes references to fluid and relative permeability models, but also defines a WellControls sub-tag.
This sub-tag specifies the CO 2 injector control mode: the well is initially rate-controlled, with a rate specified in targetRate and a maximum pressure specified in targetBHP. The injector-specific attribute, injectionStream, describes the composition of the injected mixture (here, pure CO 2).

The CompositionalMultiphaseReservoir coupling section describes the binding between those two previous elements (see Poromechanics for detailed example on coupling physics in GEOSX). In addition to being bound to the previously described blocks through flowSolverName and wellSolverName sub-tags, it contains the initialDt starting time-step size value and defines the NonlinearSolverParameters and LinearSolverParameters that are used to control Newton-loop and linear solver behaviors (see Linear Solvers for a detailed description of linear solver attributes).

Note

To use the linear solver options of this example, you need to ensure that GEOSX is configured to use the Hypre linear solver package.

Mesh and well geometry

In this example, the Mesh tag is used to generate the reservoir mesh internally (Tutorial 1: First Steps). The internal generation of well is defined with the InternalWell sub-tag. Apart from the name identifier attribute and their wellRegionName (ElementRegions) and wellControlsName (Solver) binding attributes, polylineNodeCoords and polylineSegmentConn attributes are used to define the path of the wellbore and connections between its nodes. The numElementsPerSegment discretizes the wellbore segments while the radius attribute specifies the wellbore radius (Multiphase Flow with Wells for details on wells). Once the wellbore is defined and discretized, the position of Perforations is defined using the linear distance from the head of the wellbore (distanceFromHead).

 <Mesh>
 <InternalMesh
 name="cartesianMesh"
 elementTypes="{ C3D8 }"
 xCoords="{ 0, 1000 }"
 yCoords="{ 450, 550 }"
 zCoords="{ 6500, 7700 }"
 nx="{ 50 }"
 ny="{ 1 }"
 nz="{ 150 }"
 cellBlockNames="{ cellBlock }"/>

 <InternalWell
 name="wellInjector1"
 wellRegionName="wellRegion"
 wellControlsName="wellControls"
 meshName="cartesianMesh"
 polylineNodeCoords="{ { 500.0, 500.0, 6600.00 },
 { 500.0, 500.0, 6650.00 } }"
 polylineSegmentConn="{ { 0, 1 } }"
 radius="0.1"
 numElementsPerSegment="2">
 <Perforation
 name="injector1_perf1"
 distanceFromHead="45"/>
 </InternalWell>
 </Mesh>

Note

It is the responsibility of the user to make sure that there is a perforation in the bottom cell of the well mesh, otherwise an error will be thrown and the simulation will terminate.

Events

The solver is applied as a periodic event whose target is referred to as coupledFlowAndWells nametag.
Using the maxEventDt attribute, we specify a max time step size of 5 x [image: 10^6] seconds.

The output event triggers a VTK output every [image: 10^7] seconds, constraining the solver schedule to match exactly these dates.
The output path to data is specified as a target of this PeriodicEvent.

Another periodic event is defined under the name restarts.
It consists of saved checkpoints every 5 x [image: 10^7] seconds, whose physical output folder name is defined under the Output tag.

Finally, the time history collection and output events are used to trigger the mechanisms involved in the generation of a time series of well pressure (see the procedure outlined in Tasks Manager, and the example in Multiphase Flow with Wells).

 <Events
 maxTime="2e8">

 <PeriodicEvent
 name="outputs"
 timeFrequency="1e7"
 targetExactTimestep="1"
 target="/Outputs/simpleReservoirViz"/>

 <PeriodicEvent
 name="restarts"
 timeFrequency="5e7"
 targetExactTimestep="1"
 target="/Outputs/restartOutput"/>

 <PeriodicEvent
 name="timeHistoryCollection"
 timeFrequency="1e7"
 targetExactTimestep="1"
 target="/Tasks/wellPressureCollection" />

 <PeriodicEvent
 name="timeHistoryOutput"
 timeFrequency="2e8"
 targetExactTimestep="1"
 target="/Outputs/timeHistoryOutput" />

 <PeriodicEvent
 name="solverApplications"
 maxEventDt="5e5"
 target="/Solvers/coupledFlowAndWells"/>

 </Events>

Numerical methods

The TwoPointFluxApproximation is chosen for the fluid equation discretization. The tag specifies:

	A primary field to solve for as fieldName. For a flow problem, this field is pressure.

	A set of target regions in targetRegions.

	A coefficientName pointing to the field used for TPFA transmissibilities construction.

	A coefficientModelNames used to specify the permeability constitutive model(s).

 <NumericalMethods>
 <FiniteVolume>
 <TwoPointFluxApproximation
 name="fluidTPFA"
 targetRegions="{ reservoir }"
 fieldName="pressure"
 coefficientName="permeability"
 coefficientModelNames="{ rockPerm }"/>
 </FiniteVolume>
 </NumericalMethods>

Element regions

We define a CellElementRegion pointing to the cell block defining the reservoir mesh, and a WellElementRegion for the well.
The two regions contain a list of constitutive model names.

 <ElementRegions>
 <CellElementRegion
 name="reservoir"
 cellBlocks="{ cellBlock }"
 materialList="{ fluid, rock, relperm }"/>

 <WellElementRegion
 name="wellRegion"
 materialList="{ fluid, relperm, rockPerm }"/>
 </ElementRegions>

Constitutive laws

Under the Constitutive tag, four items can be found:

	CO2BrineFluid : this tag defines phase names, component molar weights, and fluid behaviors such as CO 2 solubility in brine and viscosity/density dependencies on pressure and temperature.

	PressurePorosity : this tag contains all the data needed to model rock compressibility.

	BrooksCoreyRelativePermeability : this tag defines the relative permeability model for each phase, its end-point values, residual volume fractions (saturations), and the Corey exponents.

	ConstantPermeability : this tag defines the permeability model that is set to a simple constant diagonal tensor, whose values are defined in permeabilityComponent. Note that these values will be overwritten by the permeability field imported in FieldSpecifications.

 <Constitutive>
 <CO2BrineFluid
 name="fluid"
 phaseNames="{ gas, water }"
 componentNames="{ co2, water }"
 componentMolarWeight="{ 44e-3, 18e-3 }"
 phasePVTParaFiles="{ pvtgas.txt, pvtliquid.txt }"
 flashModelParaFile="co2flash.txt"/>

 <CompressibleSolidConstantPermeability
 name="rock"
 solidModelName="nullSolid"
 porosityModelName="rockPorosity"
 permeabilityModelName="rockPerm"/>

 <NullModel
 name="nullSolid"/>

 <PressurePorosity
 name="rockPorosity"
 defaultReferencePorosity="0.1"
 referencePressure="1.0e7"
 compressibility="4.5e-10"/>

 <BrooksCoreyRelativePermeability
 name="relperm"
 phaseNames="{ gas, water }"
 phaseMinVolumeFraction="{ 0.05, 0.30 }"
 phaseRelPermExponent="{ 2.0, 2.0 }"
 phaseRelPermMaxValue="{ 1.0, 1.0 }"/>

 <ConstantPermeability
 name="rockPerm"
 permeabilityComponents="{ 1.0e-17, 1.0e-17, 3.0e-17 }"/>

 </Constitutive>

The PVT data specified by CO2BrineFluid is set to model the behavior of the CO 2-brine system as a function of pressure, temperature, and salinity.
We currently rely on a two-phase, two-component (CO 2 and H 2 O) model in which salinity is a constant parameter in space and in time.
The model is described in detail in CO2-brine model.
The model definition requires three text files:

In co2flash.txt, we define the CO 2 solubility model used to compute the amount of CO 2 dissolved in the brine phase as a function of pressure (in Pascal), temperature (in Kelvin), and salinity (in units of molality):

FlashModel CO2Solubility 1e6 1.5e7 5e4 367.15 369.15 1 0

The first keyword is an identifier for the model type (here, a flash model). It is followed by the model name. Then, the lower, upper, and step increment values for pressure and temperature ranges are specified.
The trailing 0 defines a zero-salinity in the model.
Note that the water component is not allowed to evaporate into the CO 2 -rich phase.

The pvtgas.txt and pvtliquid.txt files define the models used to compute the density and viscosity of the two phases, as follows:

DensityFun SpanWagnerCO2Density 1e6 1.5e7 5e4 94 96 1
ViscosityFun FenghourCO2Viscosity 1e6 1.5e7 5e4 94 96

DensityFun BrineCO2Density 1e6 1.5e7 5e4 94 96 1 0
ViscosityFun BrineViscosity 0

In these files, the first keyword of each line is an identifier for the model type (either a density or a viscosity model).
It is followed by the model name.
Then, the lower, upper, and step increment values for pressure and temperature ranges are specified.
The trailing 0 for BrineCO2Density and BrineViscosity entry is the salinity of the brine, set to zero.

Note

It is the responsibility of the user to make sure that the pressure and temperature values encountered in the simulation (in the reservoir and in the well) are within the bounds specified in the PVT files. GEOSX will not throw an error if a value outside these bounds is encountered, but the (nonlinear) behavior of the simulation and the quality of the results will likely be negatively impacted.

Property specification

The FieldSpecifications tag is used to declare fields such as directional permeability, reference porosity, initial pressure, and compositions.
Here, these fields are homogeneous, except for the permeability field that is taken as an heterogeneous log-normally distributed field and specified in Functions as in Tutorial 3: Regions and Property Specifications.

 <FieldSpecifications>
 <FieldSpecification
 name="permx"
 initialCondition="1"
 component="0"
 setNames="{ all }"
 objectPath="ElementRegions"
 fieldName="rockPerm_permeability"
 scale="1e-15"
 functionName="permxFunc"/>

 <FieldSpecification
 name="permy"
 initialCondition="1"
 component="1"
 setNames="{ all }"
 objectPath="ElementRegions"
 fieldName="rockPerm_permeability"
 scale="1e-15"
 functionName="permyFunc"/>

 <FieldSpecification
 name="permz"
 initialCondition="1"
 component="2"
 setNames="{ all }"
 objectPath="ElementRegions"
 fieldName="rockPerm_permeability"
 scale="3e-15"
 functionName="permzFunc"/>

 <FieldSpecification
 name="initialPressure"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/reservoir"
 fieldName="pressure"
 scale="1.25e7"/>

 <FieldSpecification
 name="initialComposition_co2"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/reservoir"
 fieldName="globalCompFraction"
 component="0"
 scale="0.0"/>

 <FieldSpecification
 name="initialComposition_water"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/reservoir"
 fieldName="globalCompFraction"
 component="1"
 scale="1.0"/>
 </FieldSpecifications>

Note

In this case, we are using the same permeability field (perm.geos) for all the directions. Note also that
the fieldName values are set to rockPerm_permeability to access the permeability field handled as
a Constitutive law. These permeability values will overwrite the values already set in the Constitutive block.

Output

The Outputs XML tag is used to write visualization, restart, and time history files.

Here, we write visualization files in a format natively readable by Paraview under the tag VTK.
A Restart tag is also be specified. In conjunction with a PeriodicEvent,
a restart file allows to resume computations from a set of checkpoints in time.
Finally, we require an output of the well pressure history using the TimeHistory tag.

 <Outputs>
 <VTK
 name="simpleReservoirViz"/>

 <Restart
 name="restartOutput"/>

 <TimeHistory
 name="timeHistoryOutput"
 sources="{/Tasks/wellPressureCollection}"
 filename="wellPressureHistory" />

 </Outputs>

Tasks

In the Events block, we have defined an event requesting that a task periodically collects the pressure at the well.
This task is defined here, in the PackCollection XML sub-block of the Tasks block.
The task contains the path to the object on which the field to collect is registered (here, a WellElementSubRegion) and the name of the field (here, pressure).
The details of the history collection mechanism can be found in Tasks Manager.

 <Tasks>
 <PackCollection
 name="wellPressureCollection"
 objectPath="ElementRegions/wellRegion/wellRegionuniqueSubRegion"
 fieldName="pressure" />

 </Tasks>

Running GEOSX

The simulation can be launched with 4 cores using MPI-parallelism:

mpirun -np 4 geosx -i SimpleCo2InjTutorial.xml -x 1 -y 1 -z 4

A restart from a checkpoint file SimpleCo2InjTutorial_restart_000000024.root is always available thanks to the following command line :

mpirun -np 4 geosx -i SimpleCo2InjTutorial.xml -r SimpleCo2InjTutorial_restart_000000024 -x 1 -y 1 -z 4

The output then shows the loading of HDF5 restart files by each core.

Loading restart file SimpleCo2InjTutorial_restart_000000024
Rank 0: rankFilePattern = SimpleCo2InjTutorial_restart_000000024/rank_%07d.hdf5
Rank 0: Reading in restart file at SimpleCo2InjTutorial_restart_000000024/rank_0000000.hdf5
Rank 1: Reading in restart file at SimpleCo2InjTutorial_restart_000000024/rank_0000001.hdf5
Rank 3: Reading in restart file at SimpleCo2InjTutorial_restart_000000024/rank_0000003.hdf5
Rank 2: Reading in restart file at SimpleCo2InjTutorial_restart_000000024/rank_0000002.hdf5

and the simulation restarts from this point in time.

Visualization

Using Paraview, we can observe the CO 2 plume moving upward under buoyancy effects and
forming a gas cap at the top of the domain,

[image: pic1] [image: pic2] [image: pic3]

The heterogeneous values of the log permeability field can also be visualized in Paraview as shown below:

[image: ../../../../_images/fcCo2-logK.png]

To go further

Feedback on this example

This concludes the CO 2 injection field case example.
For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

For more details

	A complete description of the reservoir flow solver is found here: Compositional Multiphase Flow Solver.

	The well solver is described at Compositional Multiphase Well Solver.

	The available fluid constitutive models are listed at Fluid Models.

Poromechanics

Context

In this example, we use a coupled solver to solve a poroelastic Terzaghi-type
problem, a classic benchmark in poroelasticity.
We do so by coupling a single phase flow solver with a small-strain Lagrangian mechanics solver.

Objectives

At the end of this example you will know:

	how to use multiple solvers for poromechanical problems,

	how to define finite elements and finite volume numerical methods.

Input file

This example uses no external input files and everything required is
contained within two GEOSX input files located at:

inputFiles/poromechanics/integratedTests/PoroElastic_Terzaghi_base_direct.xml

inputFiles/poromechanics/integratedTests/PoroElastic_Terzaghi_smoke.xml

Description of the case

We simulate the consolidation of a poroelastic fluid-saturated column of height
[image: L] having unit cross-section.
The column is instantaneously loaded at time [image: t] = 0 s with a constant
compressive traction [image: w] applied on the face highlighted in red in the
figure below.
Only the loaded face if permeable to fluid flow, with the remaining parts of
the boundary subject to roller constraints and impervious.

[image: ../../../../_images/terzaghi_sketch.svg]
Fig. 1 Sketch of the setup for Terzaghi’s problem.

GEOSX will calculate displacement and pressure fields along the column as a
function of time.
We will use the analytical solution for pressure to check the accuracy of the
solution obtained with GEOSX, namely

[image: p(x,t) = \frac{4}{\pi} p_0 \sum_{m=0}^{\infty} \frac{1}{2m + 1} \text{exp} \left[-\frac{(2m + 1)^2 \pi^2 c_c t}{4 L^2} \right] \text{sin} \left[\frac{(2m+1)\pi x}{2L} \right],]

where [image: p_0 = \frac{b}{K_vS_{\epsilon} + b^2} |w|] is the initial pressure, constant throughout the column, and [image: c_c = \frac{\kappa}{\mu} \frac{K_v}{K_v S_{\epsilon} + b^2}] is the consolidation coefficient (or diffusion coefficient), with

	[image: b] Biot’s coefficient

	[image: K_v = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)}] the uniaxial bulk modulus, [image: E] Young’s modulus, and [image: \nu] Poisson’s ratio

	[image: S_{\epsilon}=\frac{(b - \phi)(1 - b)}{K} + \phi c_f] the constrained specific storage coefficient, [image: \phi] porosity, [image: K = \frac{E}{3(1-2\nu)}] the bulk modulus, and [image: c_f] the fluid compressibility

	[image: \kappa] the isotropic permeability

	[image: \mu] the fluid viscosity

The characteristic consolidation time of the system is defined as [image: t_c = \frac{L^2}{c_c}].
Knowledge of [image: t_c] is useful for choosing appropriately the timestep sizes that are used in the discrete model.

Coupled solvers

GEOSX is a multi-physics tool. Different combinations of
physics solvers available in the code can be applied
in different regions of the mesh at different moments of the simulation.
The XML Solvers tag is used to list and parameterize these solvers.

We define and characterize each single-physics solver separately.
Then, we define a coupling solver between these single-physics
solvers as another, separate, solver.
This approach allows for generality and flexibility in our multi-physics resolutions.
The order in which these solver specifications is done is not important.
It is important, though, to instantiate each single-physics solver
with meaningful names. The names given to these single-physics solver instances
will be used to recognize them and create the coupling.

To define a poromechanical coupling, we will effectively define three solvers:

	the single-physics flow solver, a solver of type SinglePhaseFVM called here SinglePhaseFlowSolver (more information on these solvers at Singlephase Flow Solver),

	the small-stress Lagrangian mechanics solver, a solver of type SolidMechanicsLagrangianSSLE called here LinearElasticitySolver (more information here: Solid Mechanics Solver),

	the coupling solver that will bind the two single-physics solvers above, an object of type SinglePhasePoromechanics called here PoroelasticitySolver (more information at Poromechanics Solver).

Note that the name attribute of these solvers is
chosen by the user and is not imposed by GEOSX.

The two single-physics solvers are parameterized as explained
in their respective documentation.

Let us focus our attention on the coupling solver.
This solver (PoroelasticitySolver) uses a set of attributes that specifically describe the coupling for a poromechanical framework.
For instance, we must point this solver to the correct fluid solver (here: SinglePhaseFlowSolver), the correct solid solver (here: LinearElasticitySolver).
Now that these two solvers are tied together inside the coupling solver,
we have a coupled multiphysics problem defined.
More parameters are required to characterize a coupling.
Here, we specify
the discretization method (FE1, defined further in the input file),
and the target regions (here, we only have one, Domain).

 <SinglePhasePoromechanics
 name="PoroelasticitySolver"
 solidSolverName="LinearElasticitySolver"
 fluidSolverName="SinglePhaseFlowSolver"
 porousMaterialNames="{ porousRock }"
 logLevel="1"
 discretization="FE1"
 targetRegions="{ Domain }">
 <LinearSolverParameters
 directParallel="0"/>
 </SinglePhasePoromechanics>

 <SolidMechanicsLagrangianSSLE
 name="LinearElasticitySolver"
 timeIntegrationOption="QuasiStatic"
 logLevel="1"
 discretization="FE1"
 targetRegions="{ Domain }"
 solidMaterialNames="{ skeleton }"/>

 <SinglePhaseFVM
 name="SinglePhaseFlowSolver"
 logLevel="1"
 discretization="singlePhaseTPFA"
 targetRegions="{ Domain }"
 fluidNames="{ fluid }"
 solidNames="{ porousRock }"
 permeabilityNames="{ skeletonPerm }"/>
 </Solvers>

Multiphysics numerical methods

Numerical methods in multiphysics settings are similar to single physics numerical methods. All can be defined under the same NumericalMethods XML tag.
In this problem, we use finite volume for flow and finite elements for solid mechanics.
Both methods require additional parameterization attributes to be defined here.

As we have seen before, the coupling solver and the solid mechanics solver require the specification of a discretization method called FE1.
This discretization method is defined here as a finite element method
using linear basis functions and Gaussian quadrature rules.
For more information on defining finite elements numerical schemes,
please see the dedicated Finite Element Discretization section.

The finite volume method requires the specification of a discretization scheme.
Here, we use a two-point flux approximation as described in the dedicated documentation (found here: Finite Volume Discretization).

 <NumericalMethods>
 <FiniteElements>
 <FiniteElementSpace
 name="FE1"
 order="1"/>
 </FiniteElements>

 <FiniteVolume>
 <TwoPointFluxApproximation
 name="singlePhaseTPFA"
 fieldName="pressure"
 coefficientName="permeability"
 coefficientModelNames="{ skeletonPerm }"/>
 </FiniteVolume>
 </NumericalMethods>

Mesh, material properties, and boundary conditions

Last, let us take a closer look at the geometry of this simple problem.
We use the internal mesh generator to create a beam-like mesh,
with one single element along the Y and Z axes, and 21 elements along the X axis.
All the elements are hexahedral elements (C3D8) of the same dimension (1x1x1 meters).

The parameters used in the simulation are summarized in the following table.

	Symbol

	Parameter

	Units

	Value

	[image: E]

	Young’s modulus

	[Pa]

	104

	[image: \nu]

	Poisson’s ratio

	[-]

	0.2

	[image: b]

	Biot’s coefficient

	[-]

	1.0

	[image: \phi]

	Porosity

	[-]

	0.3

	[image: \rho_f]

	Fluid density

	[kg/m3]

	1.0

	[image: c_f]

	Fluid compressibility

	[Pa-1]

	0.0

	[image: \kappa]

	Permeability

	[m2]

	10-4

	[image: \mu]

	Fluid viscosity

	[Pa s]

	1.0

	[image: |w|]

	Applied compression

	[Pa]

	1.0

	[image: L]

	Column length

	[m]

	10.0

Material properties and boundary conditions are specified in the
Constitutive and FieldSpecifications sections.
For such set of parameters we have [image: p_0] = 1.0 Pa, [image: c_c] = 1.111 m2 s-1, and [image: t_c] = 90 s.
Therefore, as shown in the Events section, we run this simulation for 90 seconds.

Running GEOSX

To run the case, use the following command:

path/to/geosx -i inputFiles/poromechanics/PoroElastic_Terzaghi_smoke.xml

Here, we see for instance the RSolid and RFluid at a representative timestep
(residual values for solid and fluid mechanics solvers, respectively)

Attempt: 0, NewtonIter: 0
(RSolid) = (5.00e-01) ; (Rsolid, Rfluid) = (5.00e-01, 0.00e+00)
(R) = (5.00e-01) ;
Attempt: 0, NewtonIter: 1
(RSolid) = (4.26e-16) ; (Rsolid, Rfluid) = (4.26e-16, 4.22e-17)
(R) = (4.28e-16) ;

As expected, since we are dealing with a linear problem,
the fully implicit solver converges in a single iteration.

Inspecting results

This plot compares the analytical pressure solution (continuous lines) at selected
times with the numerical solution (markers).

(Source code)

[image: ../../../../_images/Example-1_01_0018.png]

To go further

Feedback on this example

This concludes the poroelastic example.
For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

For more details

	More on poroelastic multiphysics solvers, please see Poromechanics Solver.

	More on numerical methods, please see Numerical Methods.

	More on functions, please see Functions.

Hydraulic Fracturing

Context

In this example, we use a fully coupled hydrofracture solver from GEOSX to solve for the propagation of a single fracture within a reservoir with heterogeneous in-situ properties.
Advanced xml features will be used throughout the example.

Objectives

At the end of this example you will know:

	how to use multiple solvers for hydraulic fracturing problems,

	how to specify pre-existing fractures and where new fractures can develop,

	how to construct a mesh with bias,

	how to specify heterogeneous in-situ properties and initial conditions,

	how to use parameters, symbolic math, and units in xml files.

Input files

This example uses a set of input files and table files located at:

examples/hydraulicFracturing/heterogeneousInSituProperties

Because the input files use the advanced xml features, they must be preprocessed using the geosx_xml_tools package.
If you have not already done so, setup these features by following the instructions here: Advanced XML Features .

Description of the case

Here, our goal is to demonstrate how hydraulic fractures are modeled in a typical environment.
The in-situ properties and initial conditions are based upon a randomly generated, fractal, 1D layer-cake model.

[image: ../../../../_images/hf_example.png]
The inputs for this case are contained inside a case-specific (heterogeneousInSitu_benchmark.xml) and base (heterogeneousInSitu_base.xml) XML files.
The tables directory contains the pre-constructed geologic model.
This example will first focus on the case-specific input file, which contains the key parameter definitions, then consider the base xml file.

Included: including external xml files

At the head of the case-specific xml file is a block that will instruct GEOSX to include an external file.
In our case, this points to the base hydraulic fracturing input file.

Parameters: defining variables to be used throughout the file

The Parameters block defines a series of variables that can be used throughout the input file.
These variables allow a given input file to be easily understood and/or modified for a specific environment, even by non-expert users. Parameters are specified in pairs of names and values.
The names should only contain alphanumeric characters and underlines.
The values can contain any type (strings, doubles, etc.).

Parameters can be used throughout the input file (or an included input file) by placing them in-between dollar signs.
Barring any circular-definition errors, parameters can be used within other parameters.
For example, see the parameter mu_upscaled.
The value of this parameter is a symbolic expression, which is denoted by the surrounding back-ticks, and is dependent upon two other parameters.
During pre-processing, geosx_xml_tools will substitute the parameter definitions, and evaluate the symbolic expression using a python-derived syntax.

A number of the input parameters include optional unit definitions, which are denoted by the square brackets following a value.
For example, the parameter t_max is used to set the maximum time for the simulation to 20 minutes.

Mesh with biased boundaries

The mesh block for this example uses a biased mesh along the simulation boundaries to reduce the size of the problem, while maintaining the desired spatial extents.
For a given element region with bias, the left-hand element will be x% smaller and the right-hand element will be x% larger than the average element size.
Along the x-axis of the mesh, we select a value of zero for the first region to indicate that we want a uniform-sized mesh, and we select a bias of -0.6 for the second region to indicate that we want the element size to smoothly increase in size as it moves in the +x direction.
The other dimensions of the mesh follow a similar pattern.

Defining a fracture nodeset

For this example, we want to propagate a single hydraulic fracture along the plane defined by y = 0.
To achieve this, we need to define three nodesets:

	source_a: The location where we want to inject fluid. Typically, we want this to be a single face in the x-z plane.

	perf_a: This is the initial fracture for the simulation. This nodeset needs to be at least two-faces wide in the x-z plane (to represent the fracture at least one internal node needs to be open).

	fracturable_a: This is the set of faces where we will allow the fracture to grow. For a problem where we expect the fracture to curve out of the plane defined by y = 0 , this could be replaced.

Boundary conditions

The boundary conditions for this problem are defined in the case-specific and the base xml files.
The case specific block includes four instructions:

	frac: this marks the initial perforation.

	separableFace: this marks the set of faces that are allowed to break during the simulation.

	waterDensity: this initializes the fluid in the perforation.

	sourceTerm: this instructs the code to inject fluid into the source_a nodeset. Note the usage of the symbolic expression and parameters in the scale. This boundary condition is also driven by a function, which we will define later.

The base block includes instructions to set the initial in-situ properties and stresses.
It is also used to specify the external mechanical boundaries on the system.
In this example, we are using roller-boundary conditions (zero normal-displacement).
Depending upon how close they are to the fracture, they can significantly affect its growth.
Therefore, it is important to test whether the size of the model is large enough to avoid this.

Coupled hydraulic fracturing solver

The Solvers block is located in the base xml file.
Note that the gravityVector attribute indicates that we are applying gravity in the z-direction in this problem.

Similar to other coupled physics solvers, the Hydrofracture solver is specified in three parts:

	Hydrofracture: this is the primary solver, which will be called by the event manager. Two of its key attributes are the names of the dependent solid and fluid solvers.

	SolidMechanicsLagrangianSSLE: this is the solid mechanics solver.

	SinglePhaseFVM: this is the fluid solver.

The final solver present in this example is the SurfaceGenerator, which manages how faces in the model break.

Events

Rather than explicitly specify the desired timestep behavior, this example uses a flexible approach for timestepping.
The hydrofracture solver is applied in three segments, where maxEventDt indicates the maximum allowable timestep:

	solverApplications_a: this corresponds to the problem initialization, where we request dt_max_a=10.

	solverApplications_b: this corresponds to the period of initial fluid injection, where we request dt_max_b=2.

	solverApplications_c: this corresponds to rest of the problem where we request dt_max_c=4.

Depending upon how well the solution converges, the timestep may be smaller than the maximum requested value.
Other key events in this problem include:

	preFracture: this calls the surface generator at the beginning of the problem and helps to initialize the fracture.

	outputs: this produces output silo files.

	restarts: this is a HaltEvent, which tracks the external clock. When the runtime exceeds the specified value (here $t_allocation$=28 minutes), the code will call the target (which writes a restart file) and instruct the code to exit.

Functions to set in-situ properties

The function definitions are in the base xml file, and rely upon the files in the tables directory.
The functions in this example include the flow rate over time, the in-situ principal stress, and the bulk/shear moduli of the rock.
Note the use of the table_root parameter, which contains the root path to the table files.

The flow_rate TableFunction is an example of a 1D function.
It has a single input, which is time.
The table is defined using a single coordinateFile:

And a single voxelFile:

Given the specified linear interpolation method, these values define a simple trapezoidal function.
Note: since this is a 1D table, these values could alternately be given within the xml file using the coordinates and values attributes.

The sigma_xx TableFunction is an example of a 3D function.
It uses elementCenter as its input, which is a vector.
It is specified using a set of three coordinate files (one for each axis), and a single voxel file.
The geologic model in this example is a layer-cake, which was randomly generated, so the size of the x and y axes are 1.
The interpolation method used here is upper, so the values in the table indicate those at the top of each layer.

Running GEOSX

Assuming that the preprocessing tools have been correctly installed (see Advanced XML Features), there will be a script in the GEOSX build/bin directory called geosx_preprocessed.
Replacing geosx with geosx_preprocessed in an input command will automatically apply the preprocessor and send the results to GEOSX.

Before beginning, we reccomend that you make a local copy of the example and its tables.
Because we are using advanced xml features in this example, the input file must be pre-processed before running.
For example, this will run the code on a debug partition using a total of 36 cores.

cp -r examples/hydraulicFracturing/heterogeneousInSituProperties ./hf_example
cd hf_example
srun -n 36 -ppdebug geosx_preprocessed -i heterogeneousInSitu_benchmark.xml -x 6 -y 2 -z 3 -o hf_results

Note that as part of the automatic preprocessing step a compiled xml file is written to the disk (by default ‘[input_name].preprocessed’).
When developing an xml with advanced features, we reccomend that you check this file to ensure its accuracy.

Inspecting results

In the above example, we requested silo-format output files every minute.
We can therefore import these into VisIt or python and visualize the outcome.
The following figure shows the extents of the generated fracture over time:

[image: ../../../../_images/extents.png]
Because we did not explicitly specify any fracture barriers in this example, the fracture dimensions are controlled by the in-situ stresses.
During the first couple of minutes of growth, the fracture quickly reaches its maximum/minimum height, which corresponds to a region of low in-situ minimum stress.

The following figures show the aperture and pressure of the hydraulic fracture (near the source) over time:

[image: ../../../../_images/aperture.png]
[image: ../../../../_images/pressure1.png]

Modifying Parameters Via the Command-Line

The advanced xml feature preprocessor allows parameters to be set or overriden by specifying any number of -p name value arguments on the command-line.
Note that if the parameter value has spaces, it needs to be enclosed by quotation marks.

To illustrate this feature, we can re-run the previous analysis with viscosity lowered from 5 cP to 1 cP:

srun -n 36 -ppdebug geosx_preprocessed -i heterogeneousInSitu_benchmark.xml -p mu 0.001 -x 6 -y 2 -z 3 -o hf_results_lower_mu

To go further

Feedback on this example

This concludes the hydraulic fracturing example.
For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

For more details

	More on advanced xml features, please see Advanced XML Features.

	More on functions, please see Functions.

	More on biased meshes, please see Mesh Bias.

Advanced Examples

	Validation and Verification Studies
	Sneddon’s Problem

	Toughness dominated KGD hydraulic fracture

	Kirsch Wellbore Problem

	Elasto-Plastic Near-Well Deformation

	Modified Cam-Clay Model for Wellbore Problems

	Cased Elastic Wellbore Problem

	Deviated Elastic Wellbore Problem

	Deviated Poro-Elastic Wellbore Subjected to Fluid Injection

	Deviated Poro-Elastic Wellbore Subjected to In-situ Stresses and Pore Pressure

	Vertical PoroElasto-Plastic Wellbore Problem

	Proppant Slot Test

	Single Fracture Under Shear Compression

	Performance Benchmarks

	Application Studies

	pygeosx Examples
	In Situ Data Monitor

	Initial Condition Modification

Validation and Verification Studies

	Sneddon’s Problem

	Toughness dominated KGD hydraulic fracture

	Kirsch Wellbore Problem

	Elasto-Plastic Near-Well Deformation

	Modified Cam-Clay Model for Wellbore Problems

	Cased Elastic Wellbore Problem

	Deviated Elastic Wellbore Problem

	Deviated Poro-Elastic Wellbore Subjected to Fluid Injection

	Deviated Poro-Elastic Wellbore Subjected to In-situ Stresses and Pore Pressure

	Vertical PoroElasto-Plastic Wellbore Problem

	Proppant Slot Test

	Single Fracture Under Shear Compression

Sneddon’s Problem

Objectives

At the end of this example you will know:

	how to define embedded fractures in the porous domain,

	how to use the SolidMechanicsEmbeddedFractures solver to solve mechanics problems with embedded fractures.

Input file

This example uses no external input files and everything required is
contained within a single GEOSX input file.
The xml input file for this test case is located at:

inputFiles/efemFractureMechanics/Sneddon_benchmark3.xml

Description of the case

We compute the displacement field induced by the presence of a pressurized fracture,
of length [image: L_f], in a porous medium.

GEOSX will calculate the displacement field in the porous matrix and the displacement
jump at the fracture surface.
We will use the analytical solution for the fracture aperture, [image: w_n] (normal component of the
jump) to, i.e.

[image: w_n (s) = \frac{4(1 - \nu^2)p_f}{E} \, \sqrt{ \frac{L_f^2}{4} - s^2 }]

where
- [image: E] is the Young’s modulus
- [image: \nu] is the Poisson’s ratio
- [image: p_f] is the fracture pressure
- [image: s] is the local fracture coordinate in [image: [-\frac{L_f}{2}, \frac{L_f}{2}]]

All inputs for this case are contained inside a single XML file.
In this example, we focus our attention on the Solvers tags,
the ElementRegions tags and the Geometry tags.

Embedded fractures mechanics solver

To define a mechanics solver capable of including embedded fractures, we will
define two solvers:

	a SolidMechanicsEmbeddedFractures solver, called mechSolve

	a small-strain Lagrangian mechanics solver, of type SolidMechanicsLagrangianSSLE called here matrixSolver (see: Solid Mechanics Solver)

Note that the name attribute of these solvers is
chosen by the user and is not imposed by GEOSX. It is important to make sure that the
solidSolverName specified in the embedded fractures solver corresponds to the
small-strain Lagrangian solver used in the matrix.

The two single-physics solvers are parameterized as explained
in their respective documentation, each with their own tolerances,
verbosity levels, target regions,
and other solver-specific attributes.

Additionally, we need to specify another solver of type, EmbeddedSurfaceGenerator,
which is used to discretize the fracture planes.

Events

For this problem we will add two events defining solver applications:

	an event specifying the execution of the EmbeddedSurfaceGenerator to generate the fracture elements.

	a periodic even specifying the execution of the embedded fractures solver.

 <Events
 maxTime="10">
 <SoloEvent
 name="preFracture"
 target="/Solvers/SurfaceGenerator"/>

 <PeriodicEvent
 name="solverApplications"
 forceDt="10"
 target="/Solvers/mechSolve"/>

 <PeriodicEvent
 name="outputs"
 cycleFrequency="10"
 target="/Outputs/vtkOutput"/>

 <PeriodicEvent
 name="timeHistoryCollection"
 timeFrequency="10.0"
 target="/Tasks/displacementJumpCollection"/>

 <PeriodicEvent
 name="timeHistoryOutput"
 timeFrequency="10.0"
 targetExactTimestep="0"
 target="/Outputs/timeHistoryOutput"/>
 </Events>

Mesh, material properties, and boundary conditions

Last, let us take a closer look at the geometry of this simple problem.
We use the internal mesh generator to create a large domain
([image: 1000\, m \, \times 1001 \, m \, \times 1 \, m]), with one single element
along the Z axes, 420 elements along the X axis and 121 elements along the Y axis.
All the elements are hexahedral elements (C3D8) and that refinement is performed
around the fracture.

 <Mesh>
 <InternalMesh
 name="mesh1"
 elementTypes="{ C3D8 }"
 xCoords="{ 0, 400, 600, 1000 }"
 yCoords="{ 0, 400, 601, 1001 }"
 zCoords="{ 0, 100 }"
 nx="{ 10, 400, 10 }"
 ny="{ 10, 101, 10 }"
 nz="{ 1 }"
 cellBlockNames="{ cb1 }"/>
 </Mesh>

The parameters used in the simulation are summarized in the following table.

	Symbol

	Parameter

	Units

	Value

	[image: E]

	Young’s modulus

	[Pa]

	104

	[image: \nu]

	Poisson’s ratio

	[-]

	0.2

	[image: L_f]

	Fracture length

	[m]

	20

	[image: p_f]

	Fracture pressure

	[Pa]

	105

Material properties and boundary conditions are specified in the
Constitutive and FieldSpecifications sections.

Adding an embedded fracture

 <Geometry>
 <BoundedPlane
 name="FracturePlane"
 normal="{ 0, 1, 0 }"
 origin="{ 500, 500.5, 50 }"
 lengthVector="{ 1, 0, 0 }"
 widthVector="{ 0, 0, 1 }"
 dimensions="{ 20, 100 }"/>
 </Geometry>

Running GEOSX

To run the case, use the following command:

path/to/geosx -i inputFiles/efemFractureMechanics/Sneddon_benchmark3.xml

Inspecting results

This plot compares the analytical pressure solution (continuous lines) at selected
times with the numerical solution (markers).

[image: ../../../../../_images/Verification1.png]

Fig. 2 Comparing GEOSX results with analytical solution

(Source code)

To go further

Feedback on this example

This concludes the Sneddon example.
For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

Toughness dominated KGD hydraulic fracture

Description of the case

In this example, we consider a plane-strain hydraulic fracture propagating in an infinite, homogeneous and elastic medium, due to fluid injection at a rate [image: Q_0] during a period from 0 to [image: t_{max}]. Two dimensional KGD fracture is characterized as a vertical fracture with a rectangle-shaped cross section. For verification purpose, the presented numerical model is restricted to the assumptions used to analytically solve this problem (Bunger et al., 2005) [https://link.springer.com/article/10.1007%2Fs10704-005-0154-0]. Vertical and impermeable fracture surface is assumed, which eliminate the effect of fracture plane inclination and fluid leakoff. The injected fluid flows within the fracture, which is assumed to be governed by the lubrication equation resulting from the mass conservation and the Poiseuille law. Fracture profile is related to fluid pressure distribution, which is mainly dictated by fluid viscosity [image: \mu]. In addition, fluid pressure contributes to the fracture development through the mechanical deformation of the solid matrix, which is characterized by rock elastic properties, including the Young modulus [image: E], and the Poisson ratio [image: \nu].

For toughness-dominated fractures, more work is spent to split the intact rock than that applied to move the fracturing fluid. To make the case identical to the toughness dominated asymptotic solution, incompressible fluid with an ultra-low viscosity of 0.001 cp and medium rock toughness should be defined. Fracture is propagating with the creation of new surface if the stress intensity factor exceeds rock toughness [image: K_{Ic}].

In toughness-storage dominated regime, asymptotic solutions of the fracture length [image: \ell], the net pressure [image: p_0] and the fracture aperture [image: w_0] at the injection point for the KGD fracture are provided by (Bunger et al., 2005) [https://link.springer.com/article/10.1007%2Fs10704-005-0154-0]:

[image: \ell = 0.9324 X^{ -1/6 } (\frac{ E_p Q_0^3 }{ 12\mu })^{ 1/6 } t^{ 2/3 } w_0^2 = 0.5 X^{ 1/2 } (\frac{ 12\mu Q_0 }{ E_p })^{ 1/2 } \ell w_0 p_0 = 0.125 X^{ 1/2 } (12\mu Q_0 E_p)^{ 1/2 }]

where the plane modulus [image: E_p] is defined by

[image: E_p = \frac{ E }{ 1-\nu^2 }]

and the term [image: X] is given as:

[image: X = \frac{ 256 }{ 3 \pi^2 } \frac{ K_{Ic}^4 }{ \mu Q_0 {E_p}^3 }]

Input file

The xml input files for this test case are located at:

inputFiles/hydraulicFracturing/kgdToughnessDominated_base.xml

and

inputFiles/hydraulicFracturing/kgdToughnessDominated_benchmark.xml

The corresponding integrated test with coarser mesh and smaller injection duration is also prepared:

inputFiles/hydraulicFracturing/kgdToughnessDominated_Smoke.xml

Mechanics solvers

The solver SurfaceGenerator defines rock toughness [image: K_{Ic}] as:

 <SurfaceGenerator
 name="SurfaceGen"
 targetRegions="{ Domain }"
 nodeBasedSIF="1"
 solidMaterialNames="{ rock }"
 rockToughness="1e6"
 mpiCommOrder="1"/>

Rock and fracture deformation are modeled by the solid mechanics solver SolidMechanicsLagrangianSSLE. In this solver, we define targetRegions that includes both the continuum region and the fracture region. The name of the contact constitutive behavior is also specified in this solver by the contactRelationName, besides the solidMaterialNames.

 <SolidMechanicsLagrangianSSLE
 name="lagsolve"
 timeIntegrationOption="QuasiStatic"
 discretization="FE1"
 targetRegions="{ Domain, Fracture }"
 solidMaterialNames="{ rock }"
 contactRelationName="fractureContact"/>

The single phase fluid flow inside the fracture is solved by the finite volume method in the solver SinglePhaseFVM as:

 <SinglePhaseFVM
 name="SinglePhaseFlow"
 discretization="singlePhaseTPFA"
 targetRegions="{ Fracture }"
 fluidNames="{ water }"
 solidNames="{ fractureFilling }"
 permeabilityNames="{ fracturePerm }"/>

All these elementary solvers are combined in the solver Hydrofracture to model the coupling between fluid flow within the fracture, rock deformation, fracture opening/closure and propagation. A fully coupled scheme is defined by setting a flag FIM for couplingTypeOption.

 <Hydrofracture
 name="hydrofracture"
 solidSolverName="lagsolve"
 fluidSolverName="SinglePhaseFlow"
 surfaceGeneratorName="SurfaceGen"
 porousMaterialNames="{ fractureFilling }"
 couplingTypeOption="FIM"
 logLevel="1"
 discretization="FE1"
 targetRegions="{ Fracture }"
 contactRelationName="fractureContact"
 maxNumResolves="2">

The constitutive laws

The constitutive law CompressibleSinglePhaseFluid defines the default and reference fluid viscosity, compressibility and density. For this toughness dominated example, ultra low fluid viscosity is used:

 <CompressibleSinglePhaseFluid
 name="water"
 defaultDensity="1000"
 defaultViscosity="1.0e-6"
 referencePressure="0.0"
 compressibility="5e-10"
 referenceViscosity="1.0e-6"
 viscosibility="0.0"/>

The isotropic elastic Young modulus and Poisson ratio are defined in the ElasticIsotropic block. The density of rock defined in this block is useless, as gravity effect is ignored in this example.

 <ElasticIsotropic
 name="rock"
 defaultDensity="2700"
 defaultYoungModulus="30.0e9"
 defaultPoissonRatio="0.25"/>

Mesh

Internal mesh generator is used to generate the geometry of this example. The domain size is large enough comparing to the final size of the fracture. A sensitivity analysis has shown that the domain size in the direction perpendicular to the fracture plane, i.e. x-axis, must be at least ten times of the final fracture half-length to minimize the boundary effect. However, smaller size along the fracture plane, i.e. y-axis, of only two times the fracture half-length is good enough. It is also important to note that at least two layers are required in z-axis to ensure a good match between the numerical results and analytical solutions, due to the node based fracture propagation criterion. Also in x-axis, bias parameter xBias is added for optimizing the mesh by refining the elements near the fracture plane.

[image: ../../../../../_images/mesh2.png]

Defining the initial fracture

The initial fracture is defined by a nodeset occupying a small area where the KGD fracture starts to propagate:

 <Box
 name="fracture"
 xMin="{ -0.01, -0.01, -0.01 }"
 xMax="{ 0.01, 1.01, 1.01 }"/>

This initial ruptureState condition must be specified for this area in the following FieldSpecification block:

 <FieldSpecification
 name="frac"
 initialCondition="1"
 setNames="{ fracture }"
 objectPath="faceManager"
 fieldName="ruptureState"
 scale="1"/>

Defining the fracture plane

The plane within which the KGD fracture propagates is predefined to reduce the computational cost. The fracture plane is outlined by a separable nodeset by the following initial FieldSpecification condition:

 <Box
 name="core"
 xMin="{ -0.01, -0.01, -0.01 }"
 xMax="{ 0.01, 50.01, 1.01 }"/>

 <FieldSpecification
 name="separableFace"
 initialCondition="1"
 setNames="{ core }"
 objectPath="faceManager"
 fieldName="isFaceSeparable"
 scale="1"/>

Defining the injection rate

Fluid is injected into a sub-area of the initial fracture. Only half of the injection rate is defined in this boundary condition because only half-wing of the KGD fracture is modeled regarding its symmetry. Hereby, the mass injection rate is actually defined, instead of the volume injection rate. More precisely, the value given for scale is [image: Q_0 \rho_f/2] (not [image: Q_0 /2]).

The parameters used in the simulation are summarized in the following table.

	Symbol

	Parameter

	Units

	Value

	[image: Q_0]

	Injection rate

	[m:sup:3/s]

	10:sup:-4

	[image: E]

	Young’s modulus

	[GPa]

	30

	[image: \nu]

	Poisson’s ratio

	[-]

	0.25

	[image: \mu]

	Fluid viscosity

	[Pa.s]

	10:sup:-6

	[image: K_{Ic}]

	Rock toughness

	[MPa.m:sup:1/2]

	1

Inspecting results

Fracture propagation during the fluid injection period is shown in the figure below.

[image: ../../../../../_images/propagation.gif]

A good agreement between GEOSX results and analytical solutions is shown in the comparison below:

(Source code)

[image: ../../../../../_images/Example-1_01_006.png]

To go further

Feedback on this example

This concludes the toughness dominated KGD example.
For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

Kirsch Wellbore Problem

Context

In this example, we simulate a vertical elastic wellbore subjected to in-situ stress and the induced elastic deformation of the reservoir rock. Kirsch’s solution to this problem provides the stress and displacement fields developing around a circular cavity, which is hereby employed to verify the accuracy of the numerical results. For this example, the TimeHistory function and python scripts are used to output and post-process multi-dimensional data (stress and displacement).

Input file

Everything required is contained within two GEOSX input files located at:

inputFiles/solidMechanics/KirschProblem_base.xml

inputFiles/solidMechanics/KirschProblem_benchmark.xml

Description of the case

We solve a drained wellbore problem subjected to anisotropic horizontal stress ([image: \sigma_{xx}] and [image: \sigma_{yy}]) as shown below. This is a vertical wellbore drilled in an infinite, homogeneous, isotropic, and elastic medium. Far-field in-situ stresses and internal supporting pressure acting at the circular cavity cause a mechanical deformation of the reservoir rock and stress concentration in the near-wellbore region. For verification purpose, a plane strain condition is considered for the numerical model.

[image: ../../../../../_images/wellSketch.png]

Fig. 3 Sketch of the wellbore problem

In this example, stress ([image: \sigma_{rr}], [image: \sigma_{\theta\theta}], and [image: \sigma_{r\theta}]) and displacement ([image: u_{r}] and [image: u_{\theta}]) fields around the wellbore are calculated numerically. These numerical predictions are compared with the corresponding Kirsch solutions (Poulos and Davis, 1974) [https://www.geoengineer.org/publications/online-library?keywords=E.H.%20Davis].

[image: \sigma_{rr} = \frac{ \sigma_{xx} + \sigma_{yy} }{ 2 } {[1 - (\frac{ a_0 }{ r })^{ 2 }]} + \frac{ \sigma_{xx} - \sigma_{yy} }{ 2 } {[1 - 4 (\frac{ a_0 }{ r })^{ 2 } + 3 (\frac{ a_0 }{ r })^{ 4 }]} \text{cos} \left({2 \theta} \right) + P_w {(\frac{ a_0 }{ r })^{ 2 }}]

[image: \sigma_{\theta\theta} = \frac{ \sigma_{xx} + \sigma_{yy} }{ 2 } {[1 + (\frac{ a_0 }{ r })^{ 2 }]} - \frac{ \sigma_{xx} - \sigma_{yy} }{ 2 } {[1 + 3 (\frac{ a_0 }{ r })^{ 4 }]} \text{cos} \left({2 \theta} \right) - P_w {(\frac{ a_0 }{ r })^{ 2 }}]

[image: \sigma_{r\theta} = - \frac{ \sigma_{xx} - \sigma_{yy} }{ 2 } {[1 + 2 (\frac{ a_0 }{ r })^{ 2 } - 3 (\frac{ a_0 }{ r })^{ 4 }]} \text{sin} \left({2 \theta} \right)]

[image: u_{r} = - \frac{ (a_0)^{ 2 } }{ 2Gr } {[\frac{ \sigma_{xx} + \sigma_{yy} }{ 2 } + \frac{ \sigma_{xx} - \sigma_{yy} }{ 2 } {(4 (1- \nu) - (\frac{ a_0 }{ r })^{ 2 })} \text{cos} \left({2 \theta} \right) - P_w]}]

[image: u_{\theta} = \frac{ (a_0)^{ 2 } }{ 2Gr } { \frac{ \sigma_{xx} - \sigma_{yy} }{ 2 } {[2 (1- 2 \nu) + (\frac{ a_0 }{ r })^{ 2 }]} \text{sin} \left({2 \theta} \right) }]

where [image: a_0] is the intiial wellbore radius, [image: r] is the radial coordinate, [image: \nu] is the Poisson’s ratio, [image: G] is the shear modulus, [image: P_w] is the normal traction acting on the wellbore wall, the angle [image: \theta] is measured with respect to x-z plane and defined as positive in counter-clockwise direction.

In this example, we focus our attention on the Mesh,
the Constitutive, and the FieldSpecifications tags.

Mesh

Following figure shows the generated mesh that is used for solving this wellbore problem.

[image: ../../../../../_images/mesh3.png]

Fig. 4 Generated mesh for a vertical wellbore problem

Let us take a closer look at the geometry of this wellbore problem.
We use the internal wellbore mesh generator InternalWellbore to create a rock domain
([image: 10\, m \, \times 5 \, m \, \times 2 \, m]), with a wellbore of
initial radius equal to [image: 0.1] m.
Only half of the domain is modeled by a theta angle from 0 to 180, assuming symmetry for the rest of the domain.
Coordinates of trajectory defines the wellbore trajectory, a vertical well in this example.
By turning on autoSpaceRadialElems="{ 1 }", the internal mesh generator automatically sets number and spacing of elements in the radial direction, which overrides the values of nr.
With useCartesianOuterBoundary="0", a Cartesian aligned boundary condition is enforced on the outer blocks.
This way, a structured three-dimensional mesh is created with 50 x 40 x 2 elements in the radial, tangential and z directions, respectively. All elements are eight-node hexahedral elements (C3D8) and refinement is performed
to conform with the wellbore geometry. This mesh is defined as a cell block with the name
cb1.

 <Mesh>
 <InternalWellbore
 name="mesh1"
 elementTypes="{ C3D8 }"
 radius="{ 0.1, 5.0 }"
 theta="{ 0, 180 }"
 zCoords="{ -1, 1 }"
 nr="{ 40 }"
 nt="{ 40 }"
 nz="{ 2 }"
 trajectory="{ { 0.0, 0.0, -1.0 },
 { 0.0, 0.0, 1.0 } }"
 autoSpaceRadialElems="{ 1 }"
 useCartesianOuterBoundary="0"
 cellBlockNames="{ cb1 }"/>
 </Mesh>

Solid mechanics solver

For a drained wellbore problem, the pore pressure variation is omitted. Therefore, we just need to define a solid mechanics solver, which is called mechanicsSolver.
This solid mechanics solver (see Solid Mechanics Solver) is based on the Lagrangian finite element formulation.
The problem is run as QuasiStatic without considering inertial effects.
The computational domain is discretized by FE1, which is defined in the NumericalMethods section.
The material is named rock, whose mechanical properties are specified in the Constitutive section.

 <Solvers gravityVector="{0.0, 0.0, 0.0}">
 <SolidMechanics_LagrangianFEM
 name="mechanicsSolver"
 timeIntegrationOption="QuasiStatic"
 logLevel="1"
 discretization="FE1"
 targetRegions="{Omega}"
 solidMaterialNames="{rock}">
 <NonlinearSolverParameters
 newtonTol = "1.0e-5"
 newtonMaxIter = "15"
 />
 <LinearSolverParameters
 solverType = "direct"/>
 </SolidMechanics_LagrangianFEM>
 </Solvers>

Constitutive laws

For this drained wellbore problem, we simulate a linear elastic deformation around the circular cavity.
A homogeneous and isotropic domain with one solid material is assumed, with mechanical properties specified in the Constitutive section:

 <Constitutive>
 <ElasticIsotropic
 name="rock"
 defaultDensity="2700"
 defaultBulkModulus="5.0e8"
 defaultShearModulus="3.0e8"
 />
 </Constitutive>

Recall that in the SolidMechanics_LagrangianFEM section,
rock is the material in the computational domain.
Here, the isotropic elastic model ElasticIsotropic simulates the mechanical behavior of rock.

The constitutive parameters such as the density, the bulk modulus, and the shear modulus are specified in the International System of Units.

Time history function

In the Tasks section, PackCollection tasks are defined to collect time history information from fields.
Either the entire field or specified named sets of indices in the field can be collected.
In this example, stressCollection and displacementCollection tasks are specified to output the resultant stresses (tensor stored as an array with Voigt notation) and total displacement field (stored as a 3-component vector) respectively.

 <Tasks>
 <PackCollection
 name="stressCollection"
 objectPath="ElementRegions/Omega/cb1"
 fieldName="rock_stress"/>

 <PackCollection
 name="displacementCollection"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"/>
 </Tasks>

These two tasks are triggered using the Event management, where PeriodicEvent are defined for these recurring tasks.
GEOSX writes two files named after the string defined in the filename keyword and formatted as HDF5 files (displacement_history.hdf5 and stress_history.hdf5). The TimeHistory file contains the collected time history information from each specified time history collector. This information includes datasets for the simulation time, element center or nodal position, and the time history information. Then, a Python script is prepared to access and plot any specified subset of the time history data for verification and visualization.

Initial and boundary conditions

The next step is to specify fields, including:

	The initial value (the in-situ stresses and traction at the wellbore wall have to be initialized),

	The boundary conditions (constraints of the outer boundaries have to be set).

Here, we specify anisotropic horizontal stress values ([image: \sigma_{yy}] = -9.0 MPa and [image: \sigma_{xx}] = -11.25 MPa) and a vertical stress ([image: \sigma_{zz}] = -15.0 MPa).
A compressive traction (WellLoad) [image: P_w] = -2.0 MPa is loaded at the wellbore wall rneg.
The remaining parts of the outer boundaries are subjected to roller constraints.
These boundary conditions are set in the FieldSpecifications section.

 <FieldSpecifications>
 <FieldSpecification
 name="Sxx"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions"
 fieldName="rock_stress"
 component="0"
 scale="-11.25e6"
 />

 <FieldSpecification
 name="Syy"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions"
 fieldName="rock_stress"
 component="1"
 scale="-9.0e6"
 />

 <FieldSpecification
 name="Szz"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions"
 fieldName="rock_stress"
 component="2"
 scale="-15.0e6"
 />

 <Traction
 name="WellLoad"
 setNames="{ rneg }"
 objectPath="faceManager"
 scale="-2.0e6"
 tractionType="normal"
 />

 <FieldSpecification
 name="xconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="0"
 scale="0.0"
 setNames="{xneg, xpos}"
 />

 <FieldSpecification
 name="yconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="1"
 scale="0.0"
 setNames="{tneg, tpos, ypos}"
 />

 <FieldSpecification
 name="zconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="2"
 scale="0.0"
 setNames="{zneg, zpos}"
 />
 </FieldSpecifications>

With tractionType="normal", traction is applied to the wellbore wall rneg as a pressure specified as the scalar product of scale scale="-2.0e6" and the outward face normal vector.
In this case, the loading magnitude of the traction does not change with time.

You may note :

	All initial value fields must have initialCondition field set to 1;

	The setName field points to the previously defined set to apply the fields;

	nodeManager and faceManager in the objectPath indicate that the boundary conditions are applied to the element nodes and faces, respectively;

	fieldName is the name of the field registered in GEOSX;

	Component 0, 1, and 2 refer to the x, y, and z direction, respectively;

	And the non-zero values given by scale indicate the magnitude of the loading;

	Some shorthand, such as xneg and xpos, are used as the locations where the boundary conditions are applied in the computational domain. For instance, xneg means the face of the computational domain located at the left-most extent in the x-axis, while xpos refers to the face located at the right-most extent in the x-axis. Similar shorthands include ypos, yneg, zpos, and zneg;

	The mud pressure loading and in situ stresses have negative values due to the negative sign convention for compressive stress in GEOSX.

The parameters used in the simulation are summarized in the following table.

	Symbol

	Parameter

	Unit

	Value

	[image: K]

	Bulk Modulus

	[MPa]

	500.0

	[image: G]

	Shear Modulus

	[MPa]

	300.0

	[image: \sigma_{yy}]

	Min Horizontal Stress

	[MPa]

	-9.0

	[image: \sigma_{xx}]

	Max Horizontal Stress

	[MPa]

	-11.25

	[image: \sigma_{zz}]

	Vertical Stress

	[MPa]

	-15.0

	[image: a_0]

	Initial Well Radius

	[m]

	0.1

	[image: P_w]

	Traction at Well

	[MPa]

	-2.0

Inspecting results

In the above examples, we request VTK output files that can be imported into Paraview to visualize the outcome. The following figure shows the distribution of [image: \sigma_{xx}] in the near wellbore region.

[image: ../../../../../_images/sxx.png]

Fig. 5 Simulation result of [image: \sigma_{xx}]

We use time history function to collect time history information and run a Python script to query and plot the results. The figure below shows the comparisons between the numerical predictions (marks) and the corresponding analytical solutions (solid curves) with respect to the distributions of stress components and displacement at [image: \theta] = 45 degrees. Predictions computed by GEOSX match the analytical results.

(Source code)

[image: ../../../../../_images/Example-1_01_008.png]

To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

Elasto-Plastic Near-Well Deformation

Context

The main goal of this example is to learn how to use the internal wellbore mesh generator and an elasto-plastic model to handle wellbore problems in GEOSX. The Extended Drucker-Prager model (see Model: Extended Drucker-Prager) is applied to solve for elastoplastic deformation within the vicinity of a vertical wellbore. For the presented example, an analytical solution is employed to verify the accuracy of the numerical results. The resulting model can be used as a base for more complex analysis (e.g., wellbore drilling, fluid injection and storage scenarios).

Objectives

At the end of this example you will know:

	how to construct meshes for wellbore problems with the internal mesh generator,

	how to specify initial and boundary conditions, such as in-situ stresses and variation of traction at the wellbore wall,

	how to use a plastic model for mechanical problems in the near wellbore region.

Input file

This example uses no external input files and everything required is
contained within two xml files that are located at:

inputFiles/solidMechanics/ExtendedDruckerPragerWellbore_base.xml

inputFiles/solidMechanics/ExtendedDruckerPragerWellbore_benchmark.xml

Description of the case

We simulate a drained wellbore problem subjected to isotropic horizontal stress ([image: \sigma_h]) and vertical stress ([image: \sigma_v]). By lowering the wellbore supporting pressure ([image: P_w]), the wellbore contracts, and the reservoir rock experiences elastoplastic deformation. A plastic zone develops in the near wellbore region, as shown below.

[image: ../../../../../_images/Wellbore.png]

Fig. 6 Sketch of the wellbore problem (Chen and Abousleiman, 2017) [https://www.sciencedirect.com/science/article/pii/S1365160917301090]

To simulate this phenomenon, the strain hardening Extended Drucker-Prager model with an associated plastic flow rule in GEOSX is used in this example. Displacement and stress fields around the wellbore are numerically calculated. These numerical predictions are then compared with the corresponding analytical solutions (Chen and Abousleiman, 2017) [https://www.sciencedirect.com/science/article/pii/S1365160917301090] from the literature.

All inputs for this case are contained inside a single XML file.
In this example, we focus our attention on the Mesh tags,
the Constitutive tags, and the FieldSpecifications tags.

Mesh

Following figure shows the generated mesh that is used for solving this 3D wellbore problem

[image: ../../../../../_images/WellMesh.png]

Fig. 7 Generated mesh for the wellbore problem

Let us take a closer look at the geometry of this wellbore problem.
We use the internal mesh generator InternalWellbore to create a rock domain
([image: 10\, m \, \times 5 \, m \, \times 2 \, m]), with a wellbore of
initial radius equal to [image: 0.1] m.
Coordinates of trajectory defines the wellbore trajectory, which represents a vertical well in this example.
By turning on autoSpaceRadialElems="{ 1 }", the internal mesh generator automatically sets number and spacing of elements in the radial direction, which overrides the values of nr.
With useCartesianOuterBoundary="0", a Cartesian aligned outer boundary on the outer block is enforced.
In this way, a structured three-dimensional mesh is created with 100 x 80 x 2 elements in the radial, tangential and z directions, respectively. All the elements are eight-node hexahedral elements (C3D8) and refinement is performed
to conform with the wellbore geometry. This mesh is defined as a cell block with the name
cb1.

 <Mesh>
 <InternalWellbore
 name="mesh1"
 elementTypes="{ C3D8 }"
 radius="{ 0.1, 5.0 }"
 theta="{ 0, 180 }"
 zCoords="{ -1, 1 }"
 nr="{ 40 }"
 nt="{ 80 }"
 nz="{ 2 }"
 trajectory="{ { 0.0, 0.0, -1.0 },
 { 0.0, 0.0, 1.0 } }"
 autoSpaceRadialElems="{ 1 }"
 useCartesianOuterBoundary="0"
 cellBlockNames="{ cb1 }"/>
 </Mesh>

Solid mechanics solver

For the drained wellbore problem, the pore pressure variation is omitted and can be subtracted from the analysis. Therefore, we just need to define a solid mechanics solver, which is called mechanicsSolver.
This solid mechanics solver (see Solid Mechanics Solver) is based on the Lagrangian finite element formulation.
The problem is run as QuasiStatic without considering inertial effects.
The computational domain is discretized by FE1, which is defined in the NumericalMethods section.
The material is named as rock, whose mechanical properties are specified in the Constitutive section.

 <Solvers
 gravityVector="{ 0.0, 0.0, 0.0 }">
 <SolidMechanics_LagrangianFEM
 name="mechanicsSolver"
 timeIntegrationOption="QuasiStatic"
 logLevel="1"
 discretization="FE1"
 targetRegions="{ Omega }"
 solidMaterialNames="{ rock }">
 <NonlinearSolverParameters
 newtonTol="1.0e-5"
 newtonMaxIter="15"/>
 </SolidMechanics_LagrangianFEM>
 </Solvers>

Constitutive laws

For this drained wellbore problem, we simulate the elastoplastic deformation caused by wellbore contraction.
A homogeneous domain with one solid material is assumed, whose mechanical properties are specified in the Constitutive section:

 <Constitutive>
 <ExtendedDruckerPrager
 name="rock"
 defaultDensity="2700"
 defaultBulkModulus="5.0e8"
 defaultShearModulus="3.0e8"
 defaultCohesion="0.0"
 defaultInitialFrictionAngle="15.27"
 defaultResidualFrictionAngle="23.05"
 defaultDilationRatio="1.0"
 defaultHardening="0.01"/>
 </Constitutive>

Recall that in the SolidMechanics_LagrangianFEM section,
rock is designated as the material in the computational domain.
Here, Extended Drucker Prager model ExtendedDruckerPrager is used to simulate the elastoplastic behavior of rock.
As for the material parameters, defaultInitialFrictionAngle, defaultResidualFrictionAngle and defaultCohesion denote the initial friction angle, the residual friction angle, and cohesion, respectively, as defined by the Mohr-Coulomb failure envelope.
As the residual friction angle defaultResidualFrictionAngle is larger than the initial one defaultInitialFrictionAngle, a strain hardening model is adopted, whose hardening rate is given as defaultHardening="0.01".
If the residual friction angle is set to be less than the initial one, strain weakening will take place.
Setting defaultDilationRatio="1.0" corresponds to an associated flow rule.
The constitutive parameters such as the density, the bulk modulus, and the shear modulus are specified in the International System of Units.

Initial and boundary conditions

The next step is to specify fields, including:

	The initial value (the in-situ stresses and traction at the wellbore wall have to be initialized)

	The boundary conditions (the reduction of wellbore pressure and constraints of the outer boundaries have to be set)

In this example, we need to specify isotropic horizontal stress ([image: \sigma_h] = -11.25 MPa) and vertical stress ([image: \sigma_v] = -15.0 MPa).
To reach equilibrium, a compressive traction [image: P_w] = -11.25 MPa is instantaneously applied at the wellbore wall rneg at time [image: t] = 0 s, which will then be gradually reduced to a lower value (-2.0 MPa) to let wellbore contract.
The remaining parts of the outer boundaries are subjected to roller constraints.
These boundary conditions are set up through the FieldSpecifications section.

 <FieldSpecifications>
 <FieldSpecification
 name="stressXX"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/Omega/cb1"
 fieldName="rock_stress"
 component="0"
 scale="-11250000.0"/>

 <FieldSpecification
 name="stressYY"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/Omega/cb1"
 fieldName="rock_stress"
 component="1"
 scale="-11250000.0"/>

 <FieldSpecification
 name="stressZZ"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/Omega/cb1"
 fieldName="rock_stress"
 component="2"
 scale="-15000000.0"/>

 <Traction
 name="ExternalLoad"
 setNames="{ rneg }"
 objectPath="faceManager"
 scale="-11.25e6"
 tractionType="normal"
 functionName="timeFunction"/>

 <FieldSpecification
 name="xconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="0"
 scale="0.0"
 setNames="{ xneg, xpos }"/>

 <FieldSpecification
 name="yconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="1"
 scale="0.0"
 setNames="{ tneg, tpos, ypos }"/>

 <FieldSpecification
 name="zconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="2"
 scale="0.0"
 setNames="{ zneg, zpos }"/>
 </FieldSpecifications>

With tractionType="normal", traction is applied to the wellbore wall rneg as a pressure specified from the product of scale scale="-11.25e6" and the outward face normal.
A table function timeFunction is used to define the time-dependent traction ExternalLoad.
The coordinates and values form a time-magnitude
pair for the loading time history. In this case, the loading magnitude decreases linearly as the time evolves.

 <Functions>
 <TableFunction
 name="timeFunction"
 inputVarNames="{ time }"
 coordinates="{ 0.0, 1.0 }"
 values="{ 1.0, 0.1778 }"/>
 </Functions>

You may note :

	All initial value fields must have initialCondition field set to 1;

	The setName field points to the previously defined box to apply the fields;

	nodeManager and faceManager in the objectPath indicate that the boundary conditions are applied to the element nodes and faces, respectively;

	fieldName is the name of the field registered in GEOSX;

	Component 0, 1, and 2 refer to the x, y, and z direction, respectively;

	And the non-zero values given by Scale indicate the magnitude of the loading;

	Some shorthand, such as xneg and xpos, are used as the locations where the boundary conditions are applied in the computational domain. For instance, xneg means the portion of the computational domain located at the left-most in the x-axis, while xpos refers to the portion located at the right-most area in the x-axis. Similar shorthand include ypos, yneg, zpos, and zneg;

	The mud pressure loading has a negative value due to the negative sign convention for compressive stress in GEOSX.

The parameters used in the simulation are summarized in the following table.

	Symbol

	Parameter

	Unit

	Value

	[image: K]

	Bulk modulus

	[MPa]

	500

	[image: G]

	Shear Modulus

	[MPa]

	300

	[image: C]

	Cohesion

	[MPa]

	0.0

	[image: \phi_i]

	Initial Friction Angle

	[degree]

	15.27

	[image: \phi_r]

	Residual Friction Angle

	[degree]

	23.05

	[image: c_h]

	Hardening Rate

	[-]

	0.01

	[image: \sigma_h]

	Horizontal Stress

	[MPa]

	-11.25

	[image: \sigma_v]

	Vertical Stress

	[MPa]

	-15.0

	[image: a_0]

	Initial Well Radius

	[m]

	0.1

	[image: P_w]

	Mud Pressure

	[MPa]

	-2.0

Inspecting results

In the above example, we requested silo-format output files. We can therefore import these into VisIt and use python scripts to visualize the outcome. Below figure shows the comparisons between the numerical predictions (marks) and the corresponding analytical solutions (solid curves) with respect to the distributions of normal stress components, stress path, the supporting wellbore pressure and wellbore size. It is clear that the GEOSX predictions are in excellent agreement with the analytical results.

[image: ../../../../../_images/Verification.png]

Fig. 8 Comparing GEOSX results with analytical solutions

For the same wellbore problem, using different constitutive models (plastic vs. elastic), obviously, distinct differences in rock deformation and distribution of resultant stresses is also observed and highlighted.

To go further

Feedback on this example

This concludes the example on Plasticity Model for Wellbore Problems.
For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

For more details

	More on plasticity models, please see Model: Extended Drucker-Prager.

	More on functions, please see Functions.

Modified Cam-Clay Model for Wellbore Problems

Context

In this benchmark example, the Modified Cam-Clay model (see Model: Modified Cam-Clay) is applied to solve for elastoplastic deformation within the vicinity of a vertical wellbore. For the presented example, an analytical solution is employed to verify the accuracy of the numerical results. The resulting model can be used as a base for more complex analysis (e.g., wellbore drilling, fluid injection and storage scenarios).

Input file

Everything required is contained within two GEOSX input files located at:

inputFiles/solidMechanics/ModifiedCamClayWellbore_base.xml

inputFiles/solidMechanics/ModifiedCamClayWellbore_benchmark.xml

Description of the case

We simulate a drained wellbore problem subjected to isotropic horizontal stress ([image: \sigma_h]) and vertical stress ([image: \sigma_v]), as shown below. By increasing the wellbore supporting pressure ([image: P_w]), the wellbore expands, and the formation rock experiences elastoplastic deformation. A plastic zone develops in the near wellbore region.

[image: ../../../../../_images/MCC_wellSketch.png]

Fig. 9 Sketch of the wellbore problem

To simulate this phenomenon, the Modified Cam-Clay model is used in this example. Displacement and stress fields around the wellbore are numerically calculated. These numerical predictions are then compared with the corresponding analytical solutions (Chen and Abousleiman, 2013) [https://www.icevirtuallibrary.com/doi/10.1680/geot.11.P.088] from the literature.

In this example, we focus our attention on the Mesh tags,
the Constitutive tags, and the FieldSpecifications tags.

Mesh

Following figure shows the generated mesh that is used for solving this wellbore problem.

[image: ../../../../../_images/MCC_wellMesh.png]

Fig. 10 Generated mesh for a vertical wellbore problem

Let us take a closer look at the geometry of this wellbore problem.
We use the internal wellbore mesh generator InternalWellbore to create a rock domain
([image: 10\, m \, \times 5 \, m \, \times 2 \, m]), with a wellbore of
initial radius equal to [image: 0.1] m.
Coordinates of trajectory defines the wellbore trajectory, which represents a vertical well in this example.
By turning on autoSpaceRadialElems="{ 1 }", the internal mesh generator automatically sets number and spacing of elements in the radial direction, which overrides the values of nr.
With useCartesianOuterBoundary="0", a Cartesian aligned outer boundary on the outer block is enforced.
In this way, a structured three-dimensional mesh is created with 50 x 40 x 2 elements in the radial, tangential and z directions, respectively. All the elements are eight-node hexahedral elements (C3D8) and refinement is performed
to conform with the wellbore geometry. This mesh is defined as a cell block with the name
cb1.

 <Mesh>
 <InternalWellbore
 name="mesh1"
 elementTypes="{ C3D8 }"
 radius="{ 0.1, 5.0 }"
 theta="{ 0, 180 }"
 zCoords="{ -1, 1 }"
 nr="{ 40 }"
 nt="{ 40 }"
 nz="{ 2 }"
 trajectory="{ { 0.0, 0.0, -1.0 },
 { 0.0, 0.0, 1.0 } }"
 autoSpaceRadialElems="{ 1 }"
 useCartesianOuterBoundary="0"
 cellBlockNames="{ cb1 }"/>
 </Mesh>

Solid mechanics solver

For the drained wellbore problem, the pore pressure variation is omitted. Therefore, we just need to define a solid mechanics solver, which is called mechanicsSolver.
This solid mechanics solver (see Solid Mechanics Solver) is based on the Lagrangian finite element formulation.
The problem is run as QuasiStatic without considering inertial effects.
The computational domain is discretized by FE1, which is defined in the NumericalMethods section.
The material is named as rock, whose mechanical properties are specified in the Constitutive section.

 <Solvers
 gravityVector="{ 0.0, 0.0, 0.0 }">
 <SolidMechanics_LagrangianFEM
 name="mechanicsSolver"
 timeIntegrationOption="QuasiStatic"
 logLevel="1"
 discretization="FE1"
 targetRegions="{ Omega }"
 solidMaterialNames="{ rock }">
 <NonlinearSolverParameters
 newtonTol="1.0e-5"
 newtonMaxIter="15"/>
 </SolidMechanics_LagrangianFEM>
 </Solvers>

Constitutive laws

For this drained wellbore problem, we simulate the elastoplastic deformation caused by wellbore expansion.
A homogeneous domain with one solid material is assumed, whose mechanical properties are specified in the Constitutive section:

 <Constitutive>
 <ModifiedCamClay
 name="rock"
 defaultDensity="2700"
 defaultRefPressure="-1.2e5"
 defaultRefStrainVol="-0.0"
 defaultShearModulus="4.302e6"
 defaultPreConsolidationPressure="-1.69e5"
 defaultCslSlope="1.2"
 defaultVirginCompressionIndex="0.072676"
 defaultRecompressionIndex="0.014535"
 />
 </Constitutive>

Recall that in the SolidMechanics_LagrangianFEM section,
rock is designated as the material in the computational domain.
Here, Modified Cam-Clay ModifiedCamClay is used to simulate the elastoplastic behavior of rock.

The following material parameters should be defined properly to reproduce the analytical example:

	Name

	Type

	Default

	Description

	defaultCslSlope

	real64

	1

	Slope of the critical state line

	defaultDensity

	real64

	required

	Default Material Density

	defaultPreConsolidationPressure

	real64

	-1.5

	Initial preconsolidation pressure

	defaultRecompressionIndex

	real64

	0.002

	Recompresion Index

	defaultRefPressure

	real64

	-1

	Reference Pressure

	defaultRefStrainVol

	real64

	0

	Reference Volumetric Strain

	defaultShearModulus

	real64

	-1

	Elastic Shear Modulus Parameter

	defaultVirginCompressionIndex

	real64

	0.005

	Virgin compression index

	name

	string

	required

	A name is required for any non-unique nodes

The constitutive parameters such as the density, the bulk modulus, and the shear modulus are specified in the International System of Units.

Initial and boundary conditions

The next step is to specify fields, including:

	The initial value (the in-situ stresses and traction at the wellbore wall have to be initialized)

	The boundary conditions (the reduction of wellbore pressure and constraints of the outer boundaries have to be set)

In this tutorial, we need to specify isotropic horizontal stress ([image: \sigma_h] = -100 kPa) and vertical stress ([image: \sigma_v] = -160 kPa).
To reach equilibrium, a compressive traction [image: P_w] = -100 kPa is instantaneously applied at the wellbore wall rneg at time [image: t] = 0 s, which will then be gradually increased to a higher value (-300 kPa) to let wellbore expand.
The remaining parts of the outer boundaries are subjected to roller constraints.
These boundary conditions are set up through the FieldSpecifications section.

 <FieldSpecifications>
 <FieldSpecification
 name="stressXX"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions"
 fieldName="rock_stress"
 component="0"
 scale="-1.0e5"/>

 <FieldSpecification
 name="stressYY"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions"
 fieldName="rock_stress"
 component="1"
 scale="-1.0e5"/>

 <FieldSpecification
 name="stressZZ"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions"
 fieldName="rock_stress"
 component="2"
 scale="-1.6e5"/>

 <Traction
 name="ExternalLoad"
 setNames="{ rneg }"
 objectPath="faceManager"
 scale="-1.0e5"
 tractionType="normal"
 functionName="timeFunction"/>

 <FieldSpecification
 name="xconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="0"
 scale="0.0"
 setNames="{ xneg, xpos }"/>

 <FieldSpecification
 name="yconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="1"
 scale="0.0"
 setNames="{ tneg, tpos, ypos }"/>

 <FieldSpecification
 name="zconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="2"
 scale="0.0"
 setNames="{ zneg, zpos }"/>
 </FieldSpecifications>

With tractionType="normal", traction is applied to the wellbore wall rneg as a pressure specified from the product of scale scale="-1.0e5" and the outward face normal.
A table function timeFunction is used to define the time-dependent traction ExternalLoad.
The coordinates and values form a time-magnitude
pair for the loading time history. In this case, the loading magnitude increases linearly as the time evolves.

 <Functions>
 <TableFunction
 name="timeFunction"
 inputVarNames="{ time }"
 coordinates="{ 0.0, 1.0 }"
 values="{ 1.0, 3.0 }"/>
 </Functions>

You may note :

	All initial value fields must have initialCondition field set to 1;

	The setName field points to the previously defined set to apply the fields;

	nodeManager and faceManager in the objectPath indicate that the boundary conditions are applied to the element nodes and faces, respectively;

	fieldName is the name of the field registered in GEOSX;

	Component 0, 1, and 2 refer to the x, y, and z direction, respectively;

	And the non-zero values given by scale indicate the magnitude of the loading;

	Some shorthand, such as xneg and xpos, are used as the locations where the boundary conditions are applied in the computational domain. For instance, xneg means the face of the computational domain located at the left-most extent in the x-axis, while xpos refers to the face located at the right-most extent in the x-axis. Similar shorthands include ypos, yneg, zpos, and zneg;

	The mud pressure loading has a negative value due to the negative sign convention for compressive stress in GEOSX.

The parameters used in the simulation are summarized in the following table.

	Symbol

	Parameter

	Units

	Value

	[image: P_r]

	Reference Pressure

	[kPa]

	120

	[image: G]

	Shear Modulus

	[kPa]

	4302

	[image: P_c]

	PreConsolidation Pressure

	[kPa]

	169

	[image: M]

	Slope of CSL

	[-]

	1.2

	[image: c_c]

	Virgin Compression Index

	[-]

	0.072676

	[image: c_r]

	Recompression Index

	[-]

	0.014535

	[image: \sigma_h]

	Horizontal Stress

	[kPa]

	-100

	[image: \sigma_v]

	Vertical Stress

	[kPa]

	-160

	[image: a_0]

	Initial Well Radius

	[m]

	0.1

	[image: P_w]

	Mud Pressure

	[kPa]

	-300

Inspecting results

In the above example, we requested silo-format output files. We can therefore import these into VisIt and use python scripts to visualize the outcome. The following figure shows the distribution of [image: \sigma_{\theta\theta}] in the near wellbore region.

[image: ../../../../../_images/MCC_Stress.png]

Fig. 11 Simulation result of [image: \sigma_{\theta\theta}]

The figure below shows the comparisons between the numerical predictions (marks) and the corresponding analytical solutions (solid curves) with respect to the distributions of normal stress components, stress path, the supporting wellbore pressure and wellbore size. It is evident that the predictions well match the analytical results.

(Source code)

[image: ../../../../../_images/Example-1_01_0010.png]

To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

Cased Elastic Wellbore Problem

Problem description

This example uses the solid mechanics solver to handle a cased wellbore problem subjected to a pressure test. The completed wellbore is composed of a steel casing, a cement sheath and rock formation. Isotropic linear elastic behavior is assumed for all the three materials. No separation is allowed for the casing-cement and cement-rock contact interfaces.

Analytical results of the radial and hoop stresses, [image: \sigma_{rr}] and [image: \sigma_{\theta\theta}], in casing, cement sheath and rock are expressed as (Hervé and Zaoui, 1995) [https://link.springer.com/chapter/10.1007%2F978-94-015-8494-4_55] :

[image: \sigma_{rr} = (2\lambda + 2G)A - \frac{2GB}{r^2}]

[image: \sigma_{\theta\theta} = (2\lambda + 2G)A + \frac{2GB}{r^2}]

where [image: \lambda] and [image: G] are the Lamé moduli, [image: r] is the radial coordinate, [image: A] and [image: B] are piecewise constants that are obtained by solving the boundary and interface conditions, as detailed in the post-processing script.

Input file

This benchmark example uses no external input files and everything required is
contained within two GEOSX xml files that are located at:

inputFiles/wellbore/CasedElasticWellbore_base.xml

and

inputFiles/wellbore/CasedElasticWellbore_benchmark.xml

The corresponding integrated test is

inputFiles/wellbore/CasedElasticWellbore_smoke.xml

In this example, we would focus our attention on the Solvers, Mesh and Constitutive tags.

Solid mechanics solver

As fluid flow is not considered, only the solid mechanics SolidMechanicsLagrangianSSLE solver is required for solving this linear elastic problem. In this solver, the three regions and three materials associated to casing, cement sheath and rock are respectively defined by targetRegions and solidMaterialNames.

 <SolidMechanicsLagrangianSSLE
 name="lagsolve"
 timeIntegrationOption="QuasiStatic"
 discretization="FE1"
 logLevel="0"
 targetRegions="{ casing, cement, rock }"
 solidMaterialNames="{ casing, cement, rock }">

Cased wellbore mesh

The internal wellbore mesh generator InternalWellbore is employed to create the mesh of this wellbore problem. The radii of the casing cylinder, the cement sheath cylinder and the far-field boundary of the surrounding rock formation are defined by a vector radius. In the tangent direction, theta angle is specified from 0 to 360 degree for a full geometry of the domain. Note that a half or a quarter of the domain can be defined by a theta angle from 0 to 180 or 90 degree, respectively. The trajectory of the well is defined by trajectory, which is vertical in this case. The autoSpaceRadialElems parameters allow optimally increasing the element size from local zone around the wellbore to the far-field zone. In this example, the auto spacing option is only applied for the rock formation. The useCartesianOuterBoundary transforms the far-field boundary to a squared shape to enforce a Cartesian aligned outer boundary, which eases the loading of the boundary conditions. The cellBlockNames and elementTypes define the regions and related element types associated to casing, cement sheath and rock.

 <Mesh>
 <InternalWellbore
 name="mesh1"
 elementTypes="{ C3D8, C3D8, C3D8 }"
 radius="{ 0.1, 0.106, 0.133, 2.0 }"
 theta="{ 0, 360 }"
 zCoords="{ 0, 1 }"
 nr="{ 10, 20, 10 }"
 nt="{ 320 }"
 nz="{ 1 }"
 trajectory="{ { 0.0, 0.0, 0.0 },
 { 0.0, 0.0, 1.0 } }"
 autoSpaceRadialElems="{ 0, 0, 1 }"
 useCartesianOuterBoundary="2"
 cellBlockNames="{ casing, cement, rock }"
 />
 </Mesh>

[image: ../../../../../_images/mesh.png]

Steel, cement, and rock constitutive laws

Isotropic linear elastic constitutive behavior is considered for all the three materials. Note that the default density is useless for this case.

 <ElasticIsotropic
 name="casing"
 defaultDensity="2700"
 defaultBulkModulus="175e9"
 defaultShearModulus="80.8e9"/>

 <ElasticIsotropic
 name="cement"
 defaultDensity="2700"
 defaultBulkModulus="10.3e9"
 defaultShearModulus="6.45e9"/>

 <ElasticIsotropic
 name="rock"
 defaultDensity="2700"
 defaultBulkModulus="5.5556e9"
 defaultShearModulus="4.16667e9"/>

Boundary conditions

Far-field boundary are subjected to roller constraints. The normal traction on the inner face of the casing is defined by Traction field specification. The nodeset generated by the internal wellbore generator for this face is named as rneg. The traction type is normal to mimic a casing test pressure that is applied normal to the casing inner face . The negative sign of the scale is attributed to the negative sign convention for compressive stress in GEOSX.

 <FieldSpecifications>

 <FieldSpecification
 name="xConstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="0"
 scale="0.0"
 setNames="{ xneg, xpos }"/>

 <FieldSpecification
 name="yConstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="1"
 scale="0.0"
 setNames="{ yneg, ypos }"/>

 <FieldSpecification
 name="zconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="2"
 scale="0.0"
 setNames="{ zneg, zpos }"/>

 <Traction
 name="innerPressure"
 objectPath="faceManager"
 tractionType="normal"
 scale="-10.0e6"
 setNames="{ rneg }"/>
 </FieldSpecifications>

Results and benchmark

A good agreement between the GEOSX results and analytical results is shown in the figure below:

(Source code)

[image: ../../../../../_images/Example-1_01_00.png]

To go further

Feedback on this example

This concludes the cased wellbore example.
For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

Deviated Elastic Wellbore Problem

Problem description

This example uses the solid mechanics solver to handle a deviated wellbore problem with open hole completion. This wellbore is subjected to a mud pressure at wellbore wall and undrained condition is assumed (no fluid flow in the rock formation). A segment of the wellbore with isotropic linear elastic deformation is simulated in this case. Far field stresses and gravity effect are excluded. The main goal of this example is to validate the internal wellbore mesh generator and mechanics solver for the case of an inclined wellbore.

Analytical results of the radial and hoop stresses, [image: \sigma_{rr}] and [image: \sigma_{\theta\theta}], around the wellbore are expressed as (Detournay and Cheng, 1988) [https://www.sciencedirect.com/science/article/abs/pii/0148906288922991] :

[image: \sigma_{rr} = p_0 \frac{a^2}{r^2}]

[image: \sigma_{\theta\theta} = -p_0 \frac{a^2}{r^2}]

where [image: p_0] is the applied mud pressure at wellbore wall, [image: a] is the wellbore radius and [image: r] is the radial coordinate.

Input file

This benchmark example uses no external input files and everything required is
contained within two GEOSX xml files that are located at:

inputFiles/wellbore/DeviatedElasticWellbore_base.xml

and

inputFiles/wellbore/DeviatedElasticWellbore_benchmark.xml

The corresponding xml file for the integrated test is

inputFiles/wellbore/DeviatedElasticWellbore_smoke.xml

In this example, we would focus our attention on the Mesh tag.

Solid mechanics solver

As fluid flow is not considered, only the solid mechanics solver SolidMechanicsLagrangianSSLE is required for solving this wellbore problem.

 <SolidMechanicsLagrangianSSLE
 name="lagsolve"
 timeIntegrationOption="QuasiStatic"
 discretization="FE1"
 logLevel="0"
 targetRegions="{ Omega }"
 solidMaterialNames="{ shale }">

Deviated wellbore mesh

The internal wellbore mesh generator InternalWellbore is employed to create the mesh of this wellbore problem. The radius of the wellbore and the size of the surrounding rock formation are defined by a vector radius. In the tangent direction, theta angle is specified from 0 to 180 degree for a half of the domain regarding its symmetry. Note that the whole domain could be specified with a theta angle from 0 to 360 degree, if modeling complicated scenarios. The trajectory of the well is defined by trajectory. In this example, the wellbore is inclined in the x-z plane by an angle of 45 degree. The autoSpaceRadialElems parameter allows optimally increasing the element size from local zone around the wellbore to the far-field zone, which is set to 1 to activate this option. The useCartesianOuterBoundary transforms the far-field boundary to a squared shape to enforce a Cartesian aligned outer boundary, which eases the loading of the far-field boundary conditions. In this example, this value is set to 0 for the single region along the radial direction.

 <Mesh>
 <InternalWellbore
 name="mesh1"
 elementTypes="{ C3D8 }"
 radius="{ 0.1, 2 }"
 theta="{ 0, 180 }"
 zCoords="{ -0.5, 0.5 }"
 nr="{ 30 }"
 nt="{ 80 }"
 nz="{ 100 }"
 trajectory="{ { -0.5, 0.0, -0.5 },
 { 0.5, 0.0, 0.5 } }"
 autoSpaceRadialElems="{ 1 }"
 useCartesianOuterBoundary="0"
 cellBlockNames="{ cb1 }"/>
 </Mesh>

[image: ../../../../../_images/mesh1.png]

Constitutive law

Isotropic linear elastic constitutive behavior is considered for the rock around the wellbore. Note that the default density is useless in this specific example, as gravity effect is neglected.

 <ElasticIsotropic
 name="shale"
 defaultDensity="2700"
 defaultBulkModulus="5.5556e9"
 defaultShearModulus="4.16667e9"/>

Boundary conditions

Far-field boundaries are subjected to roller constraints and in-situ stresses are not considered. The mud pressure on the wellbore wall is defined by Traction field specification. The nodeset generated by the internal wellbore generator for this face is named as rneg. The traction type is normal to mimic a pressure that is applied normal to the wellbore wall. The negative sign of the scale is attributed to the negative sign convention for compressive stresses in GEOSX.

 <FieldSpecifications>

 <FieldSpecification
 name="xConstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="0"
 scale="0.0"
 setNames="{ xneg }"/>

 <FieldSpecification
 name="yConstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="1"
 scale="0.0"
 setNames="{ tneg, tpos }"/>

 <FieldSpecification
 name="zconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="2"
 scale="0.0"
 setNames="{ zneg }"/>

 <Traction
 name="innerPressure"
 objectPath="faceManager"
 tractionType="normal"
 scale="-10.e6"
 setNames="{ rneg }"/>
 </FieldSpecifications>

Results and benchmark

A good agreement between the GEOSX results and the corresponding analytical solutions is shown in the figure below:

(Source code)

[image: ../../../../../_images/Example-1_01_002.png]

To go further

Feedback on this example

This concludes the deviated elastic wellbore example.
For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

Deviated Poro-Elastic Wellbore Subjected to Fluid Injection

Problem description

This example aims to solve a typical injection problem of a deviated wellbore subjected to a fluid pressure loaded at wellbore wall. The problem geometry is generated with the internal wellbore mesh generator. Open hole completion and poroelastic deformation are assumed. The coupled poroelastic solver, which combines the solid mechanics solver and the single phase flow solver, is hereby employed to solve this specific problem. In-situ stresses and gravity effect are excluded from this example. Please refer to the case Deviated Poro-Elastic Wellbore Subjected to In-situ Stresses and Pore Pressure for in-situ stresses and pore pressure effects.

Analytical solutions of the pore pressure, the radial and hoop stresses in the near wellbore region are expressed in the Laplace space as (Detournay and Cheng, 1988) [https://www.sciencedirect.com/science/article/abs/pii/0148906288922991] :

[image: p = p_0 \frac{k_0(R \sqrt{s})}{s k_0(\sqrt{s})}]

[image: \sigma_{rr} = -b \frac{1-2\nu}{1-\nu} p_0 \frac{-R k_1(R \sqrt{s}) + k_1(\sqrt{s})}{R^2 \sqrt{s^3} k_0(\sqrt{s})}]

[image: \sigma_{\theta\theta} = -b \frac{1-2\nu}{1-\nu} p - \sigma_{rr}]

where [image: s] is the Laplace variable normalized by the fluid diffusion coefficient, [image: k_0] and [image: k_1] are respectively the modified Bessel functions of second kind of order 0 and 1, [image: R] is the dimensionless radial coordinate that is defined by the radial coordinate normalized by the wellbore radius, [image: \nu] is the Poisson ratio and [image: b] is the Biot coefficient. Fluid pressure and stresses in time space are obtained from these analytical expressions by the inverse Laplace transform (see the attached Python script for more details).

Input file

Everything required is
contained within two GEOSX xml files that are located at:

inputFiles/wellbore/DeviatedPoroElasticWellbore_Injection_base.xml

inputFiles/wellbore/DeviatedPoroElasticWellbore_Injection_benchmark.xml

In this example, we would focus our attention on the Solvers and the Mesh tags.

Poroelastic solver

The coupled Poroelastic solver, that defines a coupling strategy between the solid mechanics solver SolidMechanicsLagrangianSSLE and the single phase flow solver SinglePhaseFVM, is required for solving this wellbore problem.

 <SinglePhasePoromechanics
 name="poroSolve"
 solidSolverName="lagsolve"
 fluidSolverName="SinglePhaseFlow"
 porousMaterialNames="{ porousRock }"
 logLevel="1"
 discretization="FE1"
 targetRegions="{ Omega }">

 <SolidMechanicsLagrangianSSLE
 name="lagsolve"
 timeIntegrationOption="QuasiStatic"
 discretization="FE1"
 logLevel="0"
 targetRegions="{ Omega }"
 solidMaterialNames="{ rock }">

 <SinglePhaseFVM
 name="SinglePhaseFlow"
 logLevel="1"
 discretization="singlePhaseTPFA"
 targetRegions="{ Omega }"
 fluidNames="{ water }"
 solidNames="{ porousRock }"
 permeabilityNames="{ rockPerm }">

Deviated wellbore mesh

The internal wellbore mesh generator InternalWellbore is employed to create the mesh of this wellbore problem. The radius of the wellbore and the size of the surrounding rock formation are defined by a vector radius. In the tangent direction, theta angle is specified from 0 to 180 degree for a half of the domain regarding its symmetry. Note that the whole domain could be specified with a theta angle from 0 to 360 degree, if modeling complicated scenarios. The trajectory of the well is defined by trajectory. In this example, the wellbore is inclined in the x-z plane by an angle of 45 degree. The autoSpaceRadialElems parameter allows optimally increasing the element size from local zone around the wellbore to the far-field zone, which is set to 1 to activate this option. The useCartesianOuterBoundary transforms the far-field boundary to a squared shape to enforce a Cartesian aligned outer boundary, which eases the loading of the far-field boundary conditions. In this example, this value is set to 0 for the single region along the radial direction.

 <Mesh>
 <InternalWellbore
 name="mesh1"
 elementTypes="{ C3D8 }"
 radius="{ 0.1, 4 }"
 theta="{ 0, 180 }"
 zCoords="{ -1, 1 }"
 nr="{ 30 }"
 nt="{ 80 }"
 nz="{ 10 }"
 trajectory="{ { -1.0, 0.0, -1.0 },
 { 1.0, 0.0, 1.0 } }"
 autoSpaceRadialElems="{ 1 }"
 useCartesianOuterBoundary="0"
 cellBlockNames="{ cb1 }"/>
 </Mesh>

Constitutive law

Isotropic elastic constitutive block ElasticIsotropic, with the specified bulk and shear elastic moduli, is considered for the rock around the wellbore. Fluid properties, such as dynamic viscosity and compressibility, are given in the CompressibleSinglePhaseFluid constitutive block. The grain bulk modulus, that is required for computing the Biot coefficient, as well as the default porosity are located in the BiotPorosity block. The constant permeability is given in the ConstantPermeability block.

 <PorousElasticIsotropic
 name="porousRock"
 solidModelName="rock"
 porosityModelName="rockPorosity"
 permeabilityModelName="rockPerm"/>

 <ElasticIsotropic
 name="rock"
 defaultDensity="0"
 defaultBulkModulus="11039657020.4"
 defaultShearModulus="8662741799.83"/>

 <!-- BiotCoefficient="0.771"
 BiotModulus=15.8e9 -->
 <CompressibleSinglePhaseFluid
 name="water"
 defaultDensity="1000"
 defaultViscosity="0.001"
 referencePressure="0e6"
 compressibility="1.78403329184e-10"
 viscosibility="0.0"/>

 <BiotPorosity
 name="rockPorosity"
 grainBulkModulus="48208109259"
 defaultReferencePorosity="0.3"/>

 <ConstantPermeability
 name="rockPerm"
 permeabilityComponents="{ 1.0e-17, 1.0e-17, 1.0e-17 }"/>

Boundary conditions

Far-field boundaries are impermeable and subjected to roller constraints. The pressure on the wellbore wall is defined by face pressure field specification. The nodeset generated by the internal wellbore generator for this face is named as rneg. The negative sign of the scale denotes the fluid injection. Initial fluid pressure and the corresponding initial porosity are also given for the computational domain. In this example, uniform isotropic permeability is assumed.

 <FieldSpecifications>
 <FieldSpecification
 name="initialPorosity"
 initialCondition="1"
 setNames="{all}"
 objectPath="ElementRegions/Omega/cb1"
 fieldName="rockPorosity_porosity"
 scale="0.3"/>

 <FieldSpecification
 name="initialPressure"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/Omega/cb1"
 fieldName="pressure"
 scale="0e6"/>

 <FieldSpecification
 name="xConstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="0"
 scale="0.0"
 setNames="{ xneg, xpos }"/>

 <FieldSpecification
 name="yConstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="1"
 scale="0.0"
 setNames="{ tneg, tpos, ypos }"/>

 <FieldSpecification
 name="zconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="2"
 scale="0.0"
 setNames="{ zneg, zpos }"/>

 <FieldSpecification
 name="innerPorePressure"
 objectPath="faceManager"
 fieldName="pressure"
 scale="10e6"
 setNames="{ rneg }"/>
 </FieldSpecifications>

Results and benchmark

Result of the fluid pressure distribution after 78 s injection is shown in the figure below:

[image: ../../../../../_images/pressure.png]

A good agreement between the GEOSX results and the corresponding analytical solutions is shown in the figure below:

(Source code)

[image: ../../../../../_images/Example-1_01_004.png]

To go further

Feedback on this example

This concludes the deviated poro-elastic wellbore example.
For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

Deviated Poro-Elastic Wellbore Subjected to In-situ Stresses and Pore Pressure

Problem description

This example deals with the problem of drilling a deviated poro-elastic wellbore. This is an extension of the poroelastic wellbore example Deviated Poro-Elastic Wellbore Subjected to Fluid Injection with the consideration of in-situ stresses and in-situ pore pressure. Both pore pressure and mud pressure are supposed to be nil at the borehole wall following the consideration of (Abousleiman and Cui, 1998) [https://www.sciencedirect.com/science/article/pii/S0020768398001012]. Also, the in-situ horizontal stresses are anisotropic, i.e. [image: \sigma_hmax] > [image: \sigma_hmin]. The wellbore trajectory is deviated from the directions of the in-situ stresses. Analytical solutions of the pore pressure, the radial and hoop stresses in the near wellbore region are given by (Abousleiman and Cui, 1998) [https://www.sciencedirect.com/science/article/pii/S0020768398001012]. They are hereby used to verify the modeling predictions.

Input file

Everything required is
contained within two GEOSX xml files that are located at:

inputFiles/wellbore/DeviatedPoroElasticWellbore_Drilling_base.xml

inputFiles/wellbore/DeviatedPoroElasticWellbore_Drilling_benchmark.xml

This case is nearly identical to another example Deviated Poro-Elastic Wellbore Subjected to Fluid Injection, except for the FieldSpecifications tag. For this specific case, we need to consider following additional field specifications to define the in-situ stresses, in-situ pore pressure, as well as the zero pore pressure at the borehole wall.

 <FieldSpecification
 name="initialPorePressure"
 initialCondition="1"
 setNames="{all}"
 objectPath="ElementRegions/Omega/cb1"
 fieldName="pressure"
 scale="10e6"/>

	<FieldSpecification
	 name="Sx"
	 initialCondition="1"
	 setNames="{all}"
	 objectPath="ElementRegions/Omega/cb1"
	 fieldName="rock_stress"
	 component="0"
	 scale="-21.9e6"/>

	<FieldSpecification
	 name="Sy"
	 initialCondition="1"
	 setNames="{all}"
	 objectPath="ElementRegions/Omega/cb1"
	 fieldName="rock_stress"
	 component="1"
	 scale="-12.9e6"/>

	<FieldSpecification
	 name="Sz"
	 initialCondition="1"
	 setNames="{all}"
	 objectPath="ElementRegions/Omega/cb1"
	 fieldName="rock_stress"
	 component="2"
	 scale="-17.9e6"/>

 <FieldSpecification
 name="innerPorePressure"
 objectPath="faceManager"
 fieldName="pressure"
 scale="0e6"
 setNames="{ rneg }"/>

Results and benchmark

Pore pressure distribution after 78 s injection is shown in the figure below:

[image: ../../../../../_images/pressure_drilling.png]

A good agreement between the GEOSX results and the corresponding analytical solutions (Abousleiman and Cui, 1998) [https://www.sciencedirect.com/science/article/pii/S0020768398001012] is shown in the figure below:

(Source code)

[image: ../../../../../_images/Example2-1_01_00.png]

To go further

Feedback on this example

This concludes the deviated poro-elastic wellbore example with in-situ stresses and pore pressure effects.
For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

Vertical PoroElasto-Plastic Wellbore Problem

Context

The main objective of this example is to demonstrate how to use the internal wellbore mesh generator and poromechanical solvers in GEOSX to tackle wellbore problems in porous media. In this example, a poroplastic model is applied to find the solution of rock deformation within the vicinity of a vertical wellbore, considering elastoplastic deformation, fluid diffusion and poromechanical coupling effect. To do so, a single phase flow solver is fully coupled with a Lagrangian mechanics solver and the Extended Drucker-Prager model (see TwoInvariantPlasticity) is chosen as the material model for the solid domain. We first solve this problem with a poroelastic model and verify the modeling results with the corresponding analytical solutions. Then, the verified case is modified to test a poroplastic version, whose results are compared with the ones obtained from the poroelastic case to highlight the impact of plasticity in this specific problem.

Objectives

At the end of this example you will know:

	how to construct meshes for wellbore problems with the internal wellbore mesh generator,

	how to specify initial and boundary conditions, such as reservoir properties, in-situ stresses, mixed loading (mechanical and fluid) at wellbore wall and far-field constraints,

	how to use multiple solvers in GEOSX for predicting poroplastic deformations in the near wellbore region.

Input file

This example uses no external input files and everything required is
contained within a single GEOSX input file.

The xml input files for the test case with poroelasticity are located at:

inputFiles/poromechanics/PoroElasticWellbore_base.xml
inputFiles/poromechanics/PoroElasticWellbore_benchmark.xml

The xml input files for the test case with poroplasticity are located at:

inputFiles/poromechanics/PoroDruckerPragerWellbore_base.xml
inputFiles/poromechanics/PoroDruckerPragerWellbore_benchmark.xml

Description of the case

We simulate the wellbore problem subjected to anisotropic horizontal stress ([image: \sigma_h] and [image: \sigma_H]) and vertical stress ([image: \sigma_v]), as shown below. This is a vertical wellbore, which is drilled in a porous medium. By changing the wellbore supporting pressure, the mechanical deformation of the reservoir rock will be induced and evolve with time, due to fluid diffusion and coupling effect. Considering inelastic constitutive behavior, the reservoir rock in the near wellbore region will experience elastoplastic deformation and a plastic zone will be developed and expand with time. To setup the base case, a poroelastic version is employed to find the poroelastic solutions of this wellbore problem, which are verified with the analytical solution (Detournay and Cheng, 1993) [https://www.sciencedirect.com/science/article/pii/B9780080406152500113] from the literature. Following that, a poroplastic version is built and used to obtain the temporal and spatial solutions of pore pressure, displacement and stress fields around the wellbore, considering induced plastic deformation.

[image: ../../../../../_images/PoroDP_wellSketch.png]

Fig. 12 Sketch of the wellbore problem

All inputs for this case are contained inside a single XML file.
In this example, we focus our attention on the Mesh tags, the Solver tags, the Constitutive tags, and the FieldSpecifications tags.

Mesh

The following figure shows the generated mesh that is used for solving this wellbore problem

[image: ../../../../../_images/PoroDP_WellMesh.png]

Fig. 13 Generated mesh for the wellbore problem

Let us take a closer look at the geometry of this wellbore problem.
We use the internal mesh generator InternalWellbore to create a rock domain
([image: 10\, m \, \times 5 \, m \, \times 2 \, m]), with a wellbore of
initial radius equal to [image: 0.1] m.
Coordinates of trajectory defines the wellbore trajectory, which represents a perfect vertical well in this example.
By turning on autoSpaceRadialElems="{ 1 }", the internal mesh generator automatically sets number and spacing of elements in the radial direction, which overrides the values of nr.
With useCartesianOuterBoundary="0", a Cartesian aligned outer boundary on the outer block is enforced.
In this way, a structured three-dimensional mesh is created with 100 x 80 x 2 elements in the radial, tangential and z directions, respectively. All the elements are eight-node hexahedral elements (C3D8) and refinement is performed
to conform with the wellbore geometry. This mesh is defined as a cell block with the name
cb1.

<Mesh>
 <InternalWellbore
 name="mesh1"
 elementTypes="{ C3D8 }"
 radius="{ 0.1, 5.0 }"
 theta="{ 0, 180 }"
 zCoords="{ -1, 1 }"
 nr="{ 40 }"
 nt="{ 80 }"
 nz="{ 2 }"
 trajectory="{ { 0.0, 0.0, -1.0 },
 { 0.0, 0.0, 1.0 } }"
 autoSpaceRadialElems="{ 1 }"
 useCartesianOuterBoundary="0"
 cellBlockNames="{ cb1 }"/>
</Mesh>

Solid mechanics solver

GEOSX is a multi-physics platform. Different combinations of
physics solvers available in the code can be applied
in different regions of the domain and be functional at different stages of the simulation.
The Solvers tag in the XML file is used to list and parameterize these solvers.

To specify a coupling between two different solvers, we define and characterize each single-physics solver separately.
Then, we customize a coupling solver between these single-physics
solvers as an additional solver.
This approach allows for generality and flexibility in constructing multi-physics solvers.
The order of specifying these solvers is not restricted in GEOSX.
Note that end-users should give each single-physics solver a meaningful and distinct name, as GEOSX will recognize these single-physics solvers based on their customized names and create user-expected coupling.

As demonstrated in this example, to setup a poromechanical coupling, we need to define three different solvers in the XML file:

	the mechanics solver, a solver of type SolidMechanics_LagrangianFEM called here mechanicsSolver (more information here: Solid Mechanics Solver),

<SolidMechanics_LagrangianFEM
 name="mechanicsSolver"
 timeIntegrationOption="QuasiStatic"
 logLevel="1"
 discretization="FE1"
 targetRegions="{ Omega }"
 solidMaterialNames="{ rock }">
 <NonlinearSolverParameters
 newtonTol = "1.0e-5"
 newtonMaxIter = "15"
 />
</SolidMechanics_LagrangianFEM>

	the single-phase flow solver, a solver of type SinglePhaseFVM called here SinglePhaseFlowSolver (more information on these solvers at Singlephase Flow Solver),

<SinglePhaseFVM
 name="SinglePhaseFlowSolver"
 logLevel="1"
 discretization="singlePhaseTPFA"
 targetRegions="{Omega}"
 fluidNames="{ water }"
 solidNames="{ porousRock }"
 permeabilityNames="{rockPerm}">
 <NonlinearSolverParameters
 newtonTol = "1.0e-6"
 newtonMaxIter = "8"
 />
</SinglePhaseFVM>
</Solvers>

	the coupling solver (SinglePhasePoromechanics) that will bind the two single-physics solvers above, which is named as PoromechanicsSolver (more information at Poromechanics Solver).

<Solvers gravityVector="{0.0, 0.0, 0.0}">
<SinglePhasePoromechanics
 name="PoromechanicsSolver"
 solidSolverName="mechanicsSolver"
 fluidSolverName="SinglePhaseFlowSolver"
 porousMaterialNames="{porousRock}"
 logLevel="1"
 discretization="FE1"
 targetRegions="{Omega}">
 <LinearSolverParameters
 solverType="direct"
 directParallel="0"
 logLevel="0"
 />
 <NonlinearSolverParameters
 newtonMaxIter = "40"
 />
</SinglePhasePoromechanics>

The two single-physics solvers are parameterized as explained
in their corresponding documents.

In this example, let us focus on the coupling solver.
This solver (PoromechanicsSolver) uses a set of attributes that specifically describe the coupling process within a poromechanical framework.
For instance, we must point this solver to the designated fluid solver (here: SinglePhaseFlowSolver) and solid solver (here: mechanicsSolver).
These solvers are forced to interact through the porousMaterialNames="{porousRock}" with all the constitutive models. We specify the discretization method (FE1, defined in the NumericalMethods section), and the target regions (here, we only have one, Omega).
More parameters are required to characterize a coupling procedure (more information at Poromechanics Solver). In this way, the two single-physics solvers will be simultaneously called and executed for solving the wellbore problem here.

Discretization methods for multiphysics solvers

Numerical methods in multiphysics settings are similar to single physics numerical methods. In this problem, we use finite volume for flow and finite elements for solid mechanics. All necessary parameters for these methods are defined in the NumericalMethods section.

As mentioned before, the coupling solver and the solid mechanics solver require the specification of a discretization method called FE1.
In GEOSX, this discretization method represents a finite element method
using linear basis functions and Gaussian quadrature rules.
For more information on defining finite elements numerical schemes,
please see the dedicated Finite Element Discretization section.

The finite volume method requires the specification of a discretization scheme.
Here, we use a two-point flux approximation scheme (singlePhaseTPFA), as described in the dedicated documentation (found here: Finite Volume Discretization).

<NumericalMethods>
 <FiniteElements>
 <FiniteElementSpace
 name="FE1"
 order="1"/>
 </FiniteElements>
 <FiniteVolume>
 <TwoPointFluxApproximation
 name="singlePhaseTPFA"
 fieldName="pressure"
 coefficientName="permeability"
 coefficientModelNames="{rockPerm}"
 />
 </FiniteVolume>
</NumericalMethods>

Constitutive laws

For this test problem, the solid and fluid materials are named as rock and water respectively, whose mechanical properties are specified in the Constitutive section. In this example, different material models, linear elastic isotropic model (see LinearElasticIsotropic) and Extended Drucker-Prager model (see TwoInvariantPlasticity), are used to solve the mechanical deformation, which is the only difference between the poroelastic and poroplastic cases in this example.

For the poroelastic case, PorousElasticIsotropic model is used to describe the linear elastic isotropic response of rock to loading. And the single-phase fluid model CompressibleSinglePhaseFluid is selected to simulate the flow of water upon injection:

<Constitutive>
 <PorousElasticIsotropic
 name="porousRock"
 solidModelName="rock"
 porosityModelName="rockPorosity"
 permeabilityModelName="rockPerm"
 />
 <ElasticIsotropic
 name="rock"
 defaultDensity="2700"
 defaultBulkModulus="1.1111e10"
 defaultShearModulus="8.3333e9"
 />
 <CompressibleSinglePhaseFluid
 name="water"
 defaultDensity="1000"
 defaultViscosity="0.001"
 referencePressure="0e6"
 referenceDensity="1000"
 compressibility="2.09028227021e-10"
 referenceViscosity="0.001"
 viscosibility="0.0"
 />
 <BiotPorosity
 name="rockPorosity"
 grainBulkModulus="1.0e27"
 defaultReferencePorosity="0.3"
 />
 <ConstantPermeability
 name="rockPerm"
 permeabilityComponents="{1.0e-20, 1.0e-20, 1.0e-20}"
 />
</Constitutive>

For the poroplastic case, PorousExtendedDruckerPrager model is used to simulate the elastoplastic behavior of rock. And the single-phase fluid model CompressibleSinglePhaseFluid is employed to handle the storage and flow of water:

<Constitutive>
 <PorousExtendedDruckerPrager
 name="porousRock"
 solidModelName="rock"
 porosityModelName="rockPorosity"
 permeabilityModelName="rockPerm"
 />
 <ExtendedDruckerPrager
 name="rock"
 defaultDensity="2700"
 defaultBulkModulus="1.1111e10"
 defaultShearModulus="8.3333e9"
 defaultCohesion="1.0e6"
 defaultInitialFrictionAngle="15.27"
 defaultResidualFrictionAngle="23.05"
 defaultDilationRatio="1.0"
 defaultHardening="0.01"
 />
 <CompressibleSinglePhaseFluid
 name="water"
 defaultDensity="1000"
 defaultViscosity="0.001"
 referencePressure="0e6"
 referenceDensity="1000"
 compressibility="2.09028227021e-10"
 referenceViscosity="0.001"
 viscosibility="0.0"
 />
 <BiotPorosity
 name="rockPorosity"
 grainBulkModulus="1.0e27"
 defaultReferencePorosity="0.3"
 />
 <ConstantPermeability
 name="rockPerm"
 permeabilityComponents="{1.0e-20, 1.0e-20, 1.0e-20}"
 />
</Constitutive>

As for the material parameters, defaultInitialFrictionAngle, defaultResidualFrictionAngle and defaultCohesion denote the initial friction angle, the residual friction angle, and cohesion, respectively, as defined by the Mohr-Coulomb failure envelope.
As the residual friction angle defaultResidualFrictionAngle is larger than the initial one defaultInitialFrictionAngle, a strain hardening model is automatically chosen, whose hardening rate is given as defaultHardening="0.01".
If the residual friction angle is set to be less than the initial one, strain weakening will take place.
defaultDilationRatio="1.0" corresponds to an associated flow rule.
If using an incompressible fluid, the user can lower the fluid compressibility compressibility to 0.
The constitutive parameters such as the density, the bulk modulus, and the shear modulus are specified in the International System of Units. A stress-dependent porosity model rockPorosity and constant permeability rockPerm model are defined in this section.

Initial and boundary conditions

The next step is to specify fields, including:

	The initial value (the in-situ stresses and pore pressure have to be initialized)

	The boundary conditions (traction and fluid loading at the wellbore wall and constraints of the outer boundaries have to be set)

In this example, we need to specify anisotropic horizontal stress ([image: \sigma_h] = -9.0 MPa and [image: \sigma_H] = -11.0 MPa) and vertical stress ([image: \sigma_v] = -12.0 MPa).
A compressive traction (InnerMechanicalLoad) [image: P_w] = -10 MPa and fluid loading (InnerFluidLoad) [image: P_f] = 10 MPa are applied at the wellbore wall rneg.
The remaining parts of the outer boundaries are subjected to roller constraints.
These boundary conditions are set up through the FieldSpecifications section.

<FieldSpecifications>
 <FieldSpecification
 name="stressXX"
 initialCondition="1"
 setNames="{all}"
 objectPath="ElementRegions/Omega/cb1"
 fieldName="rock_stress"
 component="0"
 scale="-9.0e6"
 />

 <FieldSpecification
 name="stressYY"
 initialCondition="1"
 setNames="{all}"
 objectPath="ElementRegions/Omega/cb1"
 fieldName="rock_stress"
 component="1"
 scale="-11.0e6"
 />

 <FieldSpecification
 name="stressZZ"
 initialCondition="1"
 setNames="{all}"
 objectPath="ElementRegions/Omega/cb1"
 fieldName="rock_stress"
 component="2"
 scale="-12.0e6"
 />

 <FieldSpecification
 name="initialPressure"
 initialCondition="1"
 setNames="{all}"
 objectPath="ElementRegions/Omega/cb1"
 fieldName="pressure"
 scale="0e6"
 />

 <FieldSpecification
 name="xconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="0"
 scale="0.0"
 setNames="{xneg, xpos}"
 />

 <FieldSpecification
 name="yconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="1"
 scale="0.0"
 setNames="{tneg, tpos, ypos}"
 />

 <FieldSpecification
 name="zconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="2"
 scale="0.0"
 setNames="{zneg, zpos}"
 />

 <Traction
 name="InnerMechanicalLoad"
 setNames="{ rneg }"
 objectPath="faceManager"
 scale="-10.0e6"
 tractionType="normal"
 functionName="timeFunction"
 />

 <FieldSpecification
 name="InnerFluidLoad"
 setNames="{ rneg }"
 objectPath="faceManager"
 fieldName="pressure"
 scale="10e6"
 functionName="timeFunction"
 />
</FieldSpecifications>

With tractionType="normal", traction is applied to the wellbore wall rneg as a pressure specified from the product of scale scale="-10.0e6" and the outward face normal.
A table function timeFunction is used to define the time-dependent loading.
The coordinates and values form a time-magnitude
pair for the loading time history. In this case, the loading magnitude is given as:

<Functions>
 <TableFunction
 name="timeFunction"
 inputVarNames="{time}"
 coordinates="{0.0, 0.1, 1e6}"
 values="{0.0, 1.0, 1.0}"
 />
</Functions>

You may note :

	All initial value fields must have initialCondition field set to 1;

	The setName field points to the previously defined box to apply the fields;

	nodeManager and faceManager in the objectPath indicate that the boundary conditions are applied to the element nodes and faces, respectively;

	fieldName is the name of the field registered in GEOSX;

	Component 0, 1, and 2 refer to the x, y, and z direction, respectively;

	And the non-zero values given by scale indicate the magnitude of the loading;

	Some shorthands, such as xneg and xpos, are used as the locations where the boundary conditions are applied in the computational domain. For instance, xneg means the portion of the computational domain located at the left-most in the x-axis, while xpos refers to the portion located at the right-most area in the x-axis. Similar shorthands include ypos, yneg, zpos, and zneg;

	The mud pressure loading has a negative value due to the negative sign convention for compressive stress in GEOSX.

The parameters used in the simulation are summarized in the following table, which are specified in the
Constitutive and FieldSpecifications sections.

	Symbol

	Parameter

	Unit

	Value

	[image: K]

	Bulk Modulus

	[GPa]

	11.11

	[image: G]

	Shear Modulus

	[GPa]

	8.33

	[image: C]

	Cohesion

	[MPa]

	1.0

	[image: \phi_i]

	Initial Friction Angle

	[degree]

	15.27

	[image: \phi_r]

	Residual Friction Angle

	[degree]

	23.05

	[image: c_h]

	Hardening Rate

	[-]

	0.01

	[image: \sigma_h]

	Min Horizontal Stress

	[MPa]

	-9.0

	[image: \sigma_H]

	Max Horizontal Stress

	[MPa]

	-11.0

	[image: \sigma_v]

	Vertical Stress

	[MPa]

	-12.0

	[image: a_0]

	Initial Well Radius

	[m]

	0.1

	[image: P_w]

	Traction at Well

	[MPa]

	-10.0

	[image: P_f]

	Fluid Pressure at Well

	[MPa]

	10.0

	[image: \rho_f]

	Fluid Density

	[kg/m3]

	1000.0

	[image: \mu]

	Fluid Viscosity

	[Pa s]

	0.001

	[image: c_f]

	Fluid Compressibility

	[Pa-1]

	2.09*10-10

	[image: \kappa]

	Matrix Permeability

	[m2]

	1.0*10-20

	[image: \phi]

	Porosity

	[-]

	0.3

Inspecting results

As defined in the Events section, we run this simulation for 497640 seconds. In the above examples, we requested silo-format output files. We can therefore import these into VisIt and use python scripts to visualize the outcome. Please note that a non-dimensional time is used in the analytical solution, and the end time here leads to a non-dimensional end time of t* = 4.62.

Using the poroelastic solver, below figure shows the prediction of pore pressure distribution upon fluid injection.

[image: ../../../../../_images/PoroElastic_PP.png]

Fig. 14 Simulation result of pore pressure distribution

For the above poroelastic example, an analytical solution (Detournay and Cheng, 1993) [https://www.sciencedirect.com/science/article/pii/B9780080406152500113] is hereby employed to verify the accuracy of the numerical results. Following figure shows the comparisons between the numerical predictions (marks) and the corresponding analytical solutions (solid curves) with respect to the distributions of pore pressure, radial displacement, effective radial and tangential stresses along the minimum horizontal stress direction (x-axis). One can observe that GEOSX results correlate very well with the analytical solutions for the poroelastic case.

[image: ../../../../../_images/PoroElastic_X.png]

Fig. 15 Comparing GEOSX results with analytical solutions

For the same 3D wellbore problem, the poroplastic case is thereafter tested and compared with the poroelastic one. The figure below shows the distribution of [image: \sigma_{yy}] in the near wellbore region for both cases. As expected, a relaxation of the tangential stress along the direction of minimum horizontal stress is detected, which can be attributed to the plastic response of the rock.

[image: ../../../../../_images/PoroDP_Stress.png]

Fig. 16 Simulation result of Syy: PoroElastic vs. PoroPlastic

By using python scripts, we can extract the simulation results along any direction and provide detailed comparisons between different cases. Here, the pore pressure, radial displacement, radial and tangential effective stresses along the direction of minimum horizontal stress are obtained at different time steps and plotted against the corresponding ones of the poroelastic case. Because of fluid diffusion and coupling effect, following figure shows that these solutions evolve with time for both cases. As mentioned above, a plastic zone is developed in the vicinity of the wellbore, due to stress concentration. As for the far field region, these two cases become almost identical, with the rock deformation governed by poroelasticity.

[image: ../../../../../_images/PoroDP_X.png]

Fig. 17 Comparing the PoroPlastic case with the PoroElastic case at different times

To go further

Feedback on this example

This concludes the example on PoroPlasticity Model for Wellbore Problems.
For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

For more details

	More on plasticity models, please see Model: Extended Drucker-Prager.

	More on multiphysics solvers, please see Poromechanics Solver.

Proppant Slot Test

Context

In this example, a simulation is built up to model a proppant slot test. In this way, the implemented proppant model is validated by comparing numerical results with the corresponding experimental data. Furthermore, this calibrated proppant model can allow field engineers to customize stimulation design and optimize field operations in multiple engineering aspects (Huang et al., 2021) [https://onepetro.org/ARMAUSRMS/proceedings/ARMA21/All-ARMA21/ARMA-2021-1248/467980].

Input file

This example uses no external input files and everything is
contained within a single xml file that is located at:

inputFiles/proppant/ProppantSlotTest_base.xml

inputFiles/proppant/ProppantSlotTest_benchmark.xml

Description of the case

Chun et al. (2020) [https://www.sciencedirect.com/science/article/pii/S0920410519309441] conducted slot tests on proppant transport with slickwater. As shown below, a 4 ft X 1 ft slot with 0.3 in gap width was constructed. Three fluid inlets with 0.5 in inner diameter were placed at the right side of the slot, which were three inches away from each other. One outlet was placed on the top side to allow pressure relief. The other one was located on the left side acting as a fluid sink. In their tests, to resemble a slickwater fracturing treatment, the proppant concentration was kept at 1.5 ppg and the viscosity of carrying fluid was approximately 1 cp. The slurry was mixed well and then injected into the flow channel at a constant injection rate of 6 gpm. A simulation case with the same settings is built up to mimic these slot tests. A vertical and impermeable fracture surface is assumed in this case, which eliminates the effect of fracture plane inclination and fluid leak-off. A static fracture with an uniform aperture of 0.3 in is defined and fracture propagation is not involved. 30/50 mesh proppant is injected via the three inlets and is flowed through the slot for 30 seconds.

[image: ../../../../../_images/config.png]

Fig. 18 Configuration of the slot for proppant transport experiment (after Chun et al., 2020 [https://www.sciencedirect.com/science/article/pii/S0920410519309441])

To simulate proppant transport phenomenon, a proppant solver based on the assumption of multi-component single phase flow is used in this example. Proppant concentration and distribution within the slot are numerically calculated by solving the equations of proppant transport in hydraulic fractures. These numerical predictions are then validated against the corresponding testing results (Chun et al., 2020) [https://www.sciencedirect.com/science/article/pii/S0920410519309441].

In this example, we focus our attention on the Solvers, Constitutive and FieldSpecifications tags.

Mesh

The following figure shows the mesh used for solving this problem.

[image: ../../../../../_images/mesh4.png]

Fig. 19 Mesh for simulating the proppant slot tests.

We use the internal mesh generator InternalMesh to create a computational domain.
This mesh contains 2 x 97 x 24 eight-node brick elements in the x, y and z directions, respectively.
Here, a structured three-dimensional mesh is generated with C3D8 as the elementTypes (eight-node hexahedral elements).
This mesh is defined as a cell block with the name cb1.

 <Mesh>
 <InternalMesh
 name="mesh"
 elementTypes="{ C3D8 }"
 xCoords="{ -1, 1 }"
 yCoords="{ 0, 1.2319 }"
 zCoords="{ 0, 0.3048 }"
 nx="{ 2 }"
 ny="{ 97 }"
 nz="{ 24 }"
 cellBlockNames="{ cb1 }"/>
 </Mesh>

Proppant transport solver

GEOSX is a multi-physics platform. Different combinations of physics solvers available in the code can be applied in different regions of the domain and be functional at different stages of the simulation. The Solvers tag in the XML file is used to define these solvers.

To specify a coupling between two different solvers, we define and characterize each single-physics solver separately.
Then, we customize a coupling solver between these single-physics
solvers as an additional solver.
This approach allows for generality and flexibility in constructing multi-physics solvers.
The order of specifying these solvers is not restricted in GEOSX.
Note that end-users should give each single-physics solver a meaningful and distinct name, as GEOSX will recognize these single-physics solvers based on their customized names and create user-expected coupling.

As demonstrated in this example, to setup a coupled proppant transport solver, we need to define three different solvers in the XML file:

	the proppant transport solver for the fracture region, a solver of type ProppantTransport called here ProppantTransport (see Proppant Transport Solver for more information),

 <ProppantTransport
 name="ProppantTransport"
 logLevel="1"
 updateProppantPacking="1"
 proppantDiameter="4.5e-4"
 frictionCoefficient="0.04"
 criticalShieldsNumber="0.0"
 maxProppantConcentration="0.62"
 discretization="singlePhaseTPFA"
 targetRegions="{ Fracture }"
 fluidNames="{ water }"
 proppantNames="{ sand }"
 solidNames="{ fractureFilling }"
 permeabilityNames="{ fracturePerm }">
 <NonlinearSolverParameters
 newtonTol="1.0e-6"
 newtonMaxIter="8"
 lineSearchAction="None"
 maxTimeStepCuts="5"/>
 <LinearSolverParameters
 solverType="gmres"
 krylovTol="1.0e-7"/>
 </ProppantTransport>

	the single-phase flow solver, a solver of type SinglePhaseProppantFVM called here SinglePhaseFVM,

 <SinglePhaseProppantFVM
 name="SinglePhaseFVM"
 logLevel="1"
 discretization="singlePhaseTPFA"
 targetRegions="{ Fracture }"
 fluidNames="{ water }"
 solidNames="{ fractureFilling }"
 permeabilityNames="{ fracturePerm }">
 <NonlinearSolverParameters
 newtonTol="1.0e-6"
 newtonMaxIter="8"
 lineSearchAction="None"
 newtonMinIter="0"/>
 <LinearSolverParameters
 solverType="gmres"
	preconditionerType="amg"
 krylovTol="1.0e-7"/>
 </SinglePhaseProppantFVM>

	the coupling solver (FlowProppantTransport) that binds the two single-physics solvers above, which is named as FlowProppantTransport

 <FlowProppantTransport
 name="FlowProppantTransport"
 proppantSolverName="ProppantTransport"
 flowSolverName="SinglePhaseFVM"
 targetRegions="{ Fracture }"
 logLevel="1"/>

In this example, let us focus on the coupling solver.
This solver (FlowProppantTransport) describes the coupling process between proppant and flow transport within the Fracture region. In this way, the two single-physics solvers (ProppantTransport and SinglePhaseFVM) are sequentially called to solve the sub-problems (proppant transport and pressure problem, respectively) involved in this test case.

Constitutive laws

For this slot test, 30/50 mesh proppant is injected via the three inlets and flowing through the slot for 30 seconds.
The viscosity of carrying fluid is 0.001 Pa.s to resemble slickwater fracturing. In this example, the solid and fluid materials are named as sand and water respectively.
Proppant characterization and fluid rheology are specified in the Constitutive section:

 <Constitutive>
 <ProppantSlurryFluid
 name="water"
 referencePressure="1e5"
 referenceDensity="1000"
 compressibility="0.0"
 maxProppantConcentration="0.62"
 referenceViscosity="0.001"
 referenceProppantDensity="2550.0"/>

 <ParticleFluid
 name="sand"
 particleSettlingModel="Stokes"
 hinderedSettlingCoefficient="4.5"
 proppantDensity="2550.0"
 proppantDiameter="4.5e-4"
 maxProppantConcentration="0.62"/>

 <ProppantSolidProppantPermeability
 name="fractureFilling"
 solidModelName="nullSolid"
 porosityModelName="fracturePorosity"
 permeabilityModelName="fracturePerm"/>

 <NullModel
 name="nullSolid"/>

 <ProppantPorosity
 name="fracturePorosity"
 defaultReferencePorosity="1.00"
 maxProppantConcentration="0.62"/>

 <ProppantPermeability
 name="fracturePerm"
 proppantDiameter="4.5e-4"
 maxProppantConcentration="0.62"/>
 </Constitutive>

The constitutive parameters such as proppant density and proppant diameter are specified in the International System of Units.

Initial and boundary conditions

The next step is to specify fields, including:

	The initial value (fracture aperture, fluid pressure and proppant concentration within the fracture have to be initialized)

	The boundary conditions (fluid pressure and proppant concentration at fluid inlets and outlets)

These boundary conditions are set up through the FieldSpecifications section.
At a constant injection rate, the slurry is equally flowing into the open channel through three inlets.

 <FieldSpecifications>
 <FieldSpecification
 name="frac"
 initialCondition="1"
 setNames="{ fracture }"
 objectPath="faceManager"
 fieldName="ruptureState"
 scale="1"/>

 <FieldSpecification
 name="fracAp"
 initialCondition="1"
 objectPath="ElementRegions/Fracture"
 fieldName="elementAperture"
 scale="7.62e-3"
 setNames="{ fracture }"/>

 <FieldSpecification
 name="frac1"
 initialCondition="1"
 objectPath="ElementRegions/Fracture"
 fieldName="pressure"
 scale="0.0"
 component="0"
 setNames="{ fracture }"/>

 <FieldSpecification
 name="frac2"
 initialCondition="1"
 objectPath="ElementRegions/Fracture"
 fieldName="proppantConcentration"
 scale="0.0"
 component="0"
 setNames="{ fracture }"/>

 <FieldSpecification
 name="frac3"
 initialCondition="1"
 objectPath="ElementRegions/Fracture"
 fieldName="isProppantBoundary"
 component="0"
 setNames="{ fracture }"/>

 <FieldSpecification
 name="frac4"
 initialCondition="1"
 objectPath="ElementRegions/Fracture"
 fieldName="isProppantBoundary"
 scale="1"
 component="0"
 setNames="{ left0 }"/>

 <SourceFlux
 name="left1a"
 objectPath="ElementRegions/Fracture"
 fieldName="pressure"
 scale="-0.14"
 component="0"
 setNames="{ left1 }"/>

 <FieldSpecification
 name="left1b"
 objectPath="ElementRegions/Fracture"
 fieldName="proppantConcentration"
 scale="0.07"
 component="0"
 setNames="{ left1 }"/>

 <SourceFlux
 name="left2a"
 objectPath="ElementRegions/Fracture"
 fieldName="pressure"
 scale="-0.14"
 component="0"
 setNames="{ left2 }"/>

 <FieldSpecification
 name="left2b"
 objectPath="ElementRegions/Fracture"
 fieldName="proppantConcentration"
 scale="0.07"
 component="0"
 setNames="{ left2 }"/>

 <SourceFlux
 name="left3a"
 objectPath="ElementRegions/Fracture"
 fieldName="pressure"
 scale="-0.14"
 component="0"
 setNames="{ left3 }"/>

 <FieldSpecification
 name="left3b"
 objectPath="ElementRegions/Fracture"
 fieldName="proppantConcentration"
 scale="0.07"
 component="0"
 setNames="{ left3 }"/>

 <FieldSpecification
 name="right1"
 objectPath="ElementRegions/Fracture"
 fieldName="pressure"
 scale="0.0"
 component="0"
 setNames="{ right }"/>

 <FieldSpecification
 name="right2"
 objectPath="ElementRegions/Fracture"
 fieldName="proppantConcentration"
 scale="0.0"
 component="0"
 setNames="{ right }"/>
 </FieldSpecifications>

Note: For static (non-propagating) fracture problems, the fields ruptureState and elementAperture should be provided in the initial conditions.
FieldName="pressure" here means that the source flux term is added to the mass balance equation for pressure.

The parameters used in the simulation are summarized in the following table.

	Symbol

	Parameter

	Unit

	Value

	[image: d_p]

	Proppant Diameter

	[m]

	0.00045

	[image: f]

	Darcy Friction Coefficient

	[-]

	0.04

	[image: N_{sh}]

	Critical Shields Number

	[-]

	0.0

	[image: c_s]

	Max Fraction of Proppant

	[-]

	0.62

	[image: \rho_f]

	Fluid Density

	[kg/m^3]

	1000

	[image: \mu_f]

	Fluid Viscosity

	[Pa*s]

	0.001

	[image: \rho_p]

	Proppant Density

	[kg/m^3]

	2550

	[image: \lambda_s]

	Hindered Settling Coefficient

	[-]

	4.5

	[image: c_p]

	Proppant Concentration in Slurry

	[m^3/m^3]

	0.07

	[image: L]

	Fracture Length

	[m]

	1.219

	[image: H]

	Fracture Height

	[m]

	0.3048

	[image: a]

	Fracture Aperture

	[m]

	0.00762

	[image: Q]

	Injection Rate

	[m^3/s]

	0.0003785

Inspecting results

The following figure shows the modelling prediction of proppant distribution at 10 s and 30 s, which are compared with the experiments in (Chun et al., 2020) [https://www.sciencedirect.com/science/article/pii/S0920410519309441]. Due to proppant settling in low viscosity fluid, a heterogeneous proppant distribution is obtained, which evolves with injection time. Three different zones (immobile proppant bed, suspended proppant and clean fluid) are visually identified for both the presented experiment and simulation.

[image: ../../../../../_images/Comparison.png]

Fig. 20 Proppant distribution profile

As shown below, consistently, the modelling predictions (green curve) on proppant transport and distribution show a good agreement with the reported experimental data (red dot) at each time.

(Source code)

[image: ../../../../../_images/Example-1_01_0012.png]

To go further

Feedback on this example

This concludes the example on simulating a proppant slot test.
For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

For more details

	More on proppant solver, please see Proppant Transport Solver.

Single Fracture Under Shear Compression

Context

In this example, a single fracture is simulated using a Lagrange contact model in a 2D infinite domain and subjected to a constant uniaxial compressive remote stress (Franceschini et al., 2020) [https://www.sciencedirect.com/science/article/pii/S0045782520303467]. An analytical solution (Phan et al., 2003) [https://onlinelibrary.wiley.com/doi/10.1002/nme.707] is available for verifying the accuracy of the numerical results, providing an analytical form for the normal traction and slip on the fracture surface due to frictional contact. In this example, the TimeHistory function and a Python script are used to output and postprocess multi-dimensional data (traction and displacement on the fracture surface).

Input file

Everything required is contained within two GEOSX input files and one mesh file located at:

inputFiles/lagrangianContactMechanics/ContactMechanics_SingleFracCompression_base.xml

inputFiles/lagrangianContactMechanics/ContactMechanics_SingleFracCompression_benchmark.xml

inputFiles/lagrangianContactMechanics/crackInPlane_ref.msh

Description of the case

We simulate an inclined fracture under a compressive horizontal stress ([image: \sigma]), as shown below. This fracture is placed in an infinite, homogeneous, isotropic, and elastic medium. Uniaxial compression and frictional contact on the fracture surface cause mechanical deformation to the surrounding rock and sliding along the fracture plane. For verification purposes, plane strain deformation and Coulomb failure criterion are considered in this numerical model.

[image: ../../../../../_images/sketch.png]

Fig. 21 Sketch of the problem

To simulate this phenomenon, we use a Lagrange contact model. Displacement and stress fields on the fracture plane are calculated numerically. Predictions of the normal traction ([image: t_N]) and slip ([image: g_T]) on the fracture surface are compared with the corresponding analytical solution (Phan et al., 2003) [https://onlinelibrary.wiley.com/doi/10.1002/nme.707].

[image: t_N = - \sigma {(\text{sin} \left({\psi} \right))}^{ 2 }]

[image: g_T = \frac{ 4 (1- {\nu}^{ 2 }) }{ E } {(\sigma \text{sin} \left({\psi} \right) { (\text{cos} \left({\psi} \right) - \text{sin} \left({\psi} \right) \text{tan} \left({\theta} \right))})} \, \sqrt{ { b }^{ 2 } - { (b - \xi) }^{ 2 } }]

where [image: \psi] is the inclination angle, [image: \nu] is Poisson’s ratio, [image: E] is Young’s modulus, [image: \theta] is the friction angle, [image: b] is the fracture half-length, [image: \xi] is a local coordinate on the fracture varying in the range [[image: 0], [image: 2b]].

In this example, we focus our attention on the Mesh tags,
the Constitutive tags, and the FieldSpecifications tags.

Mesh

The following figure shows the mesh used in this problem.

[image: ../../../../../_images/mesh5.png]

Fig. 22 Imported mesh

Here, we load the mesh with PAMELAMeshGenerator (see Importing the Mesh).
The syntax to import external meshes is simple: in the XML file,
the mesh file crackInPlane_ref.msh is included with its relative or absolute path to the location of the GEOSX XML file and a user-specified label (here CubeHex) is given to the mesh object. This unstructured mesh contains quadrilaterals elements and interface elements. Refinement is performed to conform with the fracture geometry specified in the Geometry section.

 <Mesh>
 <PAMELAMeshGenerator
 name="CubeHex"
 file="crackInPlane_benchmark.msh"/>
 </Mesh>

 <Geometry>
 <BoundedPlane
 name="fracture"
 normal="{-0.342020143325669, 0.939692620785908, 0.0}"
 origin="{0.0, 0.0, 0.0}"
 lengthVector="{0.939692620785908, 0.342020143325669, 0.0}"
 widthVector="{0.0, 0.0, 1.0}"
 dimensions="{ 2, 10 }"/>

 <BoundedPlane
 name="core"
 normal="{-0.342020143325669, 0.939692620785908, 0.0}"
 origin="{0.0, 0.0, 0.0}"
 lengthVector="{0.939692620785908, 0.342020143325669, 0.0}"
 widthVector="{0.0, 0.0, 1.0}"
 dimensions="{ 2, 10 }"/>

 <Box
 name="rightPoint"
 xMin="{ 39.9, -40.1, -0.001}"
 xMax="{ 40.1, 40.1, 0.051}"/>

 <Box
 name="leftPoint"
 xMin="{-40.1, -40.1, -0.001}"
 xMax="{-39.9, 40.1, 0.051}"/>

 <Box
 name="topPoint"
 xMin="{-40.1, 39.9, -0.001}"
 xMax="{ 40.1, 40.1, 0.051}"/>

 <Box
 name="bottomPoint"
 xMin="{-40.1, -40.1, -0.001}"
 xMax="{ 40.1, -39.9, 0.051}"/>

 <Box
 name="front"
 xMin="{-40.1, -40.1, -0.001}"
 xMax="{ 40.1, 40.1, 0.001}"/>

 <Box
 name="rear"
 xMin="{-40.1, -40.1, 0.049}"
 xMax="{ 40.1, 40.1, 0.051}"/>

 <Box
 name="xmin"
 xMin="{-40.1, -40.1, -0.001}"
 xMax="{-39.9, 40.1, 0.051}"/>

 <Box
 name="xmax"
 xMin="{39.9, -40.1, -0.001}"
 xMax="{40.1, 40.1, 0.051}"/>
 </Geometry>

Solid mechanics solver

GEOSX is a multi-physics platform. Different combinations of
physics solvers available in the code can be applied
in different regions of the domain and be functional at different stages of the simulation.
The Solvers tag in the XML file is used to list and parameterize these solvers.

To specify a coupling between two different solvers, we define and characterize each single-physics solver separately.
Then, we customize a coupling solver between these single-physics
solvers as an additional solver.
This approach allows for generality and flexibility in constructing multi-physics solvers.
Each single-physics solver should be given a meaningful and distinct name because GEOSX recognizes these single-physics solvers
based on their given names to create the coupling.

To setup a coupling between rock and fracture deformations, we define three different solvers:

	For solving the frictional contact, we define a Lagrangian contact solver, called here lagrangiancontact. In this solver, we specify targetRegions that includes both the continuum region Region and the discontinuum region Fracture where the solver is applied to couple rock and fracture deformation. The contact constitutive law used for the fracture elements is named fractureMaterial, and defined later in the Constitutive section.

	Rock deformations are handled by a solid mechanics solver SolidMechanics_LagrangianFEM. This solid mechanics solver (see SolidMechanics_LagrangianFEM) is based on the Lagrangian finite element formulation. The problem is run as QuasiStatic without considering inertial effects. The computational domain is discretized by FE1, which is defined in the NumericalMethods section. The solid material is named rock, and its mechanical properties are specified later in the Constitutive section.

	The solver SurfaceGenerator defines the fracture region and rock toughness.

 <Solvers
 gravityVector="{0.0, 0.0, 0.0}">
 <LagrangianContact
 name="lagrangiancontact"
 solidSolverName="lagsolve"
 stabilizationName="TPFAstabilization"
 logLevel="1"
 activeSetMaxIter="10"
 targetRegions="{ Region, Fracture }"
 contactRelationName="fractureMaterial">
 <NonlinearSolverParameters
 newtonTol="1.0e-8"
 logLevel="2"
 newtonMaxIter="10"
 lineSearchAction="Require"
 lineSearchMaxCuts="2"
 maxTimeStepCuts="2"/>
 <LinearSolverParameters
 solverType="direct"
 directParallel="0"
 logLevel="0"/>
 </LagrangianContact>

 <SolidMechanics_LagrangianFEM
 name="lagsolve"
 timeIntegrationOption="QuasiStatic"
 logLevel="0"
 discretization="FE1"
 targetRegions="{ Region, Fracture }"
 solidMaterialNames="{ rock }">
 <NonlinearSolverParameters
 newtonTol="1.0e-6"
 newtonMaxIter="5"/>
 <LinearSolverParameters
 krylovTol="1.0e-10"
 logLevel="0"/>
 </SolidMechanics_LagrangianFEM>

 <SurfaceGenerator
 name="SurfaceGen"
 logLevel="0"
 fractureRegion="Fracture"
 targetRegions="{ Region }"
 solidMaterialNames="{ rock }"
 rockToughness="1.0e6"
 mpiCommOrder="1"/>
 </Solvers>

Constitutive laws

For this specific problem, we simulate the elastic deformation and fracture slippage caused by uniaxial compression. A homogeneous and isotropic domain with one solid material is assumed, with mechanical properties specified in the Constitutive section.

Fracture surface slippage is assumed to be governed by the Coulomb failure criterion. The contact constitutive behavior is named fractureMaterial in the Coulomb block, where cohesion cohesion="0.0" and friction angle frictionAngle="0.523598776" are specified.

 <Constitutive>
 <ElasticIsotropic
 name="rock"
 defaultDensity="2700"
 defaultBulkModulus="16.66666666666666e9"
 defaultShearModulus="1.0e10"/>

 <Coulomb
 name="fractureMaterial"
 cohesion="0.0"
 frictionAngle="0.523598776"/>
 </Constitutive>

Recall that in the SolidMechanics_LagrangianFEM section,
rock is the material of the computational domain.
Here, the isotropic elastic model ElasticIsotropic is used to simulate the mechanical behavior of rock.

All constitutive parameters such as density, bulk modulus, and shear modulus are specified in the International System of Units.

Time history function

In the Tasks section, PackCollection tasks are defined to collect time history information from fields.
Either the entire field or specified named sets of indices in the field can be collected.
In this example, tractionCollection and displacementJumpCollection tasks are specified to output the local traction fieldName="traction" and relative displacement fieldName="localJump" on the fracture surface.

 <Tasks>
 <PackCollection
 name="tractionCollection"
 objectPath="ElementRegions/Fracture/faceElementSubRegion"
 fieldName="traction"/>

 <PackCollection
 name="displacementJumpCollection"
 objectPath="ElementRegions/Fracture/faceElementSubRegion"
 fieldName="localJump"/>
 </Tasks>

These two tasks are triggered using the Event management, with PeriodicEvent defined for these recurring tasks.
GEOSX writes two files named after the string defined in the filename keyword and formatted as HDF5 files (displacementJump_history.hdf5 and traction_history.hdf5). The TimeHistory file contains the collected time history information from each specified time history collector.
This information includes datasets for the simulation time, element center defined in the local coordinate system, and the time history information.
Then, a Python script is used to access and plot any specified subset of the time history data for verification and visualization.

Initial and boundary conditions

The next step is to specify fields, including:

	The initial value (the remote compressive stress needs to be initialized),

	The boundary conditions (the constraints of the outer boundaries have to be set).

In this tutorial, we specify an uniaxial horizontal stress ([image: \sigma_x] = -1.0e8 Pa).
The remaining parts of the outer boundaries are subjected to roller constraints.
These boundary conditions are set up through the FieldSpecifications section.

 <FieldSpecifications>
 <FieldSpecification
 name="frac"
 initialCondition="1"
 setNames="{ fracture }"
 objectPath="faceManager"
 fieldName="ruptureState"
 scale="1"/>

 <FieldSpecification
 name="separableFace"
 initialCondition="1"
 setNames="{ core }"
 objectPath="faceManager"
 fieldName="isFaceSeparable"
 scale="1"/>

 <FieldSpecification
 name="xconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="0"
 scale="0.0"
 setNames="{ leftPoint, rightPoint }"/>

 <FieldSpecification
 name="yconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="1"
 scale="0.0"
 setNames="{ bottomPoint, topPoint }"/>

 <FieldSpecification
 name="zconstraint"
 objectPath="nodeManager"
 fieldName="TotalDisplacement"
 component="2"
 scale="0.0"
 setNames="{ front, rear }"/>

 <FieldSpecification
 name="Sigmax"
 initialCondition="1"
 setNames="{ all }"
 objectPath="ElementRegions/Region"
 fieldName="rock_stress"
 component="0"
 scale="-1.0e8"/>
 </FieldSpecifications>

Note that the remote stress has a negative value, due to the negative sign convention for compressive stresses in GEOSX.

The parameters used in the simulation are summarized in the following table.

	Symbol

	Parameter

	Unit

	Value

	[image: K]

	Bulk Modulus

	[GPa]

	16.67

	[image: G]

	Shear Modulus

	[GPa]

	10.0

	[image: \sigma]

	Compressive Stress

	[MPa]

	-100.0

	[image: \theta]

	Friction Angle

	[Degree]

	30.0

	[image: \psi]

	Inclination Angle

	[Degree]

	20.0

	[image: b]

	Fracture Half Length

	[m]

	1.0

Inspecting results

We request VTK-format output files and use Paraview to visualize the results.
The following figure shows the distribution of [image: u_{yy}] in the computational domain.

[image: ../../../../../_images/displacement_yy.png]

Fig. 23 Simulation result of [image: u_{yy}]

The next figure shows the distribution of relative shear displacement values on the fracture surface.

[image: ../../../../../_images/slip.png]

Fig. 24 Simulation result of fracture slip

The figure below shows a comparison between the numerical predictions (marks) and the corresponding analytical solutions (solid curves) for the normal traction ([image: t_N]) and slip ([image: g_T]) distributions on the fracture surface. One can observe that the numerical results obtained by GEOSX and the analytical solutions are nearly identical.

(Source code)

[image: ../../../../../_images/Example-1_01_0014.png]

To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

Performance Benchmarks

Application Studies

pygeosx Examples

The pygeosx — GEOSX in Python enables users to query and/or manipulate the GEOSX datastructure with python in real-time.
The following examples show how to use pygeosx interface and the supplemental pygeosx_tools_package.

A quick warning: these examples are recommended for advanced users only.
The pygeosx interface requires users to be familiar with the GEOSX datastructure, and can trigger the code to crash if an object/variable is inappropriately modified.

	In Situ Data Monitor
	Description of the case

	XML Configuration

	Python Script

	Manual Query

	Running the Problem

	To go further

	Initial Condition Modification
	Description of the case

	XML Configuration

	Python Script

	Running the Problem

	To go further

In Situ Data Monitor

Objectives

At the end of this example you will know:

	how to run a problem using the pygeosx interface,

	how to process advanced xml features using pygeosx,

	how to extract and monitor values within the GEOSX datastructure in real-time

Input files

This example requires two input xml files and one python script located at:

GEOSX/examples/pygeosxExamples/hydraulicFractureWithMonitor

Description of the case

This example is derived from this basic example: Hydraulic Fracturing, which solves for the propagation of a single hydraulic fracture within a heterogeneous reservoir.
The pygeosx interface is used to monitor the maximum hydraulic aperture and fracture extents over time.

XML Configuration

The input xml file for this example requires some modification in order to work with pygeosx.
First, we use the advanced xml input features to include the base problem and override the table_root parameter that points to the table files.
Note that these paths will need to be updated if you run this problem outside of the example directory.

 <Included>
 <File
 name="../../hydraulicFracturing/heterogeneousInSituProperties/heterogeneousInSitu_singleFracture.xml"/>
 </Included>

 <Parameters>
 <Parameter
 name="table_root"
 value="../../hydraulicFracturing/heterogeneousInSituProperties/tables"/>
 </Parameters>

Next, we add a new entry to the output block Python and an entry in the Events block.
Whenever the python event is triggered, GEOSX will pause and return to the controlling python script (in this case, every 10 cycles).

 <Outputs>
 <Python
 name="pythonOutput"/>
 </Outputs>

 <Events>
 <PeriodicEvent
 name="python"
 cycleFrequency="10"
 target="/Outputs/pythonOutput"/>
 </Events>

Python Script

Problems that use the pygeosx interface are driven by a custom python script.
To begin, we import a number of packages and check whether this is a parallel run.
The custom packages include pygeosx, which provides an interface to GEOSX, and pygeosx_tools, which provides a number of common tools for working with the datastructure and dealing with parallel communication.

import sys
from mpi4py import MPI
import pygeosx
from pygeosx_tools import wrapper, xml
import matplotlib.pyplot as plt

In the next step, we apply the xml preprocessor to resolve the advanced xml features.
Note that this step will modify the input arguments to reflect the location of the compiled xml file, which is processed directly by GEOSX.
The script then initializes GEOSX and receives the problem handle, which is the scripts view into the datastructure.
There is an opportunity to interact with the GEOSX before the initial conditions are set, which we do not use in this example.

 # Get the MPI rank
 comm = MPI.COMM_WORLD
 rank = comm.Get_rank()

 # Initialize the code and set initial conditions
 xml.apply_xml_preprocessor()
 problem = pygeosx.initialize(rank, sys.argv)
 pygeosx.apply_initial_conditions()

To extract information from the problem, you need to know the full path (or ‘key’) to the target object.
These keys can be quite long, and can change depending on the xml input.
In the next step, we use a method from the pygeosx_tools package to search for these keys using a list of keywords.
If the keys are known beforehand, then this step could be skipped.
Note that these functions will throw an error if they do not find a matching key, or if they find multiple matching keys.

 # Rather than specifying the wrapper paths explicitly,
 # search for them using a set of filters
 fracture_location_key = wrapper.get_matching_wrapper_path(problem, ['Fracture', 'elementCenter'])
 fracture_aperture_key = wrapper.get_matching_wrapper_path(problem, ['Fracture', 'effectiveAperture'])

Next, we setup a dictionary that will allow us to use pygeosx_tools to automatically query the problem.
The root level of this dictionary contains the target keys (fracture location and aperture) and the required time key.
These each point to a sub-dictionary that holds an axis label, a scale factor, and an empty list to hold the time history.
The target dictionaries also hold an entry fhandle, which contains a matplotlib figure handle that we can use to display the results.

 # Setup values to record
 records = {fracture_location_key: {'label': 'Fracture Extents (m)',
 'scale': 1.0,
 'history': [],
 'fhandle': plt.figure()},
 fracture_aperture_key: {'label': 'Aperture (mm)',
 'scale': 1e3,
 'history': [],
 'fhandle': plt.figure()},
 'time': {'label': 'Time (min)',
 'scale': 1.0 / 60.0,
 'history': []}}

After setting up the problem, we enter the main problem loop.
Upon calling pygeosx.run(), the code will execute until a Python event is triggered in the Event loop.
At those points, we have the option to interact with the problem before continuing processing.
Here, we use pygeosx_tools to query the datastructure and occasionaly plot the results to the screen.

 # Setup values to record
 records = {fracture_location_key: {'label': 'Fracture Extents (m)',
 'scale': 1.0,
 'history': [],
 'fhandle': plt.figure()},
 fracture_aperture_key: {'label': 'Aperture (mm)',
 'scale': 1e3,
 'history': [],
 'fhandle': plt.figure()},
 'time': {'label': 'Time (min)',
 'scale': 1.0 / 60.0,
 'history': []}}

Manual Query

To obtain and manually inspect an object in the problem, you can use the methods in pygeosx_tools.wrapper.
These are designed to handle any parallel communication that may be required in your analysis.
For example, to get the fracture aperture as a numpy array, you could call:

from pygeosx_tools import wrapper

(problem initialization / configuration)

Grab aperture as a numpy array, using three different approaches

Local copy (the write flag indicates that we do not plan to modify the result)
aperture_local = wrapper.get_wrapper(problem, fracture_aperture_key, write_flag=False)

Global copy on the root rank
aperture_global = wrapper.gather_wrapper(problem, fracture_aperture_key)

Global copy on the all ranks
aperture_global = wrapper.allgather_wrapper(problem, fracture_aperture_key)

Running the Problem

To run the problem, you must use the specific version of python where pygeosx is installed.
This is likeley located here:

GEOSX/[build_dir]/lib/PYGEOSX/bin/python

Note that you may need to manually install the pygeosx_tools package (and its pre-requisites) into this python distribution.
To do so, you can run the following:

cd GEOSX/[build_dir]/lib/PYGEOSX/bin
pip install --upgrade ../../../../src/coreComponents/python/modules/pygeosx_tools_package/

To run the code, you will call the pygeosx run script with python, and supply the typical geosx command-line arguments and any parallel arguments.
For example:

Load the correct python environment
If you are not using a bash shell, you may need to target one of
the other activation scripts
source GEOSX/[build_dir]/lib/PYGEOSX/bin/activate

Move to the correct directory and run
cd /path/to/problem
srun -n 36 -ppdebug python hydraulicFractureWithMonitor.py -i hydraulicFracture.xml -x 6 -y 2 -z 3 -o hf_results

To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

For more details

	More on advanced xml features, please see Advanced XML Features.

	More on the pygeosx interface, please see pygeosx — GEOSX in Python.

Initial Condition Modification

Objectives

At the end of this example you will know:

	how to modify GEOSX arrays using pygeosx

	handle parallel communication with pygeosx_tools

Input files

This example requires an input xml and python script located at:

GEOSX/examples/pygeosxExamples/sedovWithStressFunction

Description of the case

This example is derived from the sedov integrated test (GEOSX/src/coreComponents/physicsSolvers/solidMechanics/integratedTests/sedov.xml), which looks at the propagation of elastic waves due to an initial stress field.
The pygeosx interface is used to modify the initial conditions of the problem to something of our choosing.

XML Configuration

As before, the basic sedov input xml file for this example requires some modification in order to work with pygeosx.
First, we use the advanced xml input features to include the base problem (this path may need to be updated, depending on where you run the problem).

 <Included>
 <File
 name="../../../inputFiles/solidMechanics/sedov.xml"/>
 </Included>

Next, we add a new entry to the output block Python and an entry in the Events block.
Whenever the python event is triggered, GEOSX will pause and return to the controlling python script.

 <Events>
 <PeriodicEvent
 name="python"
 cycleFrequency="5"
 target="/Outputs/pythonOutput"/>
 </Events>

 <Outputs>
 <Python
 name="pythonOutput"/>
 </Outputs>

Python Script

Similar to the previous example, the python script begins by importing the required packages, applying the xml preprocessor, GEOSX initialization, and key search.

 # Get the MPI rank
 comm = MPI.COMM_WORLD
 rank = comm.Get_rank()

 # Initialize the code and set initial conditions
 xml.apply_xml_preprocessor()
 problem = pygeosx.initialize(rank, sys.argv)
 pygeosx.apply_initial_conditions()

 # Rather than specifying the wrapper paths explicitly,
 # search for them using a set of filters
 location_key = wrapper.get_matching_wrapper_path(problem, ['Region2', 'elementCenter'])
 stress_key = wrapper.get_matching_wrapper_path(problem, ['Region2', 'shale', 'stress'])
 ghost_key = wrapper.get_matching_wrapper_path(problem, ['Region2', 'cb1', 'ghostRank'])

The next steps rely on a python function that we use to set stress.
The argument to this function, x, is assumed to be a numpy array of element centers:

def stress_fn(x):
 """
 Function to set stress values

 Args:
 x (np.ndarray) the element centers

 Returns:
 np.ndarray: stress values
 """
 R = x[:, 0]**2 + x[:, 1]**2 + x[:, 2]**2
 return np.sin(2.0 * np.pi * R / np.amax(R))

In the following section, we zero out the initial stress and then set it based on stress_fn.
While doing this, we use wrapper.print_global_value_range to check on the process.

 # Print initial stress
 wrapper.print_global_value_range(problem, stress_key, 'stress')

 # Zero out stress
 wrapper.set_wrapper_to_value(problem, stress_key, 0.0)
 wrapper.print_global_value_range(problem, stress_key, 'stress')

 # Set stress via a function
 wrapper.set_wrapper_with_function(problem, stress_key, location_key, stress_fn, target_index=0)
 wrapper.set_wrapper_with_function(problem, stress_key, location_key, stress_fn, target_index=1)
 wrapper.set_wrapper_with_function(problem, stress_key, location_key, stress_fn, target_index=2)
 wrapper.print_global_value_range(problem, stress_key, 'stress')

Finally, we run the simulation.
As an optional step, we extract numpy arrays from the datastructure using different parallel approaches:

 # Run the code
 while pygeosx.run() != pygeosx.COMPLETED:
 wrapper.print_global_value_range(problem, stress_key, 'stress')

 # Gather/allgather tests
 tmp = wrapper.gather_wrapper(problem, stress_key)
 print(wrapper.rank, 'gather', np.shape(tmp), flush=True)

 tmp = wrapper.allgather_wrapper(problem, stress_key)
 print(wrapper.rank, 'allgather', np.shape(tmp), flush=True)

 tmp = wrapper.allgather_wrapper(problem, stress_key, ghost_key=ghost_key)
 print(wrapper.rank, 'allgather_ghost_filtered', np.shape(tmp), flush=True)

Running the Problem

To run the problem, you must use the specific version of python where pygeosx is installed.
This is likeley located here:

GEOSX/[build_dir]/lib/PYGEOSX/bin/python

Note that you may need to manually install the pygeosx_tools package (and its pre-requisites) into this python distribution.
To do so, you can run the following:

cd GEOSX/[build_dir]/lib/PYGEOSX/bin
pip install --upgrade ../../../../src/coreComponents/python/modules/pygeosx_tools_package/

To run the code, you will call the pygeosx run script with python, and supply the typical geosx command-line arguments and any parallel arguments.
For example:

Load the correct python environment
If you are not using a bash shell, you may need to target one of
the other activation scripts
source GEOSX/[build_dir]/lib/PYGEOSX/bin/activate

Move to the correct directory and run
cd /path/to/problem
python run_sedov_problem.py -i modified_sedov.xml -o results

To go further

Feedback on this example

For any feedback on this example, please submit a GitHub issue on the project’s GitHub page [https://github.com/GEOSX/GEOSX/issues].

For more details

	More on advanced xml features, please see Advanced XML Features.

	More on the pygeosx interface, please see pygeosx — GEOSX in Python.

User Guide

Welcome to the GEOSX user guide.

	Input Files
	XML

	Input Validation

	XML Schema

	Advanced XML Features

	Meshes
	Internal Mesh Generation

	Using an External Mesh

	Physics Solvers
	Solution Strategy

	Solid Mechanics Solver

	Singlephase Flow Solver

	Compositional Multiphase Flow Solver

	Compositional Multiphase Well Solver

	Poromechanics Solver

	Proppant Transport Solver

	Constitutive Models
	Solid Models

	Fluid Models

	Relative Permeability Models

	Capillary Pressure Models

	Porosity models

	Permeability models

	Porous Solids

	Initial and Boundary Conditions
	Aquifer Boundary Condition

	Event Management
	Event Execution Rules

	Event Manager Configuration

	Other Event Features

	Tasks Manager
	Tasks Manager Configuration

	Functions
	Function Inputs and Application

	Function Types

	Linear Solvers
	Introduction

	Direct methods

	Iterative methods

	Summary

	Preconditioner descriptions

	HYPRE MGR Preconditioner

	Block preconditioner

	Numerical Methods
	Finite Element Discretization

	Finite Volume Discretization

	Parallel Partitioning
	Partition and ghosting : simple examples

	Specifying partitioning pattern

	Ghost ranks

	Considerations for visualization

	Outputs
	Defining an output

	Triggering the outputs

	Visualisation of the outputs

	pygeosx — GEOSX in Python
	Module Functions

	GEOSX State

	Module Classes

	Segmentation Faults

	Indices and tables

Input Files

XML

GEOSX is configured via one (or more) Extensible Markup Language [https://en.wikipedia.org/wiki/XML] (XML) files.
These files contain a set of elements and attributes that closely follow the internal datastructure of GEOSX.
When running GEOSX, these files are specified using the -i argument:

geosx -i input.xml

XML Components

The following illustrates some of the key features of a GEOSX-format xml file:

<?xml version="1.0" ?>

<Problem>
 <BlockA
 someAttribute="1.234">

 <!-- Some comment -->
 <BlockB
 name="firstNamedBlock"
 anotherAttribute="0"/>
 <BlockB
 name="secondNamedBlock"
 anotherAttribute="1"/>
 </BlockA>
</Problem>

The two basic components of an xml file are blocks, which are specified using angle brackets (“<BlockA> </BlockA>”), and attributes that are attached to blocks (attributeName=”attributeValue”).
Block and attributes can use any ASCII character aside from <, &, ‘, and “ (if necessary, use <, &, ', or ").
Comments are indicated as follows: <!– Some comment –>.

At the beginning of a GEOSX input file, you will find an optional xml declaration (<?xml version=”1.0” ?>) that is used to indicate the format to certain text editors.
You will also find the root Problem block, where the GEOSX configuration is placed.
Note that, aside from these elements and commented text, the xml format requires that no other objects exist at the first level.

In the example above, there is a single element within the Problem block: BlockA.
BlockA has an attribute someAttribute, which has a value of 1.234, and has three children: a commented string “Some comment” and two instances of BlockB.
The name attribute is required for blocks that allow multiple instances, and should include a unique string to avoid potential errors.
Where applicable these blocks will be executed in the order in which they are specified in input file.

Input Validation

The optional xmlns:xsi and xsi:noNamespaceSchemaLocation attributes in the Problem block can be used to indicate the type of document and the location of the xml schema to the text editor:

<Problem
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="/path/to/schema.xsd" />

The schema contains a list of xml blocks and attributes that are supported by GEOSX, indicates whether a given object is optional or required, and defines the format of the object (string, floating point number, etc.).
A copy of the schema is included in the GEOSX source code (/path/to/GEOSX/src/coreComponents/schema/schema.xsd).
It can also be generated using GEOSX: geosx -s schema.xsd

Many text editors can use the schema to help in the construction of an xml file and to indicate whether it is valid.
Using a validation tool is highly recommended for all users.
The following instructions indicate how to turn on validation for a variety of tools:

xmllint

xmllint is a command-line tool that is typically pre-installed on UNIX-like systems.
To check whether an input file is valid, run the following command:

xmllint –schema /path/to/schema.xsd input_file.xml

Sublime Text

We recommend using the Exalt [https://github.com/eerohele/exalt] or SublimeLinter_xmllint [https://github.com/SublimeLinter/SublimeLinter-xmllint] plug-ins to validate xml files within sublime.
If you have not done so already, install the sublime Package Control [https://packagecontrol.io/installation].
To install the package, press ctrl + shift + p, type and select Package Control: Install Package, and search for exalt or SublimeLinter / SublimeLinter-xmllint.
Note that, depending on the circumstances, these tools may indicate only a subset of the validation errors at a given time.
Once resolved, the tools should re-check the document to look for any additional errors.

As an additional step for SublimLinter-xmllint, you will need to add a linter configuration.
To do so, go to Preferences/Package Settings/SublimeLinter/Settings.
In the right-hand side of the new window, add the xmllint configuration:

{
 "linters": {
 "xmllint":
 {
 "args": "--schema /path/to/schema.xsd",
 "styles": [
 {
 "mark_style": "fill",
 "scope": "region.bluish",
 "types": ["error"],
 "icon": "stop",
 }
]
 },
 }
}

Eclipse

The Eclipse Web Develop Tools includes features for validating xml files.
To install them, go to Help -> Eclipse Marketplace, search for the Eclipse Web Developer Tools, install the package, and restart Eclipse.
Finally, configure the xml validation preferences under Window -> Preferences -> XML -> XML Files -> Validation.
Eclipse will automatically fetch the schema, and validate an active xml file.
The editor will highlight any lines with errors, and underline the specific errors.

GEOSX XML Tools

The geosx_xml_tools package, which is used to enable advanced features such as parameters, symbolic math, etc., contains tools for validating xml files.
To do so, call the command-line script with the -s argument, i.e.: preprocess_xml input_file.xml -s /path/to/schema.xsd.
After compiling the final xml file, pygeosx will fetch the designated schema, validate, and print any errors to the screen.

Note: Attributes that are using advanced xml features will likely contain characters that are not allowed by their corresponding type pattern.
As such, file editors that are configured to use other validation methods will likely identify errors in the raw input file.

XML Schema

An XML schema definition (XSD) file lays out the expected structure of an input XML file.
During the build process, GEOSX automatically constructs a comprehensive schema from the code’s data structure, and updates the version in the source (GEOSX/src/coreComponents/schema/schema.xsd).

Schema Components

The first entry in the schema are a set of headers the file type and version.
Following this, the set of available simple types for attributes are laid out.
Each of these includes a variable type name, which mirrors those used in the main code, and a regular expression, which is designed to match valid inputs.
These patterns are defined and documented in DataTypes::typeRegex.
The final part of the schema is the file layout, beginning with the root Problem.
Each complex type defines an element, its children, and its attributes.
Each attribute defines the input name, type, default value, and/or usage.
Comments preceding each attribute are used to relay additional information to the users.

Automatic Schema Generation

A schema may be generated by calling the main code with the -s argument , e.g.: geosx -s schema.xsd (Note: this is done automatically during the bulid process).
To do this, GEOSX does the following:

	Initialize the GEOSX data structure.

	Initialize objects that are registered to catalogs via ManagedGroup::ExpandObjectCatalogs().

	Recursively write element and attribute definitions to the schema using information stored in GEOSX groups and wrappers.

	Define any expected deviations from the schema via ManagedGroup::SetSchemaDeviations().

Advanced XML Features

The geosx_xml_tools python package adds a set of advanced features to the GEOSX xml format: units, parameters, and symbolic expressions.

Setup

The package can be installed in the GEOSX build directory via the following command:

make geosx_xml_tools

During the installation step, multiple scripts will be created in the bin directory alongside geosx: preprocess_xml, format_xml, and geosx_preprocessed.
The build process creates a new virtual python environment, which is derived from the version of python used to configure GEOSX or a version indicated via the PYTHON_POST_EXECUTABLE variable in the cmake host configuration.
At minimum, the parent python environment must have the virtualenv package installed.
The geosx_xml_tools package depends on lxml, so if it is not present within the parent environment, the install script will attempt to fetch it from the internet using pip.

Usage

An input file that uses advanced xml features requires preprocessing before it can be used with GEOSX.
The preprocessor writes a compiled xml file to the disk, which can be read directly by GEOSX and serves as a permanent record for the simulation.
There are three ways to apply the preprocessor:

	Automatic Preprocessing: Substituting geosx for geosx_preprocessed when calling the code will automatically apply the preprocessor to the input xml file, and then pass the remaining arguments to GEOSX. With this method, the compiled xml files will have the suffix ‘.preprocessed’. Before running the code, the compiled xml file will also be validated against the xml schema.

Serial example
geosx_preprocessed -i input.xml

Parallel example
srun -n 2 geosx_preprocessed -i input.xml -x 2

	Manual Preprocessing: For this approach, xml files are preprocessed manually by the user with the preprocess_xml script. These files can then be submitted to GEOSX separately:

The -o argument is used to manually specify the compiled name
preprocess_xml -i input.xml -o input.xml.processed
geosx -i input.xml.processed

Otherwise, a random name will be chosen by the tool
compiled_input=$(preprocess_xml input.xml)
geosx -i $compiled_input

	Python / pygeosx: The preprocessor can also be applied directly in python or in pygeosx simulations. An example of this is method is provided here: GEOSX/examples/pygeosxExamples/hydraulicFractureWithMonitor/.

Each of these options support specifying multiple input files via the command line (e.g. geosx_preprocessed -i input_a.xml -i input_b.xml).
They also support any number of command-line parameter overrides (e.g. geosx_preprocessed -i input_a.xml -p parameter_a alpha -p parameter_b beta).

Included Files

Both the XML preprocessor and GEOSX executable itself provide the capability to build complex
multi-file input decks by including XML files into other XML files.

The files to be included are listed via the <Included> block. There maybe any number of such blocks.
Each block contains a list of <File name=”…”/> tags, each indicating a file to include.
The name attribute must contain either an absolute or a relative path to the included file.
If the path is relative, it is treated as relative to the location of the referring file.
Included files may also contain includes of their own, i.e. it is possible to have a.xml include b.xml
which in turn includes c.xml.

Note

When creating multi-file input decks, it is considered best practice to use relative file paths.
This applies both to XML includes, and to other types of file references (for example, table file names).
Relative paths keep input decks both relocatable within the file system and sharable between users.

XML preprocessor’s merging capabilities are more advanced than GEOSX built-in ones.
Both are outlined below.

XML preprocessor

The merging approach is applied recursively, allowing children to include their own files.
Any potential conflicts are handled via the following scheme:

	
	Merge two objects if:

	
	At the root level an object with the matching tag exists.

	If the “name” attribute is present and an object with the matching tag and name exists.

	Any preexisting attributes on the object are overwritten by the donor.

	Otherwise append the XML structure with the target.

GEOSX

GEOSX’s built-in processing simply inserts the included files’ content (excluding the root node)
into the XML element tree, at the level of <Included> tag. Partial merging is handled implicitly
by GEOSX’s data structure, which treats repeated top-level XML blocks as if they are one single block.
This is usually sufficient for merging together top-level input sections from multiple files,
such as multiple <FieldSpecifications> or <Events> sections, but more complex cases may require
the use of preprocessor.

Note

While GEOSX’s XML processing is capable of handling any number of <Included> block at any level,
the XML schema currently produced by GEOSX only allows a single such block, and only directly
within the <Problem> tag. Inputs that use multiple blocks or nest them deeper may run but will
fail to validate against the schema. This is a known discrepancy that may be fixed in the future.

Parameters

Parameters are a convenient way to build a configurable and human-readable input XML.
They are defined via a block in the XML structure.
To avoid conflicts with other advanced features, parameter names can include upper/lower case letters and underscores.
Parameters may have any value, including:

	Numbers (with or without units)

	A path to a file

	A symbolic expression

	Other parameters

	Etc.

They can be used as part of any input xml attribute as follows:

	x_par (preferred)

	$x_par

	$:x_par

	$:x_par$

Attributes can be used across Included files, but cannot be used to set the names of included files themselves.
The following example uses parameters to set the root path for a table function, which is then scaled by another parameter:

<Parameters>
 <Parameter
 name="flow_scale"
 value="0.5"/>
 <Parameter
 name="table_root"
 value="/path/to/table/root"/>
</Parameters>

<FieldSpecifications>
 <SourceFlux
 name="sourceTerm"
 objectPath="ElementRegions/Region1/block1"
 scale="$flow_scale$"
 functionName="flow_rate"
 setNames="{ source }"/>
</FieldSpecifications>

<Functions>
 <TableFunction
 name="flow_rate"
 inputVarNames="{time}"
 coordinateFiles="{$table_root$/time_flow.geos}"
 voxelFile="$table_root$/flow.geos"
 interpolation="linear"/>
</Functions>

Any number of parameter overrides can be issued from the command line using the -p name value argument in the preprocessor script.
Note that if the override value contains any spaces, it may need to be surrounded by quotation marks (-p name “paramter with spaces”).

Units

The units for any input values to GEOSX can be in any self-consistent system.
In many cases, it is useful to override this behavior by explicitly specifying the units of the input.
These are specified by appending a valid number with a unit definition in square braces.
During pre-processing, these units are converted into base-SI units (we plan to support other unit systems in the future).

The unit manager supports most common units and SI prefixes, using both long- and abbreviated names (e.g.: c, centi, k, kilo, etc.).
Units may include predefined composite units (dyne, N, etc.) or may be built up from sub-units using a python syntax (e.g.: [N], [kg*m/s**2]).
Any (or no) amount of whitespace is allowed between the number and the unit bracket.
The following shows a set of parameters with units specified:

<Parameters>
 <Parameter name="paramter_a" value="2[m]"/>
 <Parameter name="paramter_b" value="1.2 [cm]"/>
 <Parameter name="paramter_c" value="1.23e4 [bbl/day]"/>
 <Parameter name="paramter_d" value="1.23E-4 [km**2]"/>
</Parameters>

Please note that the preprocessor currently does not check whether any user-specified units are appropriate for a given input or symbolic expression.

Symbolic Expressions

Input XML files can also include symbolic mathematical expressions.
These are placed within pairs of backticks (`), and use a limited python syntax.
Please note that parameters and units are evaluated before symbolic expressions.
While symbolic expressions are allowed within parameters, errors may occur if they are used in a way that results in nested symbolic expressions.
Also, note that residual alpha characters (e.g. sin() are removed before evaluation for security.
The following shows an example of symbolic expressions:

<Parameters>
 <Parameter name="a" value="2[m]"/>
 <Parameter name="b" value="1.2 [cm]"/>
 <Parameter name="c" value="3"/>
 <Parameter name="d" value="1.23e-4"/>
</Parameters>
<Geometry>
 <Box
 name="perf"
 xMin="{`a - 0.2*b`, -1e6, -1e6}"
 xMax="{`c**2 / d`, 1e6, 1e6}" />
</Geometry>

Validation

Unmatched special characters ($, [, `, etc.) in the final xml file indicate that parameters, units, or symbolic math were not specified correctly.
If the prepreprocessor detects these, it will throw an error and exit.
Additional validation of the compiled files can be completed with preprocess_xml by supplying the -s argument and the path to the GEOSX schema.

Meshes

The purpose of this document is to explain how users and developers interact with mesh data.
This section describes how meshes are handled and stored in GEOSX.

There are two possible methods for generating a mesh:
either by using GEOSX’s internal mesh generator (for Cartesian meshes only),
or by importing meshes from various common mesh file formats.
This latter options allows one to work with more complex geometries,
such as unstructured meshes comprised of a variety of element types (polyhedral elements).

Internal Mesh Generation

Basic Example

The Internal Mesh Generator allows one to quickly build simple cartesian grids and divide
them into several regions. The following attributes are supported in the input block for InternalMesh:

	Name

	Type

	Default

	Description

	cellBlockNames

	string_array

	required

	Names of each mesh block

	elementTypes

	string_array

	required

	Element types of each mesh block

	name

	string

	required

	A name is required for any non-unique nodes

	nx

	integer_array

	required

	Number of elements in the x-direction within each mesh block

	ny

	integer_array

	required

	Number of elements in the y-direction within each mesh block

	nz

	integer_array

	required

	Number of elements in the z-direction within each mesh block

	positionTolerance

	real64

	1e-10

	A position tolerance to verify if a node belong to a nodeset

	trianglePattern

	integer

	0

	Pattern by which to decompose the hex mesh into prisms (more explanation required)

	xBias

	real64_array

	{1}

	Bias of element sizes in the x-direction within each mesh block (dx_left=(1+b)*L/N, dx_right=(1-b)*L/N)

	xCoords

	real64_array

	required

	x-coordinates of each mesh block vertex

	yBias

	real64_array

	{1}

	Bias of element sizes in the y-direction within each mesh block (dy_left=(1+b)*L/N, dx_right=(1-b)*L/N)

	yCoords

	real64_array

	required

	y-coordinates of each mesh block vertex

	zBias

	real64_array

	{1}

	Bias of element sizes in the z-direction within each mesh block (dz_left=(1+b)*L/N, dz_right=(1-b)*L/N)

	zCoords

	real64_array

	required

	z-coordinates of each mesh block vertex

The following is an example XML <mesh> block, which will generate a vertical beam with two CellBlocks (one in red and one in blue in the following picture).

<Mesh>
 <InternalMesh name="mesh"
 elementTypes="C3D8"
 xCoords="0, 1"
 yCoords="0, 1"
 zCoords="0, 2, 6"
 nx="1"
 ny="1"
 nz="2, 4"
 cellBlockNames="cb1 cb2"/>
</Mesh>

	name the name of the mesh body

	elementTypes the type of the elements that will be generated.

	xCoord List of x coordinates of the boundaries of the CellBlocks

	yCoord List of y coordinates of the boundaries of the CellBlocks

	zCoord List of z coordinates of the boundaries of the CellBlocks

	nx List containing the number of cells in x direction within the CellBlocks

	ny List containing the number of cells in y direction within the CellBlocks

	nz List containing the number of cells in z direction within the CellBlocks

	cellBlockNames List containing the names of the CellBlocks

[image: ../../../_images/beam.png]

Mesh Bias

The internal mesh generator is capable of producing meshes with element sizes that vary smoothly over space.
This is achieved by specifying xBias, yBias, and/or zBias fields.
(Note: if present, the length of these must match nx, ny, and nz, respectively, and each individual value must be in the range (-1, 1).)

For a given element block, the average element size will be

[image: dx_{average}[i] = \frac{xCoords[i+1]-xCoords[i]}{nx[i]},]

the element on the left-most side of the block will have size

[image: dx_{left}[i] = (1 + xBias[i]) \cdot dx_{average}[i],]

and the element on the right-most side will have size

[image: dx_{right}[i] = (1 - xBias[i]) \cdot dx_{average}[i].]

The following are the two most common scenarios that occur while designing a mesh with bias:

	The size of the block and the element size on an adjacent region are known. Assuming that we are to the left of the target block, the appropriate bias would be:

[image: xBias[i] = 1 - \frac{nx[i] \cdot dx_{left}[i+1]}{xCoords[i+1]-xCoords[i]}]

	The bias of the block and the element size on an adjacent region are known. Again, assuming that we are to the left of the target block, the appropriate size for the block would be:

[image: xCoords[i+1]-xCoords[i] = \frac{nx[i] \cdot dx_{left}[i+1]}{1 - xBias[i]}]

The following is an example of a mesh block along each dimension, and an image showing the corresponding mesh. Note that there is a core region of elements with zero bias, and that the transitions between element blocks are smooth.

 <Mesh>
 <InternalMesh
 name="mesh1"
 elementTypes="{ C3D8 }"
 xCoords="{ -10, -1, 0, 1, 10 }"
 yCoords="{ -10, -1, 0, 1, 10 }"
 zCoords="{ -10, -1, 0, 1, 10 }"
 nx="{ 4, 1, 1, 4 }"
 ny="{ 5, 1, 1, 5 }"
 nz="{ 6, 1, 1, 6 }"
 xBias="{ 0.555, 0, 0, -0.555 }"
 yBias="{ 0.444, 0, 0, -0.444 }"
 zBias="{ 0.333, 0, 0, -0.333 }"
 cellBlockNames="{ cb1 }"/>
 </Mesh>

 <Solvers>
 <SolidMechanics_LagrangianFEM
 name="lagsolve"
 strainTheory="1"
 cflFactor="0.25"
 discretization="FE1"
 targetRegions="{ Region2 }"
 solidMaterialNames="{ shale }"/>
 </Solvers>

[image: ../../../_images/mesh_with_bias.png]

Advanced Cell Block Specification

It’s possible to generate more complex CellBlock using the InternalMeshGenerator.
For instance, the staircase example is a model which is often used in GEOSX as an integrated
test. It defines CellBlocks in the three directions to generate a staircase-like model
with the following code.

<Mesh>
 <InternalMesh name="mesh1"
 elementTypes="{C3D8}"
 xCoords="{0, 5, 10}"
 yCoords="{0, 5, 10}"
 zCoords="{0, 2.5, 5, 7.5, 10}"
 nx="{5, 5}"
 ny="{5, 5}"
 nz="{3, 3, 3, 3}"
 cellBlockNames="{b00,b01,b02,b03,b04,b05,b06,b07,b08,b09,b10,b11,b12,b13,b14,b15}"/>
</Mesh>

<ElementRegions>
 <CellElementRegion name="Channel"
 cellBlocks="{b08,b00,b01,b05,b06,b14,b15,b11}"
 materialList="{fluid1, rock, relperm}"/>
 <CellElementRegion name="Barrier"
 cellBlocks="{b04,b12,b13,b09,b10,b02,b03,b07}"
 materialList="{}"/>
</ElementRegions>

Thus, the generated mesh will be :

[image: ../../../_images/staircase.svg]

Using an External Mesh

Supported Formats

GEOSX provides features to run simulations on unstructured meshes.
It uses PAMELA [https://github.com/GEOSX/PAMELA] to read the external meshes and its API to write
it into the GEOSX mesh data structure.

The supported mesh format are:

	The GMSH [http://gmsh.info] file format (.msh v2).

	The ECLIPSE file formats (.egrid, .grdecl)

The supported mesh elements for volume elements consist of the following:

	4 nodes tetrahedra,

	5 nodes pyramids,

	6 nodes wedges,

	8 nodes hexahedra,

The mesh can be divided in several regions.
These regions are intended to support different physics
or to define different constitutive properties.

	For the GMSH file format, the regions are defined using the physical entity names [https://gmsh.info/doc/texinfo/gmsh.html#Elementary-entities-vs-physical-groups]
provided by GMSH.

	For the ECLIPSE file formats, the regions have to be first defined using the ECLIPSE software.

Importing the Mesh

Importing regions

Several blocks are involved to import an external mesh into GEOSX, defined in the XML input file.
These are the <Mesh> block and the <ElementRegions> block.

The mesh block has the following syntax:

<Mesh>
 <PAMELAMeshGenerator name="MyMeshName"
 file="/path/to/the/mesh/file.msh"/>
</Mesh>

We advise users to use absolute path to the mesh file.

GEOSX uses ElementRegions to support different physics
or to define different constitutive properties.
An ElementRegion is defined as a set of CellBlocks.
A CellBlock is an ensemble of elements with the same element geometry.

[image: ../../../_images/mesh.svg]In the example presented above, the mesh is is composed of two regions (Top and Bot).
Each region contains 3 CellBlocks.

The ElementRegions are defined as below :

<ElementRegions>
 <ElementRegion name="Top" cellBlocks="Top_HEX Top_WEDGE Top_TETRA" materialList="water rock"/>
 <ElementRegion name="Bot" cellBlocks="Bot_HEX Bot_WEDGE Bot_TETRA" materialList="water rock"/>
</ElementRegions>

You have to use the following syntax to declare your CellBlocks :

nameOfTheRegionWithinTheMesh_typeOfTheElement

The keywords for the element types are :

	TETRA

	WEDGE

	PYR

	HEX

If the regions are not named in the file (it happens with all the eclipse grids and several GMSH mesh
files), the name of the region is DEFAULT, e.g:

<ElementRegions>
 <ElementRegion name="Default" cellBlocks="DEFAULT_HEX" materialList="water rock"/>
</ElementRegions>

Using the gmsh file format, regions can be easily named
as a preprocessed step using the gmsh software of directly editing the file following the syntax
defined in the documentation [https://gmsh.info/doc/texinfo/gmsh.html#MSH-file-format-version-2-_0028Legacy_0029].

An example of a gmsh file with all the physical regions defined is used in Tutorial 3: Regions and Property Specifications.

Importing surfaces

Surfaces are imported throught point sets in GEOSX. This feature is supported using only the gmsh file format.
In the same way than the regions, the surfaces of interests can be defined using the physical entity names [https://gmsh.info/doc/texinfo/gmsh.html#Elementary-entities-vs-physical-groups].
The surfaces are automatically import in GEOSX if they exist in the gmsh file.
Within GEOSX, the point set will have the same name than the one given in the file. This name can be used
again to impose boundary condition. For instance, if a surface is named “Bottom” and the user wants to
impose a Dirichlet boundary condition of 0 on it, it can be easily done using this syntax.

<FieldSpecification
 name="zconstraint"
 objectPath="nodeManager"
 fieldName="Velocity"
 component="2"
 scale="0.0"
 setNames="{ Bottom }"/>

The name of the surface of interest appears under the keyword setNames. Again, an example of a gmsh file
with the surfaces fully defined is available within Tutorial 3: Regions and Property Specifications.

Physics Solvers

The <Solvers> section of the input file specifies one or several
physics solvers to be included in the simulation.

	Solution Strategy
	Nonlinear Solver

	Timestepping Strategy

	Parameters

	Solid Mechanics Solver
	List of Symbols

	Introduction

	Theory

	Parameters

	Example

	Singlephase Flow Solver
	Introduction

	Theory

	Parameters

	Example

	Compositional Multiphase Flow Solver
	Introduction

	Theory

	Parameters

	Example

	Compositional Multiphase Well Solver
	Introduction

	Theory

	Parameters

	Example

	Poromechanics Solver
	Introduction

	Theory

	Parameters

	Example

	Proppant Transport Solver
	Introduction

	Theory

	Spatial Discretization

	Solution Strategy

	Parameters

	Example

	References

Solution Strategy

All physics solvers share a common solution strategy for nonlinear time-dependent
problems. Here, we briefly describe the nonlinear solver and the timestepping
strategy employed.

Nonlinear Solver

At each time-step, the nonlinear system of discrete residual equations, i.e.

[image: r(x) = 0]

is solved by employing the Newton-Raphson method. Here, [image: x] is the vector of
primary unknowns. Thus, each physics solver is responsible for assembling
the Jacobian matrix [image: J] containing the analytical derivatives of the residual
vector [image: r] with respect to the primary variables. Then, at each Newton iteration
[image: \nu], the following linear system is solved

[image: J^{\nu} \delta x^{\nu+1} = -r^{\nu},]

where, [image: \delta x^{\nu+1}] is the Newton update. This linear system can be
solved with a variety of different linear solvers described in Linear Solvers.
The Newton update, [image: \delta x^{\nu+1}] is then applied to the primary variables:

[image: x^{\nu+1} = x^{\nu} + \delta x^{\nu+1}.]

This procedure is repeated until convergence is achieved or until the maximum number of
iterations is reached.

Line Search

A line search method can be applied along with the Newton’s method to facilitate Nonlinear
convergence. After the Newton update, if the residual norm has increased instead
of decreased, a line search algorithm is employed to correct the Newton update.

The user can choose between two different behaviors in case the line search fails
to provide a reduced residual norm:

	accept the solution and move to the next Newton iteration;

	reject the solution and request a timestep cut;

Timestepping Strategy

The actual timestep size employed is determined by a combination of several factors.
In particular, specific output events may have timestep requirements that force a
specific timestep to be used. However, physics solvers do have the possibility of
requesting a specific timestep size to the event manager based on their specific
requirements. In particular, in case of fast convergence indicated by a small number of
Newton iterations, i.e.

[image: \text{numIterations} < \text{dtIncIterLimit} \cdot \text{newtonMaxIter},]

the physics solver will require to double the timestep size. On the other hand,
if a large number of nonlinear iterations are necessary to
find the solution at timestep [image: n]

[image: \text{numIterations} > \text{dtCutIterLimit} \cdot \text{newtonMaxIter},]

the physics solver will request the next timestep, [image: n+1], to be half the size of timestep [image: n].
Here,

Additionally, in case the nonlinear solver fails to converge with the timestep provided by the
event manager, the timestep size is cut, i.e.

[image: \text{dt} = \text{timestepCutFactor} \cdot \text{dt},]

and the nonlinear loop is repeated with the new timestep size.

Parameters

All parameters defining the behavior of the nonlinear solver and determining the
timestep size requested by the physics solver are defined in the NonlinearSolverParameters
and are presented in the following table.

	Name

	Type

	Default

	Description

	allowNonConverged

	integer

	0

	Allow non-converged solution to be accepted. (i.e. exit from the Newton loop without achieving the desired tolerance)

	dtCutIterLimit

	real64

	0.7

	Fraction of the Max Newton iterations above which the solver asks for the time-step to be cut for the next dt.

	dtIncIterLimit

	real64

	0.4

	Fraction of the Max Newton iterations below which the solver asks for the time-step to be doubled for the next dt.

	lineSearchAction

	geosx_NonlinearSolverParameters_LineSearchAction

	Attempt

	
How the line search is to be used. Options are:

* None - Do not use line search.

* Attempt - Use line search. Allow exit from line search without achieving smaller residual than starting residual.

* Require - Use line search. If smaller residual than starting resdual is not achieved, cut time step.

	lineSearchCutFactor

	real64

	0.5

	Line search cut factor. For instance, a value of 0.5 will result in the effective application of the last solution by a factor of (0.5, 0.25, 0.125, …)

	lineSearchMaxCuts

	integer

	4

	Maximum number of line search cuts.

	logLevel

	integer

	0

	Log level

	maxSubSteps

	integer

	10

	Maximum number of time sub-steps allowed for the solver

	maxTimeStepCuts

	integer

	2

	Max number of time step cuts

	newtonMaxIter

	integer

	5

	Maximum number of iterations that are allowed in a Newton loop.

	newtonMinIter

	integer

	1

	Minimum number of iterations that are required before exiting the Newton loop.

	newtonTol

	real64

	1e-06

	The required tolerance in order to exit the Newton iteration loop.

	timestepCutFactor

	real64

	0.5

	Factor by which the time step will be cut if a timestep cut is required.

Solid Mechanics Solver

List of Symbols

[image: i,j,k &\equiv \text {indices over spatial dimensions} \notag \\ a,b,c &\equiv \text {indices over nodes} \notag \\ l &\equiv \text {indices over volumetric elements} \notag \\ q,r,s &\equiv \text {indices over faces} \notag \\ n &\equiv \text {indices over time} \notag \\ kiter &\equiv \text {iteration count for non-linear solution scheme} \notag \\ \Omega &\equiv \text {Volume of continuum body} \notag \\ \Omega_{crack} &\equiv \text {Volume of open crack} \notag \\ \Gamma &\equiv \text {External surface of } \Omega \notag \\ \Gamma_t &\equiv \text {External surface where tractions are applied} \notag \\ \Gamma_u &\equiv \text {External surface where kinematics are specified} \notag \\ \Gamma_{crack} &\equiv \text {entire surface of crack} \notag \\ \Gamma_{cohesive} &\equiv \text {surface of crack subject to cohesive tractions} \notag \\ \eta_0 &\equiv \text {set of all nodes} \notag \\ \eta_f & \equiv \text {set of all nodes on flow mesh} \notag \\ m &\equiv \text{mass} \notag \\ \kappa_k &\equiv \text{all elements connected to element k} \notag \\ \phi & \equiv \text { porosity} \notag \\ p_f & \equiv \text { fluid pressure} \notag \\ \mathbf{u} & \equiv \text { displacement} \notag \\ \mathbf{q} & \equiv \text { volumetric flow rate} \notag \\ \mathbf{T} & \equiv \text { Cauchy stress} \notag \\ \rho & \equiv \text { density in the current configuration} \notag \\ \mathbf{x}& \equiv \text { current position} \notag \\ \mathbf{w}&\equiv \text { aperture, or gap vector} \notag]

Introduction

The SolidMechanics_LagrangianFEM solver applies a Continuous Galerkin finite element method to solve the linear momentum balance equation.
The primary variable is the displacement field which is discretized at the nodes.

Theory

Governing Equations

The SolidMechanics_LagrangianFEM solves the equations of motion as given by

[image: T_{ij,j} + \rho(b_{i}-\ddot{x}_{i}) = 0,]

which is a 3-dimensional expression for the well known expression of Newtons Second Law ([image: F = m a]).
These equations of motion are discretized using the Finite Element Method,
which leads to a discrete set of residual equations:

[image: (R_{solid})_{ai}=\int\limits_{\Gamma_t} \Phi_a t_i dA - \int\limits_\Omega \Phi_{a,j} T_{ij} dV +\int\limits_\Omega \Phi_a \rho(b_{i}-\Phi_b\ddot{x}_{ib}) dV = 0]

Quasi-Static Time Integration

The Quasi-Static time integration option solves the equation of motion after removing the inertial term, which is expressed by

[image: T_{ij,j} + \rho b_{i} = 0,]

which is essentially a way to express the equation for static equilibrium ([image: \Sigma F=0]).
Thus, selection of the Quasi-Static option will yield a solution where the sum of all forces at a given node is equal to zero.
The resulting finite element discretized set of residual equations are expressed as

[image: (R_{solid})_{ai}=\int\limits_{\Gamma_t} \Phi_a t_i dA - \int\limits_\Omega \Phi_{a,j} T_{ij} dV + \int\limits_\Omega \Phi_a \rho b_{i} dV = 0,]

Taking the derivative of these residual equations wrt. the primary variable (displacement) yields

[image: \pderiv{(R_{solid}^e)_{ai}}{u_{bj}} &= - \int\limits_{\Omega^e} \Phi_{a,k} \frac{\partial T_{ik}}{\partial u_{bj}} dV,]

And finally, the expression for the residual equation and derivative are used to express a non-linear system of equations

[image: \left. \left(\pderiv{(R_{solid}^e)_{ai}}{u_{bj}} \right)\right|^{n+1}_{kiter} \left(\left. \left({u}_{bj} \right) \right|^{n+1}_{{kiter}+1} - \left. \left({u}_{bj} \right) \right|^{n+1}_{kiter} \right) = - (R_{solid})_{ai}|^{n+1}_{kiter} ,]

which are solved via the solver package.

Implicit Dynamics Time Integration (Newmark Method)

For implicit dynamic time integration, we use an implementation of the classical Newmark method.
This update method can be posed in terms of a simple SDOF spring/dashpot/mass model.
In the following, [image: M] represents the mass, [image: C] represent the damping of the dashpot, [image: K]
represents the spring stiffness, and [image: F] represents some external load.

[image: M a^{n+1} + C v^{n+1} + K u^{n+1} &= F_{n+1}, \\]

and a series of update equations for the velocity and displacement at a point:

[image: u^{n+1} &= u^n + v^{n+1/2} \Delta t, \\ u^{n+1} &= u^n + \left(v^{n} + \inv{2} \left[(1-2\beta) a^n + 2\beta a^{n+1} \right] \Delta t \right) \Delta t, \\ v^{n+1} &= v^n + \left[(1-\gamma) a^n + \gamma a^{n+1} \right] \Delta t.]

As intermediate quantities we can form an estimate (predictor) for the end of step displacement and midstep velocity by
assuming zero end-of-step acceleration.

[image: \tilde{u}^{n+1} &= u^n + \left(v^{n} + \inv{2} (1-2\beta) a^n \Delta t \right) \Delta t = u^n + \hat{\tilde{u}}\\ \tilde{v}^{n+1} &= v^n + (1-\gamma) a^n \Delta t = v^n + \hat{\tilde{v}}]

This gives the end of step displacement and velocity in terms of the predictor with a correction for the end
step acceleration.

[image: u^{n+1} &= \tilde{u}^{n+1} + \beta a^{n+1} \Delta t^2 \\ v^{n+1} &= \tilde{v}^{n+1} + \gamma a^{n+1} \Delta t]

The acceleration and velocity may now be expressed in terms of displacement, and ultimatly in terms
of the incremental displacement.

[image: a^{n+1} &= \frac{1}{\beta \Delta t^2} \left(u^{n+1} - \tilde{u}^{n+1} \right) = \frac{1}{\beta \Delta t^2} \left(\hat{u} - \hat{\tilde{u}} \right) \\ v^{n+1} &= \tilde{v}^{n+1} + \frac{\gamma}{\beta \Delta t} \left(u^{n+1} - \tilde{u}^{n+1} \right) = \tilde{v}^{n+1} + \frac{\gamma}{\beta \Delta t} \left(\hat{u} - \hat{\tilde{u}} \right)]

plugging these into equation of motion for the SDOF system gives:

[image: M \left(\frac{1}{\beta \Delta t^2} \left(\hat{u} - \hat{\tilde{u}} \right)\right) + C \left(\tilde{v}^{n+1} + \frac{\gamma}{\beta \Delta t} \left(\hat{u} - \hat{\tilde{u}} \right) \right) + K u^{n+1} &= F_{n+1} \\]

Finally, we assume Rayliegh damping for the dashpot.

[image: C = a_{mass} M + a_{stiff} K]

Of course we know that we intend to model a system of equations with many DOF.
Thus the representation for the mass, spring and dashpot can be replaced by our finite element discretized
equation of motion.
We may express the system in context of a nonlinear residual problem

[image: (R_{solid}^e)_{ai} &= \int\limits_{\Gamma_t^e} \Phi_a t_i dA \\ &- \int\limits_{\Omega^e} \Phi_{a,j} \left(T_{ij}^{n+1}+ a_{stiff} \left(\pderiv{T_{ij}^{n+1}}{\hat{u}_{bk}} \right)_{elastic} \left(\tilde{v}_{bk}^{n+1} + \frac{\gamma}{\beta \Delta t} \left(\hat{u}_{bk} - \hat{\tilde{u}}_{bk} \right) \right) \right) dV \notag \\ &+\int\limits_{\Omega^e} \Phi_a \rho \left(b_{i}- \Phi_b \left(a_{mass} \left(\tilde{v}_{bi}^{n+1} + \frac{\gamma}{\beta \Delta t} \left(\hat{u}_{bi} - \hat{\tilde{u}}_{bi} \right) \right) + \frac{1}{\beta \Delta t^2} \left(\hat{u}_{bi} - \hat{\tilde{u}}_{bi} \right) \right) \right) dV ,\notag \\ \pderiv{(R_{solid}^e)_{ai}}{\hat{u}_{bj}} &= - \int\limits_{\Omega^e} \Phi_{a,k} \left(\pderiv{T_{ik}^{n+1}}{\hat{u}_{bj}}+ a_{stiff} \frac{\gamma}{\beta \Delta t} \left(\pderiv{T_{ik}^{n+1}}{\hat{u}_{bj}} \right)_{elastic} \right) dV \notag \\ &- \left(\frac{\gamma a_{mass}}{\beta \Delta t} + \frac{1}{\beta \Delta t^2} \right) \int\limits_{\Omega^e} \rho \Phi_a \Phi_c \pderiv{ \hat{u}_{ci} }{\hat{u}_{bj}}dV .]

Again, the expression for the residual equation and derivative are used to express a non-linear system of equations

[image: \left. \left(\pderiv{(R_{solid}^e)_{ai}}{u_{bj}} \right)\right|^{n+1}_{kiter} \left(\left. \left({u}_{bj} \right) \right|^{n+1}_{{kiter}+1} - \left. \left({u}_{bj} \right) \right|^{n+1}_{kiter} \right) = - (R_{solid})_{ai}|^{n+1}_{kiter} ,]

which are solved via the solver package. Note that the derivatives involving [image: u] and [image: \hat{u}] are interchangable,
as are differences between the non-linear iterations.

Explicit Dynamics Time Integration (Special Implementation of Newmark Method with gamma=0.5, beta=0)

For the Newmark Method, if gamma=0.5, beta=0, and the inertial term contains a diagonalized “mass matrix”,
the update equations may be carried out without the solution of a system of equations.
In this case, the update equations simplify to a non-iterative update algorithm.

First the mid-step velocity and end-of-step displacements are calculated through the update equations

[image: \tensor{v}^{n+1/2} &= \tensor{v}^{n} + \tensor{a}^n \left(\frac{\Delta t}{2} \right), \text{ and} \\ \tensor{u}^{n+1} &= \tensor{u}^n + \tensor{v}^{n+1/2} \Delta t.]

Then the residual equation/s are calculated, and acceleration at the end-of-step is calculated via

[image: \left(\tensor{M} + \frac{\Delta t}{2} \tensor{C} \right) \tensor{a}^{n+1} &= \tensor{F}_{n+1} - \tensor{C} v^{n+1/2} - \tensor{K} u^{n+1} .]

Note that the mass matrix must be diagonal, and damping term may not include the stiffness based damping
coefficient for this method, otherwise the above equation will require a system solve.
Finally, the end-of-step velocities are calculated from the end of step acceleration:

[image: \tensor{v}^{n+1} &= \tensor{v}^{n+1/2} + \tensor{a}^{n+1} \left(\frac{\Delta t}{2} \right).]

Note that the velocities may be stored at the midstep, resulting one less kinematic update.
This approach is typically referred to as the “Leapfrog” method.
However, in GEOSX we do not offer this option since it can cause some confusion that results from the
storage of state at different points in time.

Parameters

In the preceding XML block, The SolidMechanics_LagrangianFEM is specified by the title of the subblock of the Solvers block.
The following attributes are supported in the input block for SolidMechanics_LagrangianFEM:

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	contactRelationName

	string

	NOCONTACT

	Name of contact relation to enforce constraints on fracture boundary.

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	massDamping

	real64

	0

	Value of mass based damping coefficient.

	maxNumResolves

	integer

	10

	Value to indicate how many resolves may be executed after some other event is executed. For example, if a SurfaceGenerator is specified, it will be executed after the mechanics solve. However if a new surface is generated, then the mechanics solve must be executed again due to the change in topology.

	name

	string

	required

	A name is required for any non-unique nodes

	newmarkBeta

	real64

	0.25

	Value of [image: \beta] in the Newmark Method for Implicit Dynamic time integration option. This should be pow(newmarkGamma+0.5,2.0)/4.0 unless you know what you are doing.

	newmarkGamma

	real64

	0.5

	Value of [image: \gamma] in the Newmark Method for Implicit Dynamic time integration option

	solidMaterialNames

	string_array

	required

	The name of the material that should be used in the constitutive updates

	stiffnessDamping

	real64

	0

	Value of stiffness based damping coefficient.

	strainTheory

	integer

	0

	
Indicates whether or not to use Infinitesimal Strain Theory [https://en.wikipedia.org/wiki/Infinitesimal_strain_theory], or Finite Strain Theory [https://en.wikipedia.org/wiki/Finite_strain_theory]. Valid Inputs are:

0 - Infinitesimal Strain

1 - Finite Strain

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	timeIntegrationOption

	geosx_SolidMechanicsLagrangianFEM_TimeIntegrationOption

	ExplicitDynamic

	
Time integration method. Options are:

* QuasiStatic

* ImplicitDynamic

* ExplicitDynamic

	useVelocityForQS

	integer

	0

	Flag to indicate the use of the incremental displacement from the previous step as an initial estimate for the incremental displacement of the current step.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

The following data are allocated and used by the solver:

	Name

	Type

	Registered On

	Description

	maxForce

	real64

	
	The maximum force contribution in the problem domain.

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	Acceleration

	real64_array2d

	Datastructure: nodeManager

	An array that holds the current acceleration on the nodes. This array also is used to hold the summation of nodal forces resulting from the governing equations.

	IncrementalDisplacement

	real64_array2d

	Datastructure: nodeManager

	An array that holds the incremental displacements for the current time step on the nodes.

	Mass

	real64_array

	Datastructure: nodeManager

	An array that holds the mass on the nodes.

	TotalDisplacement

	real64_array2d

	Datastructure: nodeManager

	An array that holds the total displacements on the nodes.

	Velocity

	real64_array2d

	Datastructure: nodeManager

	An array that holds the current velocity on the nodes.

	contactForce

	real64_array2d

	Datastructure: nodeManager

	An array that holds the contact force.

	externalForce

	real64_array2d

	Datastructure: nodeManager

	An array that holds the external forces on the nodes. This includes any boundary conditions as well as coupling forces such as hydraulic forces.

	uhatTilde

	real64_array2d

	Datastructure: nodeManager

	An array that holds the incremental displacement predictors on the nodes.

	velocityTilde

	real64_array2d

	Datastructure: nodeManager

	An array that holds the velocity predictors on the nodes.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

Example

An example of a valid XML block is given here:

Singlephase Flow Solver

Introduction

Here, we describe the single-phase flow solver.
The role of this solver is to implement the fully implicit finite-volume discretization (mainly, accumulation and source terms, boundary conditions) of the equations governing compressible single-phase flow in porous media.
This solver can be combined with the SinglePhaseWell class which handles the discrete multi-segment well model and provides source/sink terms for the fluid flow solver.

Theory

Governing Equations

This is a cell-centered Finite Volume solver for compressible single-phase flow in porous media.
Fluid pressure as the primary solution variable.
Darcy’s law is used to calculate fluid velocity from pressure gradient.
The solver currently only supports Dirichlet-type boundary conditions (BC) applied on cells or faces and Neumann no-flow type BC.

The following mass balance equation is solved in the domain:

[image: \frac{\partial}{\partial t}(\phi\rho) + \boldsymbol{\nabla} \cdot (\rho\boldsymbol{u}) + q = 0,]

where

[image: \boldsymbol{u} = -\frac{1}{\mu}\boldsymbol{k}(\nabla p - \rho \boldsymbol{g})]

and [image: \phi] is porosity, [image: \rho] is fluid density, [image: \mu] is fluid viscosity,
[image: \boldsymbol{k}] is the permeability tensor, [image: \boldsymbol{g}] is the gravity vector,
and [image: q] is the source function (currently not supported). The details on the computation of the density and the viscosity are given in Compressible single phase fluid model.

When the entire pore space is filled by a single phase, we can substitute the Darcy’s law into the mass balance equation to obtain the single phase flow equation

[image: \frac{\partial}{\partial t}(\phi\rho) - \boldsymbol{\nabla} \cdot \frac{\rho \boldsymbol{k}}{\mu} (\nabla p - \gamma \nabla z) + q = 0,]

with [image: \gamma \nabla z= \rho \boldsymbol{g}].

Discretization

Space Discretization

Let [image: \Omega \subset \mathbb{R}^n, \, n =1,2,3] be an open set defining the computational domain. We consider [image: \Omega] meshed by element such that [image: \Omega = \cup_{i}V_i] and integrate the single phase flow equation, described above, over each element [image: V_i]:

[image: \int_{V_i} \frac{\partial}{\partial t}(\phi\rho) dV - \int_{V_i} \boldsymbol{\nabla} \cdot \frac{\rho \boldsymbol{k}}{\mu} (\nabla p - \gamma \nabla z) dV + \int_{V_i} q dV = 0.]

Applying the divergence theorem to the second term leads to

[image: \int_{V_i} \frac{\partial}{\partial t}(\phi\rho)_i - \oint_{S_i} \left(\frac{\rho \boldsymbol{k}}{\mu}(\nabla p -\gamma \nabla z)\right) \cdot \boldsymbol{n} dS + \int_{V_i} q dV = 0.]

where [image: S_i] represents the surface area of the element [image: V_i] and [image: \boldsymbol{n}] is a outward unit vector normal to the surface.

For the flux term, the (static) transmissibility is currently computed with a Two-Point Flux Approximation (TPFA) as described in Finite Volume Discretization.

The pressure-dependent mobility [image: \lambda = \frac{\rho}{\mu}] at the interface is approximated using a first-order upwinding on the sign of the potential difference.

Time Discretization

Let [image: t_0 < t_1 < \cdots < t_N=T] be a grid discretization of the time interval [image: [t_0,T], \, t_0, T \in \mathbb{R}^+]. We use the backward Euler (fully implicit) method to integrate the single phase flow equation between two grid points [image: t_n] and [image: t_{n+1}, \, n< N] to obtain the residual equation:

[image: \int_{V_i} \frac{(\phi\rho)_i^{n+1} - (\phi\rho)_i^n}{\Delta t} - \oint_{S_i} \left(\frac{\rho \boldsymbol{k}}{\mu}(\nabla p -\gamma \nabla z)\right)^{n+1} \cdot \boldsymbol{n} dS + \int_{V_i} q^{n+1} dV = 0]

where [image: \Delta t = t_{n+1}-t_n] is the time-step. The expression of this residual equation and its derivative are used to form a linear system, which is solved via the solver package.

Parameters

The solver is enabled by adding a <SinglePhaseFVM> node in the Solvers section.
Like any solver, time stepping is driven by events, see Event Management.

The following attributes are supported:

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object to use for this solver.

	fluidNames

	string_array

	required

	Names of fluid constitutive models for each region.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	inputFluxEstimate

	real64

	1

	Initial estimate of the input flux used only for residual scaling. This should be essentially equivalent to the input flux * dt.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityNames

	string_array

	required

	Names of permeability constitutive models for each region.

	solidNames

	string_array

	required

	Names of solid constitutive models for each region.

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

In particular:

	discretization must point to a Finite Volume flux approximation scheme defined in the Numerical Methods section of the input file (see Finite Volume Discretization)

	fluidName must point to a single phase fluid model defined in the Constitutive section of the input file (see Constitutive Models)

	solidName must point to a solid mechanics model defined in the Constitutive section of the input file (see Constitutive Models)

	targetRegions is used to specify the regions on which the solver is applied

Primary solution field label is pressure.
Initial conditions must be prescribed on this field in every region, and boundary conditions
must be prescribed on this field on cell or face sets of interest.

Example

 <Solvers>
 <SinglePhaseFVM
 name="SinglePhaseFlow"
 logLevel="1"
 discretization="singlePhaseTPFA"
 fluidNames="{ water }"
 solidNames="{ rock }"
 permeabilityNames="{ rockPerm }"
 targetRegions="{ mainRegion }">
 <NonlinearSolverParameters
 newtonTol="1.0e-6"
 newtonMaxIter="8"/>
 <LinearSolverParameters
 solverType="gmres"
 krylovTol="1.0e-10"/>
 </SinglePhaseFVM>
 </Solvers>

We refer the reader to this page for a complete tutorial illustrating the use of this solver.

Compositional Multiphase Flow Solver

Introduction

This flow solver is in charge of implementing the finite-volume discretization (mainly, accumulation and flux terms, boundary conditions) of the equations governing compositional multiphase flow in porous media.
The present solver can be combined with the Compositional Multiphase Well Solver which handles the discrete multi-segment well model and provides source/sink terms for the fluid flow solver.

Below, we first review the set of Governing Equations, followed by a discussion of the
choice of Primary Variables used in the global variable formulation.
Then we give an overview of the Discretization and, finally, we provide a list of the solver Parameters and an input Example.

Theory

Governing Equations

Mass Conservation Equations

Mass conservation for component [image: c] is expressed as:

[image: \phi \frac{ \partial }{\partial t} \bigg(\sum_\ell \rho_{\ell} \, y_{c \ell} \, S_{\ell} \bigg) + \nabla \cdot \bigg(\sum_\ell \rho_{\ell} \, y_{c \ell} \, \boldsymbol{u}_{\ell} \bigg) - \sum_\ell \rho_{\ell} \, y_{c \ell} \, q_{\ell} = 0,]

where [image: \phi] is the porosity of the medium,
[image: S_{\ell}] is the saturation of phase [image: \ell], [image: y_{c \ell}]
is the mass fraction of component [image: c] in phase [image: \ell],
[image: \rho_{\ell}] is the phase density, and [image: t] is time. We note that the
formulation currently implemented in GEOSX is isothermal.

Darcy’s Law

Using the multiphase extension of Darcy’s law, the phase velocity [image: \boldsymbol{u}_{\ell}]
is written as a function of the phase potential gradient [image: \nabla \Phi_{\ell}]:

[image: \boldsymbol{u}_{\ell} := -\boldsymbol{k} \lambda_{\ell} \nabla \Phi_{\ell} = - \boldsymbol{k} \lambda_{\ell} \big(\nabla (p - P_{c,\ell}) - \rho_{\ell} g \nabla z \big).]

In this equation, [image: \boldsymbol{k}] is the rock permeability,
[image: \lambda_{\ell} = k_{r \ell} / \mu_{\ell}] is the phase mobility,
defined as the phase relative permeability divided by the phase viscosity,
[image: p] is the reference pressure, [image: P_{c,\ell}] is the the capillary
pressure, [image: g] is the gravitational acceleration, and [image: z] is depth.
The evaluation of the relative permeabilities, capillary pressures, and
viscosities is reviewed in the section about Constitutive Models.

Combining the mass conservation equations with Darcy’s law yields a set of [image: n_c]
equations written as:

[image: \phi \frac{ \partial }{\partial t} \bigg(\sum_\ell \rho_{\ell} \, y_{c \ell} \, S_{\ell} \bigg) - \nabla \cdot \boldsymbol{k} \bigg(\sum_\ell \rho_{\ell} \, y_{c \ell} \, \lambda_{\ell} \nabla \Phi_{\ell} \bigg) - \sum_\ell \rho_{\ell} \, y_{c \ell} \, q_{\ell} = 0.]

Constraints and Thermodynamic Equilibrium

The volume constraint equation states that the pore space is always completely filled by
the phases. The constraint can be expressed as:

[image: \sum_{\ell} S_{\ell} = 1.]

The system is closed by the following thermodynamic equilibrium constraints:

[image: f_{c \ell} - f_{c m} = 0.]

where [image: f_{c \ell}] is the fugacity of component [image: c] in phase [image: \ell].
The flash calculations performed to enforce the thermodynamical equilibrium are reviewed
in the section about Constitutive Models.

To summarize, the compositional multiphase flow solver assembles a set of [image: n_c+1]
equations in each element, i.e., [image: n_c] mass conservation equations and one volume constraint equation.
A separate module discussed in the Constitutive Models
is responsible for the enforcement of the thermodynamic equilibrium at each nonlinear iteration.

	Number of equations

	Equation type

	[image: n_c]

	Mass conservation equations

	1

	Volume constraint

Primary Variables

The variable formulation implemented in GEOSX is a global variable formulation based on
[image: n_c+1] primary variables, namely, one pressure, [image: p], and
[image: n_c] component densities, [image: \rho_c].
By default, we use molar component densities.
A flag discussed in the section Parameters can be used to select mass component densities instead of molar component densities.

	Number of primary variables

	Variable type

	1

	Pressure

	[image: n_c]

	Component densities

Assembling the residual equations and calling the
Constitutive Models requires computing the molar component
fractions and saturations. This is done with the relationship:

[image: z_c := \frac{\rho_c}{\rho_T},]

where

[image: \rho_T := \sum_c \rho_c.]

These secondary variables are used as input to the flash calculations.
After the flash calculations, the saturations are computed as:

[image: S_{\ell} := \nu_{\ell} \frac{ \rho_T }{ \rho_{\ell}},]

where [image: \nu_{\ell}] is the global mole fraction of phase [image: \ell]
and [image: \rho_{\ell}] is the molar density of phase [image: \ell].
These steps also involve computing the derivatives of the component
fractions and saturations with respect to the pressure and component densities.

Discretization

Spatial Discretization

The governing equations are discretized using standard cell-centered finite-volume
discretization.

In the approximation of the flux term at the interface between two control volumes,
the calculation of the pressure stencil is general and will ultimately support a
Multi-Point Flux Approximation (MPFA) approach. The current implementation of the
transmissibility calculation is reviewed in the section about
Finite Volume Discretization.

The approximation of the dynamic transport coefficients multiplying the discrete
potential difference (e.g., the phase mobilities) is performed with a first-order
phase-per-phase single-point upwinding based on the sign of the phase potential difference
at the interface.

Temporal Discretization

The compositional multiphase solver uses a fully implicit (backward Euler) temporal discretization.

Solution Strategy

The nonlinear solution strategy is based on Newton’s method.
At each Newton iteration, the solver assembles a residual vector, [image: R],
collecting the [image: n_c] discrete mass conservation equations and the volume
constraint for all the control volumes.

Parameters

The following attributes are supported:

	Name

	Type

	Default

	Description

	allowLocalCompDensityChopping

	integer

	1

	Flag indicating whether local (cell-wise) chopping of negative compositions is allowed

	capPressureNames

	string_array

	{}

	Name of the capillary pressure constitutive model to use

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	computeCFLNumbers

	integer

	0

	Flag indicating whether CFL numbers are computed or not

	discretization

	string

	required

	Name of discretization object to use for this solver.

	fluidNames

	string_array

	required

	Names of fluid constitutive models for each region.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	inputFluxEstimate

	real64

	1

	Initial estimate of the input flux used only for residual scaling. This should be essentially equivalent to the input flux * dt.

	logLevel

	integer

	0

	Log level

	maxCompFractionChange

	real64

	1

	Maximum (absolute) change in a component fraction between two Newton iterations

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityNames

	string_array

	required

	Names of permeability constitutive models for each region.

	relPermNames

	string_array

	required

	Name of the relative permeability constitutive model to use

	solidNames

	string_array

	required

	Names of solid constitutive models for each region.

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	temperature

	real64

	required

	Temperature

	useMass

	integer

	0

	Use mass formulation instead of molar

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Example

 <Solvers>
 <CompositionalMultiphaseFVM
 name="compflow"
 logLevel="1"
 discretization="fluidTPFA"
 targetRegions="{ Channel }"
 fluidNames="{ fluid }"
 solidNames="{ rock }"
 permeabilityNames="{ rockPerm }"
 relPermNames="{ relperm }"
 maxCompFractionChange="0.3"
 temperature="300">
 <NonlinearSolverParameters
 newtonTol="1.0e-10"
 newtonMaxIter="15"/>
 <LinearSolverParameters
 directParallel="0"/>
 </CompositionalMultiphaseFVM>
 </Solvers>

We refer the reader to Multiphase Flow for a complete tutorial illustrating the use of this solver.

Compositional Multiphase Well Solver

Introduction

Here, we present a description of the well solvers.
These solvers are designed to be coupled with the flow solvers.
Their specific task is to implement the multi-segment well discretization using the fluid model used in the corresponding flow solver – i.e., either single-phase flow or compositional multiphase flow.
In particular, the perforation terms computed by the well solvers are a source/sink term for the discrete reservoir equations assembled by the flow solvers.

In the present description, we focus on the compositional multiphase well solver.
The structure of the single-phase well solver is analogous and will not be described here for brevity.

Theory

Here, we give an overview of the well formulation implemented in GEOSX.
We review the set of Discrete Equations, and then we describe the Primary variables used the well solvers.

Discrete Equations

We assume that the well is discretized into segments denoted by the index [image: i].

Mass Conservation

In well segment [image: i], mass conservation for component [image: c] reads:

[image: z^{upw}_{c,(i-1,i)} q_{(i-1,i)} - z^{upw}_{c,(i,i+1)} q_{(i,i+1)} + q^{perf}_{c,i} = 0,]

where we have neglected the accumulation term.
In the previous equation, [image: z^{upw}_{c,(i,j)}] is the upwinded mass fraction of component [image: c] at the interface between segments [image: i] and [image: j], [image: q_{(i,j)}] is the total mass flux between segments [image: i] and [image: j], and [image: q^{perf}_{c,i}] is the source/sink term generated by the perforations – i.e., the connections between the well and the reservoir.
The upwinded mass fractions are computed as:

[image: z^{upw}_{c,(i,j)} = \left\{ \begin{array}{cl} z_{c,i} & \text{if} \, \, q_{(i,j)} > 0 \\[10pt] z_{c,j} & \text{otherwise.} \end{array}\right.]

The perforation terms are obtained with:

[image: q^{perf}_{c,i} = \left\{ \begin{array}{cl} WI z_{c,i} \rho_{m,i} \lambda^{res}_T \Delta \Phi & \text{if the well is upstream (i.e.,} \, \, \Delta \Phi > 0) \\[10pt] WI x^{res}_{c,\ell} \rho^{res}_{\ell} \lambda^{res}_{\ell} \Delta \Phi & \text{otherwise,} \end{array}\right.]

where [image: \Delta \Phi = p_i - p^{res} + \rho_{m,i} g \Delta d_{i,perf}] is the potential difference between the segment center and the reservoir center.
In the expression of the potential difference, the mixture density is computed as [image: \rho_{m,i} = \sum_{\ell} S_{\ell,i} \rho_{\ell,i}].
The well index, [image: WI], is currently an input of the simulator.
The superscript [image: res] means that the variable is evaluated at the center of the reservoir element.

Volume Constraint Equation

As in the Compositional Multiphase Flow Solver, the system is closed with a volume constraint equation.

Pressure Relations

In the current implementation of the well solver, we assume a hydrostatic equilibrium:

[image: p_{i+1} - p_i = \rho_{m,(i,i+1)} g \Delta d_{i,i+1},]

where [image: \rho_{m,(i,i+1)}] is the arithmetic average of the mixture densities evaluated in segments [image: i] and [image: i+1].
Pressure drop components due to friction and acceleration are not implemented at the moment.

Pressure and Rate Controls

The well solver supports two types of control, namely, pressure control and rate control.

If pressure control is chosen, we add the following constraint for the pressure of the top segment of the well:

[image: p_0 - p^{target} = 0]

In this case, we check that at each iteration of the Newton solver, the rate at the top of the first segment is smaller than the maximum rate specified by the user.
If this is not the case, we switch to rate control.

If rate control is used, we add the following constraint for the rate at the top of the first segment, denoted by [image: q_{(-1,0)}]:

[image: q_{(-1,0)} - q^{target} = 0]

If the pressure at the top segment becomes larger than the maximum pressure specified by the user, then we switch to pressure control.

To summarize, the compositional multiphase flow solver assembles a set of [image: n_c+2] equations, i.e., [image: n_c] mass conservation equations and 1 volume constraint equation in each segment, plus 1 pressure relation at the interface between a segment and the next segment in the direction of the well head.
For the top segment, the pressure relation is replaced with the control equation.

	Number of equations

	Equation type

	[image: n_c]

	Mass conservation equations

	1

	Pressure relation or control equation

	1

	Volume constraint

Primary variables

The well variable formulation is the same as that of the Compositional Multiphase Flow Solver.
In a well segment, in addition to the [image: n_c+1] primary variables of the Compositional Multiphase Flow Solver, namely, one pressure, [image: p], and
[image: n_c] component densities, [image: \rho_c], we also treat the total mass flux at the interface with the next segment, denoted by [image: q], as a primary variable.

	Number of primary variables

	Variable type

	1

	Pressure

	1

	Total mass flux at the interface with next segment

	[image: n_c]

	Component densities

Parameters

The following attributes are supported:

	Name

	Type

	Default

	Description

	allowLocalCompDensityChopping

	integer

	1

	Flag indicating whether local (cell-wise) chopping of negative compositions is allowed

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	fluidNames

	string_array

	required

	Name of fluid constitutive object to use for this solver.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	maxCompFractionChange

	real64

	1

	Maximum (absolute) change in a component fraction between two Newton iterations

	maxRelativePressureChange

	real64

	1

	Maximum (relative) change in pressure between two Newton iterations (recommended with rate control)

	name

	string

	required

	A name is required for any non-unique nodes

	relPermNames

	string_array

	required

	Names of relative permeability constitutive models to use

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	useMass

	integer

	0

	Use mass formulation instead of molar

	wellTemperature

	real64

	required

	Temperature

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	WellControls

	node

	
	Element: WellControls

Example

 <CompositionalMultiphaseWell
 name="compositionalMultiphaseWell"
 logLevel="1"
 targetRegions="{ wellRegion1, wellRegion2, wellRegion3 }"
 fluidNames="{ fluid1 }"
 relPermNames="{ relperm }"
 wellTemperature="297.15">
 <WellControls
 name="wellControls1"
 type="producer"
 control="BHP"
 referenceElevation="0.5"
 targetBHP="4e6"
 targetPhaseRate="1e-3"
 targetPhaseName="oil"/>
 <WellControls
 name="wellControls2"
 type="producer"
 control="phaseVolRate"
 referenceElevation="0.5"
 targetBHP="2e6"
 targetPhaseRate="2.5e-7"
 targetPhaseName="oil"/>
 <WellControls
 name="wellControls3"
 type="injector"
 control="totalVolRate"
 referenceElevation="0.5"
 targetBHP="4e7"
 targetTotalRate="5e-7"
 injectionStream="{ 0.1, 0.1, 0.1, 0.7 }"/>
 </CompositionalMultiphaseWell>

Poromechanics Solver

Introduction

This section describes the use of the poroelasticity models implemented in GEOSX.

Theory

Governing Equations

In our model, the geomechanics (elasticity) equation is expressed in terms of the total stress [image: \mathbf{\sigma}]:

[image: \nabla \mathbf{\sigma} + \rho_b \mathbf{g} = 0]

where it relates to effective stress [image: \mathbf{\sigma\prime}] and pore pressure [image: p] through Biot’s coefficient [image: b]:

[image: \mathbf{\sigma} = \mathbf{\sigma\prime} - b p\mathbf{I}]

The fluid mass conservation equation is expressed in terms of pore pressure and volumetric (mean) total stress:

[image: \left(\frac{1}{M} + \frac{b^2}{K_{dr}} \right) \frac{\partial p}{\partial t} + \frac{b}{K_{dr}} \frac{\partial \sigma_v}{\partial t} + \nabla \cdot \mathbf{v}_f = f]

where [image: M] is the Biot’s modulus and [image: K_{dr}] is the drained bulk modulus.

Unlike the conventional reservoir model that uses Lagranges porosity, in the coupled geomechanics and flow model, Eulers porosity [image: \phi] is adopted so the porosity variation is derived as:

[image: \partial \phi = \left(\frac{b-\phi}{K_s}\right) \partial p + \left(b-\phi \right) \partial \epsilon_v]

where [image: K_{s}] is the bulk modulus of the solid grain and [image: \epsilon_v] is the volumetric strain.

Parameters

The poroelasticity model is implemented as a main solver listed in
<Solvers> block of the input XML file that calls both SolidMechanicsLagrangianSSLE and SinglePhaseFlow solvers.
In the main solver, it requires the specification of solidSolverName, fluidSolverName, and couplingTypeOption.

The following attributes are supported:

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	fluidSolverName

	string

	required

	Name of the fluid mechanics solver to use in the poromechanics solver

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	porousMaterialNames

	string_array

	required

	The name of the material that should be used in the constitutive updates

	solidSolverName

	string

	required

	Name of the solid mechanics solver to use in the poromechanics solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	couplingTypeOption: defines the coupling scheme.

The solid constitutive model used here is PoroLinearElasticIsotropic, which derives from ElasticIsotropic and includes an additional parameter: Biot’s coefficient. The fluid constitutive model is the same as SinglePhaseFlow solver. For the parameter setup of each individual solver, please refer to the guideline of the specific solver.

An example of a valid XML block for the constitutive model is given here:

 <Constitutive>
 <PorousElasticIsotropic
 name="porousRock"
 solidModelName="skeleton"
 porosityModelName="skeletonPorosity"
 permeabilityModelName="skeletonPerm"/>

 <ElasticIsotropic
 name="skeleton"
 defaultDensity="0"
 defaultYoungModulus="1.0e4"
 defaultPoissonRatio="0.2"/>

 <CompressibleSinglePhaseFluid
 name="fluid"
 defaultDensity="1"
 defaultViscosity="1.0"
 referencePressure="0.0"
 referenceDensity="1"
 compressibility="0.0e0"
 referenceViscosity="1"
 viscosibility="0.0"/>

 <BiotPorosity
 name="skeletonPorosity"
 grainBulkModulus="1.0e27"
 defaultReferencePorosity="0.3"/>

 <ConstantPermeability
 name="skeletonPerm"
 permeabilityComponents="{ 1.0e-4, 1.0e-4, 1.0e-4 }"/>
 </Constitutive>

Example

 <SinglePhasePoromechanics
 name="PoroelasticitySolver"
 solidSolverName="LinearElasticitySolver"
 fluidSolverName="SinglePhaseFlowSolver"
 porousMaterialNames="{ porousRock }"
 logLevel="1"
 discretization="FE1"
 targetRegions="{ Domain }">
 <LinearSolverParameters
	solverType="gmres"
 preconditionerType="mgr"/>
 </SinglePhasePoromechanics>

 <SolidMechanicsLagrangianSSLE
 name="LinearElasticitySolver"
 timeIntegrationOption="QuasiStatic"
 logLevel="1"
 discretization="FE1"
 targetRegions="{ Domain }"
 solidMaterialNames="{ skeleton }"/>

 <SinglePhaseFVM
 name="SinglePhaseFlowSolver"
 logLevel="1"
 discretization="singlePhaseTPFA"
 targetRegions="{ Domain }"
 fluidNames="{ fluid }"
 solidNames="{ porousRock }"
 permeabilityNames="{ skeletonPerm }"/>
 </Solvers>

Proppant Transport Solver

Introduction

The ProppantTransport solver applies the finite volume method to solve the equations of proppant transport in hydraulic fractures. The behavior of proppant transport is described by a continuum formulation. Here we briefly outline the usage, governing equations and numerical implementation of the proppant transport model in GEOSX.

Theory

The following mass balance and constitutive equations are solved inside fractures,

Proppant-fluid Slurry Flow

[image: \frac{\partial}{\partial t}(\rho_m) + \boldsymbol{\nabla} \cdot (\rho_m \boldsymbol{u_m}) = 0,]

where the proppant-fluid mixture velocity [image: \boldsymbol{u_m}] is approximated by the Darcy’s law as,

[image: \boldsymbol{u}_m = -\frac{K_f}{\mu_m}(\nabla p - \rho_m \boldsymbol{g}),]

and [image: p] is pressure, [image: \rho_m] and [image: \mu_m] are density and viscosity of the mixed fluid , respectively, and [image: \boldsymbol{g}] is the gravity vector. The fracture permeability [image: K_f] is determined based on fracture aperture [image: a] as

[image: K_f = \frac{a^2}{12}]

Proppant Transport

[image: \frac{\partial}{\partial t}(c) + \boldsymbol{\nabla} \cdot (c \boldsymbol{u}_p) = 0,]

in which [image: c] and [image: \boldsymbol{u}_p] represent the volume fraction and velocity of the proppant particles.

Multi-component Fluid Transport

[image: \frac{\partial}{\partial t} [\rho_i \omega_i (1 - c)] + \boldsymbol{\nabla} \cdot [\rho_i \omega_i (1 - c) \boldsymbol{u}_f] = 0.]

Here [image: \boldsymbol{u}_f] represents the carrying fluid velocity. [image: \rho_i] and [image: \omega_i] denote the density and concentration of i-th component in fluid, respectively. The fluid density [image: \rho_f] can now be readily written as

[image: \rho_f = \sum_{i=1}^{N_c} \rho_i \omega_i,]

where [image: N_c] is the number of components in fluid.
Similarly, the fluid viscosity [image: \mu_f] can be calculated by the mass fraction weighted average of the component viscosities.

The density and velocity of the slurry fluid are further expressed as,

[image: \rho_m = (1 - c) \rho_f + c \rho_p,]

and

[image: \rho_m \boldsymbol{u}_m = (1 - c) \rho_f \boldsymbol{u}_f + c \rho_p \boldsymbol{u}_p,]

in which [image: \rho_f] and [image: \boldsymbol{u}_f] are the density and velocity of the carrying fluid, and [image: \rho_p] is the density of the proppant particles.

Proppant Slip Velocity

The proppant particle and carrying fluid velocities are related by the slip velocity [image: \boldsymbol{u}_{slip}],

[image: \boldsymbol{u}_{slip} = \boldsymbol{u}_p - \boldsymbol{u}_f.]

The slip velocity between the proppant and carrying fluid includes gravitational and collisional components, which take account of particle settling and collision effects, respectively.

The gravitational component of the slip velocity [image: \boldsymbol{u}_{slipG}] is written as a form as

[image: \boldsymbol{u}_{slipG} = F(c) \boldsymbol{u}_{settling},]

where [image: \boldsymbol{u}_{settling}] is the settling velocity for a single particle, [image: d_p] is the particle diameter, and [image: F(c)] is the correction factor to the particle settling velocity in order to account for hindered settling effects as a result of particle-particle interactions,

[image: F(c) = e^{-\lambda_s c},]

with the hindered settling coefficient [image: \lambda_s] as an empirical constant set to 5.9 by default (Barree & Conway, 1995).

The settling velocity for a single particle, [image: \boldsymbol{u}_{settling}] , is calculated based on the Stokes drag law by default,

[image: \boldsymbol{u}_{settling} = (\rho_p - \rho_f) \frac{d{_p}^{2}}{18 \mu_f}\boldsymbol{g}.]

Single-particle settling under intermediate Reynolds-number and turbulent flow conditions can also be described respectively by the Allen’s equation (Barree & Conway, 1995),

[image: \boldsymbol{u}_{settling} = 0.2 d_{p}^{1.18} \left [\frac{g (\rho_p - \rho_f)}{\rho_f} \right]^{0.72} \left (\frac{\rho_f}{\mu_f} \right)^{0.45} \boldsymbol{e},]

and Newton’s equation(Barree & Conway, 1995),

[image: \boldsymbol{u}_{settling} = 1.74 d{_p}^{0.5}\left [\frac{g (\rho_p - \rho_f)}{\rho_f}\right]^{0.5} \boldsymbol{e}.]

[image: \boldsymbol{e}] is the unit gravity vector and [image: d_p] is the particle diameter.

The collisional component of the slip velocity is modeled by defining [image: \lambda], the ratio of the particle velocity to the volume averaged mixture velocity as a function of the proppant concentration. From this the particle slip velocity in horizontal direction is related to the mixed fluid velocity by,

[image: \boldsymbol{u}_{slipH} = \frac{\lambda - 1}{1 - c} \boldsymbol{v}_{m}]

with [image: \boldsymbol{v}_{m}] denoting volume averaged mixture velocity.
We use a simple expression of [image: \lambda] proposed by Barree & Conway (1995) to correct the particle slip velocity in horizontal direction,

[image: \lambda= \left[\alpha - |c - c_{slip} |^{\beta} \right]\,]

where [image: \alpha] and [image: \beta] are empirical constants, [image: c_{slip}] is the volume fraction exhibiting the greatest particle slip. By default the model parameters are set to the values given in (Barree & Conway, 1995): [image: \alpha= 1.27], [image: c_{slip} =0.1] and [image: \beta = 1.5]. This model can be extended to account for the transition to the particle pack as the proppant concentration approaches the jamming transition.

Proppant Bed Build-up and Load Transport

In addition to suspended particle flow the GEOSX has the option to model proppant settling into an immobile bed at the bottom of the fracture. As the proppant cannot settle further down the proppant bed starts to form and develop at the element that is either at the bottom of the fracture or has an underlying element already filled with particles. Such an “inter-facial” element is divided into proppant flow and immobile bed regions based on the proppant-pack height.

Although proppant becomes immobile fluid can continue to flow through the settled proppant pack. The pack permeability K is defined based on the Kozeny-Carmen relationship:

[image: K = \frac{(sd_p)^2}{180}\frac{\phi^{3}}{(1-\phi)^{2}}]

and

[image: \phi = 1 - c_{s}]

where [image: \phi] is the porosity of particle pack and [image: c_{s}] is the saturation or maximum fraction for proppant packing, [image: s] is the sphericity and [image: d_p] is the particle diameter.

The growth of the settled pack in an “inter-facial” element is controlled by the interplay between proppant gravitational settling and shear-force induced lifting as (Hu et al., 2018),

[image: \frac{d H}{d t} = \frac{c u_{settling} F(c)}{c_{s}} - \frac{Q_{lift}}{A c_{s}},]

where [image: H], [image: t], [image: c_{s}], [image: Q_{lift}], and [image: A] represent the height of the proppant bed, time, saturation or maximum proppant concnetration in the proppant bed, proppant-bed load (wash-out) flux, and cross-sectional area, respectively.

The rate of proppant bed load transport (or wash out) due to shear force is calculated by the correlation proposed by Wiberg and Smith (1989) and McClure (2018),

[image: Q_{lift} = a \left (d{_p} \sqrt{\frac{g d{_p} (\rho_p - \rho_f)}{\rho_f}} \right) (9.64 N_{sh}^{0.166})(N_{sh} - N_{sh, c})^{1.5}.]

[image: a] is fracture aperture, and [image: N_{sh}] is the Shields number measuring the relative importance of the shear force to the gravitational force on a particle of sediment (Miller et al., 1977; Biot & Medlin, 1985; McClure, 2018) as

[image: N_{sh} = \frac{\tau}{d{_p} g (\rho_p - \rho_f)},]

and

[image: \tau = 0.125 f \rho_f u_{m}^2]

where [image: \tau] is the shear stress acting on the top of the proppant bed and [image: f] is the Darcy friction coefficient. [image: N_{sh, c}] is the critical Shields number for the onset of bed load transport.

Proppant Bridging and Screenout

Proppant bridging occurs when proppant particle size is close to or larger than fracture aperture. The aperture at which bridging occurs, [image: h_{b}], is defined simply by

[image: h_{b} = \lambda_{b} d_p,]

in which [image: \lambda_{b}] is the bridging factor.

Slurry Fluid Viscosity

The viscosity of the bulk fluid, [image: \mu_m], is calculated as a function of proppant concentration as (Keck et al., 1992),

[image: \mu_{m} = \mu_{f}\left [1 + 1.25 \left (\frac{c}{1-c/c_{s}} \right) \right]^{2}.]

Note that continued model development and improvement are underway and additional empirical correlations or functions will be added to support the above calculations.

Spatial Discretization

The above governing equations are discretized using a cell-centered two-point flux approximation (TPFA) finite volume method. We use an upwind scheme to approximate proppant and component transport across cell interfaces.

Solution Strategy

The discretized non-linear slurry flow and proppant/component transport equations at each time step are separately solved by the Newton-Raphson method. The coupling between them is achieved by a time-marching sequential (operator-splitting) solution approach.

Parameters

The solver is enabled by adding a <ProppantTransport> node
and a <SurfaceGenerator> node in the Solvers section.
Like any solver, time stepping is driven by events, see Event Management.

The following attributes are supported:

	Name

	Type

	Default

	Description

	bridgingFactor

	real64

	0

	Bridging factor used for bridging/screen-out calculation

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	criticalShieldsNumber

	real64

	0

	Critical Shields number

	discretization

	string

	required

	Name of discretization object to use for this solver.

	fluidNames

	string_array

	required

	Names of fluid constitutive models for each region.

	frictionCoefficient

	real64

	0.03

	Friction coefficient

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	inputFluxEstimate

	real64

	1

	Initial estimate of the input flux used only for residual scaling. This should be essentially equivalent to the input flux * dt.

	logLevel

	integer

	0

	Log level

	maxProppantConcentration

	real64

	0.6

	Maximum proppant concentration

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityNames

	string_array

	required

	Names of permeability constitutive models for each region.

	proppantDensity

	real64

	2500

	Proppant density

	proppantDiameter

	real64

	0.0004

	Proppant diameter

	proppantNames

	string_array

	required

	Name of proppant constitutive object to use for this solver.

	solidNames

	string_array

	required

	Names of solid constitutive models for each region.

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	updateProppantPacking

	integer

	0

	Flag that enables/disables proppant-packing update

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

In particular:

	discretization must point to a Finite Volume flux approximation scheme defined in the Numerical Methods section of the input file (see Finite Volume Discretization)

	proppantName must point to a particle fluid model defined in the Constitutive section of the input file (see Constitutive Models)

	fluidName must point to a slurry fluid model defined in the Constitutive section of the input file (see Constitutive Models)

	solidName must point to a solid mechanics model defined in the Constitutive section of the input file (see Constitutive Models)

	targetRegions attribute is currently not supported, the solver is always applied to all regions.

Primary solution field labels are proppantConcentration and
pressure.
Initial conditions must be prescribed on these field in every region, and boundary conditions
must be prescribed on these fields on cell or face sets of interest. For static (non-propagating) fracture problems, the fields ruptureState and
elementAperture should be provided in the initial conditions.

In addition, the solver declares a scalar field named referencePorosity and a vector field
named permeability, that contains principal values of the symmetric rank-2 permeability tensor
(tensor axis are assumed aligned with the global coordinate system).
These fields must be populated via Element: FieldSpecification section and permeability should
be supplied as the value of coefficientName attribute of the flux approximation scheme used.

Example

First, we specify the proppant transport solver itself and apply it to the fracture region:

 <ProppantTransport
 name="ProppantTransport"
 logLevel="1"
 discretization="singlePhaseTPFA"
 targetRegions="{ Fracture }"
 fluidNames="{ water }"
 proppantNames="{ sand }"
 solidNames="{ fractureFilling }"
 permeabilityNames="{ fracturePerm }">
 <NonlinearSolverParameters
 newtonTol="1.0e-8"
 newtonMaxIter="8"
 lineSearchAction="None"/>
 <LinearSolverParameters
 directParallel="0"/>
 </ProppantTransport>

Then, we specify a compatible flow solver (currently a specialized SinglePhaseProppantFVM solver must be used):

 <SinglePhaseProppantFVM
 name="SinglePhaseFVM"
 logLevel="1"
 discretization="singlePhaseTPFA"
 targetRegions="{ Fracture }"
 fluidNames="{ water }"
 solidNames="{ fractureFilling }"
 permeabilityNames="{ fracturePerm }">
 <NonlinearSolverParameters
 newtonTol="1.0e-8"
 newtonMaxIter="8"
 lineSearchAction="None"/>
 <LinearSolverParameters
 solverType="gmres"
 krylovTol="1.0e-12"/>
 </SinglePhaseProppantFVM>

Finally, we couple them through a coupled solver that references the two above:

 <FlowProppantTransport
 name="FlowProppantTransport"
 proppantSolverName="ProppantTransport"
 flowSolverName="SinglePhaseFVM"
 targetRegions="{ Fracture }"
 logLevel="1"/>

References

	
	
	Barree & M. W. Conway. “Experimental and numerical modeling of convective proppant transport”, JPT. Journal of petroleum technology, 47(3):216-222, 1995.

	
	
	Biot & W. L. Medlin. “Theory of Sand Transport in Thin Fluids”, Paper presented at the SPE Annual Technical Conference and Exhibition, Las Vegas, NV, 1985.

	
	Hu, K. Wu, X. Song, W. Yu, J. Tang, G. Li, & Z. Shen. “A new model for simulating particle transport in a low-viscosity fluid for fluid-driven fracturing”, AIChE J. 64 (9), 35423552, 2018.

	
	
	Keck, W. L. Nehmer, & G. S. Strumolo. “A new method for predicting friction pressures and rheology of proppant-laden fracturing fluids”, SPE Prod. Eng., 7(1):21-28, 1992.

	
	McClure. “Bed load proppant transport during slickwater hydraulic fracturing: insights from comparisons between published laboratory data and correlations for sediment and pipeline slurry transport”, J. Pet. Sci. Eng. 161 (2), 599610, 2018.

	
	
	Miller, I. N. McCave, & P. D. Komar. “Threshold of sediment motion under unidirectional currents”, Sedimentology 24 (4), 507527, 1977.

	
	
	Wiberg & J. D. Smith. “Model for calculating bed load transport of sediment”, J. Hydraul. Eng. 115 (1), 101123, 1989.

Constitutive Models

Constitutive models describe relations between various physical quantities.
In a physics simulation they are used to model the response or state of material (solid, fluid, or a mixture) as a function of input variables.
There are many types of constitutive models available in GEOSX.
These models are grouped together based on their input/output interface.

	Solid Models

	Fluid Models

	Relative Permeability Models

	Capillary Pressure Models

	Porosity models

	Permeability models

	Porous Solids

In an input XML file, constitutive models are listed in the <Constitutive> block.
Each parameterized model has its own XML tag, and each must be assigned a unique name via the name attribute.
Names are used to assign models to regions of the physical domain via the materialList attribute of the <ElementRegion> node (see Element: ElementRegions).
In some cases, physics solvers must also be assigned specific constitutive models to use (see Physics Solvers).

A typical <Constitutive> and <ElementRegions> block will look like:

<Problem>

 <Constitutive>

 <!-- Define a compressible, single-phase fluid called "water"-->
 <CompressibleSinglePhaseFluid
 name="water"
 referencePressure="2.125e6"
 referenceDensity="1000"
 compressibility="1e-19"
 referenceViscosity="0.001"
 viscosibility="0.0"/>

 </Constitutive>

 <ElementRegions>

 <!--Add water to the material list for region 1-->
 <ElementRegion
 name="region1"
 cellBlocks="cellBlock1"
 materialList="water"/>

 </ElementRegions>

 ... remainder of problem definition here ...

</Problem>

Solid Models

A solid model governs the relationship between deformation and stress in a solid
(or porous) material. GEOSX provides interfaces for both small and large
deformation models, as well as specific implementations of a number of well
known models.

	Deformation Theories

	Voigt Notation

	Plasticity Notation

	Triaxial Driver

	Model: Elastic Isotropic

	Model: Elastic Isotropic Pressure Dependent

	Model: Elastic Transverse-Isotropic

	Model: Elastic Orthotropic

	Model: Drucker-Prager

	Model: Extended Drucker-Prager

	Model: Modified Cam-Clay

	Model: Delft Egg

	Damage Models

Deformation Theories

Table of Contents

	Deformation Theories

	Introduction

	Small Strain Models

	Finite Deformation Models with Hypo-Materials

	Finite Deformation Models with Hyper-Materials

Introduction

The solid mechanics solvers in GEOSX work in a time-discrete setting, in which the system state
at time [image: t^n] is fully known, and the goal of the solution procedure is to advance forward
one timestep to [image: t^{n+1} = t^n + \Delta t].
As part of this process, calls to a
solid model must be made to compute the updated stress [image: \bm{\sigma}^{n+1}] resulting from
incremental deformation over the timestep.
History-dependent models may also need to compute updates to one or more internal state
variables [image: Q^{n+1}].

The exact nature of the incremental update will depend, however, on the kinematic
assumptions made.
Appropriate measures of deformation and stress depend on assumptions of
infinitesimal [https://en.wikipedia.org/wiki/Infinitesimal_strain_theory] or
finite [https://en.wikipedia.org/wiki/Finite_strain_theory]
strain, as well as other factors like rate-dependence and material anisotropy.

This section briefly reviews three main classes of solid models in GEOSX, grouped by their kinematic assumptions.
The presentation is deliberately brief, as much more extensive presentations can be
found in almost any textbook on linear and nonlinear solid mechanics.

Small Strain Models

Let [image: \bm{u}] denote the displacement field, and [image: \nabla \bm{u}] its gradient.
In small strain theory, ones assumes the displacement gradients [image: \nabla \bm{u} \ll 1].
In this case, it is sufficient to use the linearized strain tensor

[image: \bm{\epsilon} = \frac{1}{2} \left(\nabla \bm{u} + \bm{u} \nabla \right)]

as the deformation measure. Higher-order terms present in finite strain theories are neglected.
For inelastic problems, this strain is additively decomposed into elastic and inelastic components as

[image: \bm{\epsilon} = \bm{\epsilon}^e + \bm{\epsilon}^{i}.]

Inelastic strains can arise from a number of sources: plasticity, damage, etc.
Most constitutive models (including nonlinear elastic and inelastic models) can then be generically
expressed in rate form as

[image: \dot{\bm{\sigma}} = \bm{c} : \dot{\bm{\epsilon}}^e]

where [image: \dot{\bm{\sigma}}] is the Cauchy stress rate and [image: \bm{c}] is the tangent stiffness
tensor. Observe that the stress rate is driven by the elastic component [image: \dot{\bm{\epsilon}}^e] of the strain rate.

In the time-discrete setting (as implemented in the code) the incremental constitutive update
for stress is computed from a solid model update routine as

[image: \bm{\sigma^{n+1}} = \bm{\sigma}(\Delta \bm{\epsilon}, \Delta t, Q^n),]

where [image: \Delta \bm{\epsilon} = \bm{\epsilon}^{n+1}-\bm{\epsilon}^n] is the incremental strain,
[image: \Delta t] is the timestep size (important for rate-dependent models), and
[image: Q^n] is a collection of material state variables (which may include the previous stress and
strain).

For path and rate independent models, such as linear elasticity,
a simpler constitutive update may be formulated in terms of the total strain:

[image: \bm{\sigma^{n+1}} = \bm{\sigma}(\bm{\epsilon^{n+1}}).]

GEOSX will use this latter form in specific, highly-optimized solvers when we know in advance that a
linear elastic model is being applied. The more general interface is the
the default, however, as it can accommodate a much wider range of constitutive behavior within a common
interface.

When implicit timestepping is used, the solid models must also provide the stiffness tensor,

[image: \bm{c}^{n+1} = \frac{\partial \bm{\sigma}^{n+1}}{\partial \bm{\epsilon}^{n+1}},]

in order to accurately linearize the governing equations.
In many works, this fourth-order tensor is referred to as the algorithmic or consistent tangent, in the
sense that it must be “consistent” with the discrete timestepping scheme being used
(Simo and Hughes 1987 [https://doi.org/10.1016/0045-7825(85)90070-2]).
For inelastic models, it depends not only on the intrinsic material stiffness, but also the incremental nature of the loading process.
The correct calculation of this stiffness can have a dramatic impact on the convergence rate of Newton-type
solvers used in the implicit solid mechanics solvers.

Finite Deformation Models with Hypo-Materials

In the finite deformation regime, there are two broad classes of constitutive models frequently used:

	Hypo-elastic models (and inelastic extensions)

	Hyper-elastic models (and inelastic extensions)

Hypo-materials typically rely on a rate-form of the constitutive equations expressed in the spatial configuration.
Let [image: \bm{v}(\bm{x},t)] denote the spatial velocity field. It can be decomposed into symmetric and anti-symmetric
components as

[image: \bm{d} = \frac{1}{2} \left(\nabla \bm{v} + \bm{v} \nabla \right) \qquad \text{and} \qquad \bm{w} = \frac{1}{2} \left(\nabla \bm{v} - \bm{v} \nabla \right),]

where [image: \bm{d}] is the rate of deformation tensor and [image: \bm{w}] is the spin tensor.
A hypo-material model can be written in rate form as

[image: \mathring{\bm{\tau}} = \bm{c} : \bm{d}^e]

where [image: \mathring{\bm{\tau}}] is an objective rate [https://en.wikipedia.org/wiki/Objective_stress_rate] of the Kirchoff stress
tensor, [image: \bm{c}] is the tangent stiffness tensor,
and [image: \bm{d}^e] is the elastic component of the deformation rate.
We see that the structure is similar to the rate form in the small strain regime,
except the rate of Cauchy stress is replaced with an objective rate of Kirchoff stress,
and the linearized strain rate is replaced with the rate of deformation tensor.

The key difference separating most hypo-models is the choice of the objective stress rate.
In GEOSX, we adopt the incrementally objective integration algorithm proposed by
Hughes & Winget (1980) [https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620151210].
This method relies on the concept of an incrementally rotating frame of reference in order
to preserve objectivity of the stress rate. In particular, the stress update sequence is

[image: \Delta{\tensor{R}} = (\tensor{I} - \frac{1}{2} \Delta t {\tensor{w}})^{-1} (\tensor{I} + \frac{1}{2} \Delta t {\tensor{w}}) &\qquad \text{(compute incremental rotation)}, \\ \tensor{\bar{\tau}}^{n} = \Delta{\tensor{R}} \tensor{\tau}^{n} \Delta{\tensor{R}}^T &\qquad \text{(rotate previous stress)}, \\ \tensor{\tau}^{n+1} = \tensor{\bar{\tau}}^{n} + \Delta \tensor{\tau} &\qquad \text{(call constitutive model to update stress)}.]

First, the previous timestep stress is rotated to reflect any rigid rotations occuring over the timestep.
If the model has tensor-valued state variables besides stress, these must also be rotated.
Then, a standard constitutive update routine can be called, typically driven by the incremental
strain [image: \Delta \bm{\epsilon} = \Delta t \bm{d}].
In fact, an identical update routine as used for small strain models can be re-used at this point.

Note

Hypo-models suffer from several well known
deficiencies. Most notably, the energy dissipation in a closed loading cycle of a hypo-elastic
material is not guaranteed to be zero, as one might desire from thermodynamic considerations.

Finite Deformation Models with Hyper-Materials

Hyper-elastic models (and inelastic extensions) attempt to correct the thermodynamic deficiencies of their hypo-elastic cousins.
The constitutive update can be generically expressed at

[image: \bm{S}^{n+1} = \bm{S}(\Delta \mathbf{F}, Q^n, \Delta t),]

where [image: \bm{S}] is the second Piola-Kirchoff stress and [image: \Delta \mathbf{F}] is the incremental deformation gradient.
Depending on the model, the deformation gradient can be converted to different deformation measures as needed.
Similarly, different stress tensors can be recovered through appropriate push-forward and pull-back operations.

In a hyperelastic material, the elastic response is
expressed in terms of a stored strain-energy function that serves as the
potential for stress, e.g.

[image: \mathbf{S} = \frac{\partial \psi (\tensor{C})}{ \partial \tensor{C} },]

where [image: \psi] is
the stored energy potential, and [image: \tensor{C}] is the right Cauchy-Green
deformation tensor. This potential guarantees that the energy dissipated or gained in a closed elastic cycle is zero.

Voigt Notation

In GEOSX we express rank-two symmetric tensors using
Voigt notation [https://en.wikipedia.org/wiki/Voigt_notation].
Stress tensors are represented as an “unrolled” six-component
vector storing only the unique component values. For strain tensors, note that engineering
strains are used such that the shear components of strain are multiplied by a
factor of two.
With this representation, the strain energy density is, conveniently, the inner product
of the stress and strain vectors.

Voigt representation of common rank-2 symmetric tensors are:

[image: \bm{\sigma} = \begin{bmatrix} \ \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix}, \mathbf{S} = \begin{bmatrix} S_{11} \\ S_{22} \\ S_{33} \\ S_{23} \\ S_{13} \\ S_{12} \end{bmatrix}, \bm{\epsilon} = \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\\ 2 \epsilon_{23} \\ 2 \epsilon_{13} \\ 2 \epsilon_{12} \end{bmatrix}, \mathbf{D} = \begin{bmatrix} D_{11} \\ D_{22} \\ D_{33} \\ 2 D_{23} \\ 2 D_{13} \\ 2 D_{12} \end{bmatrix}, \mathbf{E} = \begin{bmatrix} E_{11} \\ E_{22} \\ E_{33} \\ 2 E_{23} \\ 2 E_{13} \\ 2 E_{12} \end{bmatrix}, \mathbf{B} = \begin{bmatrix} B_{11} \\ B_{22} \\ B_{33} \\ 2 B_{23} \\ 2 B_{13} \\ 2 B_{12} \end{bmatrix}, \mathbf{C} = \begin{bmatrix} C_{11} \\ C_{22} \\ C_{33} \\ 2 C_{23} \\ 2 C_{13} \\ 2 C_{12} \end{bmatrix},]

where
[image: \bm{\sigma}] is the Cauchy stress,
[image: \mathbf{S}] is the second Piola-Kirchhoff stress,
[image: \bm{\epsilon}] is the small strain tensor,
[image: \mathbf{D}] is the rate of deformation tensor,
[image: \mathbf{E}] is the Lagrangian finite strain tensor,
[image: \mathbf{B}] is the left Cauchy-Green tensor,
[image: \mathbf{C}] is the right Cauchy-Green deformation tensor.

Note

The factor of two in the shear components of strain (and strain-like) quantities is a frequent
source of confusion, even for expert modelers. It can be particularly challenging to use in nuanced
situations like stiffness tensor calculations or invariant decompositions. If you plan to implement new models within
GEOSX, please pay extra attention to this detail. We also provide many common operations in
centralized helper functions to avoid re-inventing the wheel.

Plasticity Notation

Table of Contents

	Plasticity Notation

	Overview

	Two-Invariant Models

	Three-Invariant Models

Overview

According to the theory of plasticity [https://en.wikipedia.org/wiki/Flow_plasticity_theory] in the small strain regime, the total strain [image: \boldsymbol{\epsilon}] can be additively split into elastic ([image: \boldsymbol{\epsilon}^e]) and plastic ([image: \boldsymbol{\epsilon}^p]) strains:

[image: \boldsymbol{\epsilon} = \boldsymbol{\epsilon}^e + \boldsymbol{\epsilon}^p.]

The plastic strain tensor is obtained from the flow rule:

[image: \dot{\boldsymbol{\epsilon}}^p=\dot{\lambda}\frac{\partial g}{\partial\boldsymbol{\sigma}},]

in which [image: \dot{\lambda} \geq 0] is the magnitude of plastic strain rate and [image: g] is the plastic potential. The elastic strain is related to Cauchy stress tensor in rate form as:

[image: \dot{\boldsymbol{\sigma}} = \tensor{c}^e : \dot{\boldsymbol{\epsilon}}^e,]

where [image: \tensor{c}^e] is the fourth order elastic stiffness tensor. The Cauchy stress tensor is related to the total strain as

[image: \dot{\boldsymbol{\sigma}} = \boldsymbol{c}^{ep} : \dot{\boldsymbol{\epsilon}},]

in which [image: \tensor{c}^{ep}] is the fourth order elasto-plastic stiffness tensor.

Two-Invariant Models

Two-invariant plasticity models use the first invariant of the Cauchy stress tensor and the second invariant of the deviatoric stress tensor to describe the yield surface.

Here we use the following stress invariants to define the yield surface: the von Mises stress [image: q = \sqrt{3J_2} = \sqrt{3/2} \|\boldsymbol{s}\|] and mean normal stress [image: p = I_1/3]. Here, [image: I_1] and [image: J_2] are the first invariant of the stress tensor and second invariant of the deviatoric stress, defined as

[image: I_1 = tr(\boldsymbol{\sigma})/3 \, , \quad J_2 = \frac{1}{2} \|\boldsymbol{s}\|^2 \, , \quad \boldsymbol{s}=\boldsymbol{\sigma}-p \boldsymbol{1} \, ,]

in which [image: \boldsymbol{1}] is the identity tensor.

Similarly, we can define invariants of strain tensor, namely, volumetric strain [image: \epsilon_v] and deviatoric strain [image: \epsilon_s].

[image: \epsilon_v = tr(\boldsymbol{\epsilon}) \, , \quad \epsilon_s = \sqrt{\frac{2}{3}} \| \boldsymbol{e}\| \, , \, \quad \text{where} \, \quad \boldsymbol{e}=\boldsymbol{\epsilon}-\frac{1}{3} \epsilon_v \boldsymbol{1}.]

Stress and strain tensors can then be recomposed from the invariants as:

[image: \boldsymbol{\sigma} = p \, \boldsymbol{1} + \sqrt{\frac{2}{3}} q \, \hat{\boldsymbol{n}}]

[image: \boldsymbol{\epsilon} = \frac{1}{3} \epsilon_v \boldsymbol{1} + \sqrt{\frac{3}{2}}\epsilon_s \hat{\boldsymbol{n}}]

in which [image: \hat{\boldsymbol{n}} = \boldsymbol{e}/\|\boldsymbol{e}\|].

The following two-invariant models are currently implemented in GEOSX:

	Drucker-Prager

	J2 plasticity

	Modified Cam-Clay

	Delft-Egg

Three-Invariant Models

Several three-invariant models are under active development, but are not yet available in develop. If you are interested in helping to add additional material models, please submit a feature request.

Triaxial Driver

Table of Contents

	Triaxial Driver

	Introduction

	XML Structure

	Test Modes

	Output Format

	Model Convergence

	Unit Testing

Introduction

When calibrating solid material parameters to experimental data, it can be a hassle to launch a full finite element simulation to mimic experimental loading conditions. Instead, GEOSX provides a TriaxialDriver allowing the user to run loading tests on a single material point. This makes it easy to understand the material response and fit it to lab data. The driver itself is launched like any other GEOSX simulation, but with a particular XML structure:

./bin/geosx -i myTest.xml

XML Structure

A typical XML file to run the triaxial driver will have the following key elements. We present the whole file first, before digging into the individual blocks.

src/coreComponents/unitTests/constitutiveTests/testTriaxial_druckerPragerExtended.xml

The first thing to note is that the XML structure is identical to a standard GEOSX input deck. In fact, once the constitutive block is calibrated, one could start adding solver and discretization blocks to the same file to create a proper field simulation. This makes it easy to go back and forth between calibration and simulation.

The TriaxialDriver is added as a Task, a particular type of executable event often used for simple actions. It is added as a SoloEvent to the event queue. This leads to a trivial event queue, since all we do is launch the driver and then quit.

Internally, the triaxial driver uses a simple form of time-stepping to advance through the loading steps, allowing for both rate-dependent and rate-independent models to be tested. This timestepping is handled independently from the more complicated time-stepping pattern used by physics Solvers and coordinated by the EventManager. In particular, in the XML file above, the maxTime parameter in the Events block is an event manager control, controlling when/if certain events occur. Once launched, the triaxial driver internally determines its own max time and timestep size using a combination of the strain function’s time coordinates and the requested number of loadsteps. It is therefore helpful to think of the driver as an instantaneous event (from the event manager’s point of view), but one which has a separate, internal clock.

The key parameters for the TriaxialDriver are:

	Name

	Type

	Default

	Description

	axialControl

	string

	required

	Function controlling axial stress or strain (depending on test mode)

	baseline

	path

	none

	Baseline file

	initialStress

	real64

	required

	Initial stress (scalar used to set an isotropic stress state)

	logLevel

	integer

	0

	Log level

	material

	string

	required

	Solid material to test

	mode

	string

	required

	Test mode [stressControl, strainControl, mixedControl]

	name

	string

	required

	A name is required for any non-unique nodes

	output

	string

	none

	Output file

	radialControl

	string

	required

	Function controlling radial stress or strain (depending on test mode)

	steps

	integer

	required

	Number of load steps to take

Note

GEOSX uses the engineering sign convention where compressive stresses and strains are negative.
This is one of the most frequent issues users make when calibrating material parameters, as
stress- and strain-like quantities often need to be negative to make physical sense. You may note in the
XML above, for example, that stressFunction and strainFunction have negative values for
a compressive test.

Test Modes

The most complicated part of the driver is understanding how the stress and strain functions are applied in different testing modes. The driver mimics laboratory core tests, with loading controlled in the
axial and radial directions. These conditions may be either strain-controlled or stress-controlled, with the user providing time-dependent functions to describe the loading. The following table describes the available test modes in detail:

	mode

	axial loading

	radial loading

	initial stress

	strainControl

	axial strain controlled
with axialControl

	radial strain controlled
with radialControl

	isotropic stress using
initialStress

	stressControl

	axial stress controlled
with axialControl

	radial stress controlled
with radialControl

	isotropic stress using
initialStress

	mixedControl

	axial strain controlled
with axialControl

	radial stress controlled
with radialControl

	isotropic stress using
initialStress

Note that a classical triaxial test can be described using either the stressControl or mixedControl mode. We recommend using the mixedControl mode when possible, because this almost always leads to well-posed loading conditions. In a pure stress controlled test, it is possible for the user to request that the material sustain a load beyond its intrinsic strength envelope, in which case there is no feasible solution and the driver will fail to converge. Imagine, for example, a perfectly plastic material with a yield strength of 10 MPa, but the user attempts to load it to 11 MPa.

A volumetric test can be created by setting the axial and radial control functions to the same time history function. Similarly, an oedometer test can be created by setting the radial strain to zero.

The user should be careful to ensure that the initial stress set via the initialStress value is consistent any applied stresses set through axial or radial loading functions. Otherwise, the material may experience sudden and unexpected deformation at the first timestep because it is not in static equilibrium.

Output Format

The output key is used to identify a file to which the results of the simulation are written. If this key is omitted, or the user specifies output="none", file output will be suppressed. The file is a simple ASCII format with a brief header followed by test data:

column 1 = time
column 2 = axial_strain
column 3 = radial_strain_1
column 4 = radial_strain_2
column 5 = axial_stress
column 6 = radial_stress_1
column 7 = radial_stress_2
column 8 = newton_iter
column 9 = residual_norm
0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 0.0000e+00 0.0000e+00
1.6000e-01 -1.6000e-04 4.0000e-05 4.0000e-05 -1.1200e+00 -1.0000e+00 -1.0000e+00 2.0000e+00 0.0000e+00
3.2000e-01 -3.2000e-04 8.0000e-05 8.0000e-05 -1.2400e+00 -1.0000e+00 -1.0000e+00 2.0000e+00 0.0000e+00
...

This file can be readily plotted using any number of plotting tools. Each row corresponds to one timestep of the driver, starting from initial conditions in the first row.

We note that the file contains two columns for radial strain and two columns for radial stress. For an isotropic material, the stresses and strains along the two radial axes will usually be identical. We choose to output this way, however, to accommodate both anisotropic materials and true-triaxial loading conditions. In these cases, the stresses and strains in the radial directions could potentially differ.

These columns can be added and subtracted to produce other quantities of interest, like mean stress or deviatoric stress. For example, we can plot the output produce stress / strain curves (in this case for a plastic rather than simple elastic material):

[image: stress/strain figure]
Fig. 25 Stress/strain behavior for a plastic material.

In this plot, we have reversed the sign convention to be consistent with typical experimental plots. Note also that the strainFunction includes two unloading cycles, allowing us to observe both plastic loading and elastic unloading.

Model Convergence

The last two columns of the output file contain information about the convergence behavior of the material driver. In triaxial mode, the mixed nature of the stress/strain control requires using a Newton solver to converge the solution. This last column reports the number of Newton iterations and final residual norm. Large values here would be indicative of the material model struggling (or failing) to converge. Convergence failures can result from several reasons, including:

	Inappropriate material parameter settings

	Overly large timesteps

	Infeasible loading conditions (i.e. trying to load a material to a physically-unreachable stress point)

	Poor model implementation

We generally spend a lot of time vetting the material model implementations (#4). When you first encounter a problem, it is therefore good to explore the other three scenarios first. If you find something unusual in the model implementation or are just really stuck, please submit an issue on our issue tracker so we can help resolve any bugs.

Unit Testing

The development team also uses the Triaxial Driver to perform unit testing on the various material models within GEOSX. The optional argument baseline can be used to point to a previous output file that has been validated (e.g. against analytical or experimental benchmarks). If such a file is specified, the driver will perform a loading run and then compare the new results against the baseline. In this way, any regressions in the material models can be quickly identified.

Developers of new models are encouraged to add their own baselines to src/coreComponents/constitutive/unitTests. Adding additional tests is straightforward:

	Create a new xml file for your test in src/coreComponents/constitutive/unitTests. There are several examples is this directory already to use as a template. We suggest using the naming convention testTriaxial_myTest.xml, so that all triaxial tests will be grouped together alphabetically. Set the output file to testTriaxial_myTest.txt, and run your test. Validate the results however is appropriate.

	This output file will now become your new baseline. Replace the output key with baseline so that the driver can read in your file as a baseline for comparison. Make sure there is no remaining output key, or set output=none, to suppress further file output. While you can certainly write a new output for debugging purposes, during our automated unit tests we prefer to suppress file output. Re-run the triaxial driver to confirm that the comparison test passes.

	Modify src/coreComponents/constitutive/unitTests/CMakeLists.txt to enable your new test in the unit test suite. In particular, you will need to add your new XML file to the existing list in the gtest_triaxial_xmls variable:

set(gtest_triaxial_xmls
 testTriaxial_elasticIsotropic.xml
 testTriaxial_druckerPragerExtended.xml
 testTriaxial_myTest.xml
)

	Run make in your build directory to make sure the CMake syntax is correct

	Run ctest -V -R Triax to run the triaxial unit tests. Confirm your test is included and passes properly.

If you run into troubles, do not hesitate to contact the development team for help.

Model: Elastic Isotropic

Overview

This model may be used for solid materials with a linear elastic isotropic behavior.
The relationship between stress and strain is given by Hooke’s Law [https://en.wikipedia.org/wiki/Hooke%27s_law],
expressed as:

[image: \sigma_{ij} = \lambda \epsilon_{kk} + 2 \mu \epsilon_{ij},]

where [image: \sigma_{ij}] is the [image: ij] component of the Cauchy stress tensor,
[image: \epsilon_{ij}] is the [image: ij] component of the strain tensor,
[image: \lambda] is the first Lamé elastic constant,
and [image: \mu] is the elastic shear modulus.

Hooke’s Law may also be expressed using Voigt notation [https://en.wikipedia.org/wiki/Voigt_notation] for stress and strain vectors as:

[image: \tensor{\sigma} = \tensor{C} \cdot \tensor{\epsilon},]

or,

[image: \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} 2\mu+\lambda & \lambda & \lambda & 0 & 0 & 0 \\ \lambda & 2\mu+\lambda & \lambda & 0 & 0 & 0 \\ \lambda & \lambda & 2\mu+\lambda & 0 & 0 & 0 \\ 0 & 0 & 0 &\mu & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ 2\epsilon_{23} \\ 2\epsilon_{13} \\ 2\epsilon_{12} \end{bmatrix}.]

Variations

For finite deformation solvers, the elastic isotropic model can be called within a hypo-elastic update routine.
See Finite Deformation Models with Hypo-Materials

Parameters

The following attributes are supported. Note that any two elastic constants can be provided, and the other
two will be internally calculated. The “default” keyword in front of certain properties indicates that this
is the default value adopted for a region unless the user separately specifies a heterogeneous field via the
FieldSpecification mechanism.

	Name

	Type

	Default

	Description

	defaultBulkModulus

	real64

	-1

	Default Bulk Modulus Parameter

	defaultDensity

	real64

	required

	Default Material Density

	defaultPoissonRatio

	real64

	-1

	Default Poisson’s Ratio

	defaultShearModulus

	real64

	-1

	Default Shear Modulus Parameter

	defaultYoungModulus

	real64

	-1

	Default Young’s Modulus

	name

	string

	required

	A name is required for any non-unique nodes

Example

A typical Constititutive block will look like:

<Constitutive>
 <ElasticIsotropic
 name="shale"
 defaultDensity="2700"
 defaultBulkModulus="60.0e6"
 defaultShearModulus="30.0e6" />
</Constitutive>

Model: Elastic Isotropic Pressure Dependent

Overview

This model may be used for solid materials with a pressure-dependent elastic isotropic behavior.
The relationship between stress and strain is given by a hyperelastic law [https://en.wikipedia.org/wiki/Hyperelastic_material]. The elastic constitutive equations for the volumetric and deviatoric stresses and strain are expressed as:

[image: p = p_0 \exp{\left(\frac{\epsilon_{v0}-\epsilon_v^e}{c_r}\right)} \, , \quad q = 3 \mu \epsilon_s^e]

where [image: p] and [image: q] are the volumetric and deviatoric components of the Cauchy stress tensor.
[image: \epsilon_{v}^e] and [image: \epsilon_{s}^e] are the volumetric and deviatoric components of the strain tensor. [image: \epsilon_{v0}] and [image: p_0] are the initial volumetric strain and initial pressure. [image: C_r] denotes the elastic compressibility index,
and [image: \mu] is the elastic shear modulus. In this model, the shear modulus is constant and the bulk modulus, [image: K], varies linearly with pressure as follows:

[image: K = -\frac{p}{c_r}]

Parameters

The following attributes are supported. Note that two elastic constants [image: c_r] and [image: \mu], as well as the initial volumetric strain and initial pressure need to be provided. The “default” keyword in front of certain properties indicates that this
is the default value adopted for a region unless the user separately specifies a heterogeneous field via the
FieldSpecification mechanism.

Example

A typical Constititutive block will look like:

<Constitutive>
 <ElasticIsotropicPressureDependent
 name="elasticPressure"
 defaultDensity="2700"
 defaultRefPressure="-1.0"
 defaultRefStrainVol="1"
 defaultRecompressionIndex="0.003"
 defaultShearModulus="200"/>
</Constitutive>

Model: Elastic Transverse-Isotropic

Overview

This model may be used for solid materials with a linear elastic, transverse-isotropic behavior.
This is most readily expressed in Voight notation as

[image: \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\ C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & (C_{11}-C_{12})/2 \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ 2\epsilon_{23} \\ 2\epsilon_{13} \\ 2\epsilon_{12} \end{bmatrix}.]

This system contains five independent constants. These constants are calculated from the input parameters
indicated below.

Parameters

The following attributes are supported. The “default” keyword in front of certain properties indicates that this
is the default value adopted for a region unless the user separately specifies a heterogeneous field via the
FieldSpecification mechanism.

	Name

	Type

	Default

	Description

	defaultC11

	real64

	-1

	Default Stiffness Parameter C11

	defaultC13

	real64

	-1

	Default Stiffness Parameter C13

	defaultC33

	real64

	-1

	Default Stiffness Parameter C33

	defaultC44

	real64

	-1

	Default Stiffness Parameter C44

	defaultC66

	real64

	-1

	Default Stiffness Parameter C66

	defaultDensity

	real64

	required

	Default Material Density

	defaultPoissonRatioAxialTransverse

	real64

	-1

	Default Axial-Transverse Poisson’s Ratio

	defaultPoissonRatioTransverse

	real64

	-1

	Default Transverse Poisson’s Ratio

	defaultShearModulusAxialTransverse

	real64

	-1

	Default Axial-Transverse Shear Modulus

	defaultYoungModulusAxial

	real64

	-1

	Default Axial Young’s Modulus

	defaultYoungModulusTransverse

	real64

	-1

	Default Transverse Young’s Modulus

	name

	string

	required

	A name is required for any non-unique nodes

Example

A typical Constititutive block will look like:

<Constitutive>
 <ElasticTransverseIsotropic
 name="shale"
 defaultDensity="2700"
 defaultPoissonRatioAxialTransverse="0.20"
 defaultPoissonRatioTransverse="0.30"
 defaultYoungModulusAxial="50.0e6"
 defaultYoungModulusTransverse="60.0e6"
 defaultShearModulusAxialTransverse="30.0e6" />
</Constitutive>

Model: Elastic Orthotropic

Overview

This model may be used for solid materials with a linear elastic, orthotropic behavior.
This is most readily expressed in Voight notation as

[image: \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ 2\epsilon_{23} \\ 2\epsilon_{13} \\ 2\epsilon_{12} \end{bmatrix}.]

This system contains nine independent constants. These constants are calculated from the input parameters
indicated below.

Parameters

The following attributes are supported. The “default” keyword in front of certain properties indicates that this
is the default value adopted for a region unless the user separately specifies a heterogeneous field via the
FieldSpecification mechanism.

	Name

	Type

	Default

	Description

	defaultC11

	real64

	-1

	Default C11 Component of Voigt Stiffness Tensor

	defaultC12

	real64

	-1

	Default C12 Component of Voigt Stiffness Tensor

	defaultC13

	real64

	-1

	Default C13 Component of Voigt Stiffness Tensor

	defaultC22

	real64

	-1

	Default C22 Component of Voigt Stiffness Tensor

	defaultC23

	real64

	-1

	Default C23 Component of Voigt Stiffness Tensor

	defaultC33

	real64

	-1

	Default C33 Component of Voigt Stiffness Tensor

	defaultC44

	real64

	-1

	Default C44 Component of Voigt Stiffness Tensor

	defaultC55

	real64

	-1

	Default C55 Component of Voigt Stiffness Tensor

	defaultC66

	real64

	-1

	Default C66 Component of Voigt Stiffness Tensor

	defaultDensity

	real64

	required

	Default Material Density

	defaultE1

	real64

	-1

	Default Young’s Modulus E1

	defaultE2

	real64

	-1

	Default Young’s Modulus E2

	defaultE3

	real64

	-1

	Default Young’s Modulus E3

	defaultG12

	real64

	-1

	Default Shear Modulus G12

	defaultG13

	real64

	-1

	Default Shear Modulus G13

	defaultG23

	real64

	-1

	Default Shear Modulus G23

	defaultNu12

	real64

	-1

	Default Poission’s Ratio Nu12

	defaultNu13

	real64

	-1

	Default Poission’s Ratio Nu13

	defaultNu23

	real64

	-1

	Default Poission’s Ratio Nu23

	name

	string

	required

	A name is required for any non-unique nodes

Example

A typical Constititutive block will look like:

<Constitutive>
 <ElasticOrthotropic
 name="shale"
 defaultDensity="2700"
 defaultNu12="0.20"
 defaultNu13="0.25"
 defaultNu23="0.30"
 defaultE1="40.0e6"
 defaultE2="50.0e6"
 defaultE3="60.0e6"
 defaultG12="20.0e6"
 defaultG13="30.0e6"
 defaultG23="40.0e6" />
</Constitutive>

Model: Drucker-Prager

Overview

This model may be used to represent a solid material with plastic response to loading according to the Drucker-Prager [https://en.wikipedia.org/wiki/Drucker%E2%80%93Prager_yield_criterion] yield criterion below:

[image: f (p,q) = q + b \, p - a = 0 .]

[image: ../../../../_images/DPyield.png]

Fig. 26 Mohr-Coulomb and Drucker-Prager yield surfaces in principal stress axes (Borja, 2002).

The material behavior is linear elastic (see Model: Elastic Isotropic) for [image: f < 0], and plastic for [image: f =0].
The two material parameters [image: a] and [image: b] are derived by approximating the Mohr-Coulomb surface with a cone.
Figure 3 shows the Mohr-Coulomb yield surface and circumscribing Drucker-Prager surface in principal stress space.
The Drucker-Prager yield surface has a circular cross-section in the deviatoric plane that passes through the tension or compression corners of the Mohr-Coulomb yield surface, as shown in the Figure 4.
The material parameters [image: a] and [image: b] are derived as:

[image: a = \frac{6 \, c \, \cos\phi}{3 \pm \sin\phi} \, , \quad b=\frac{6 \, \sin\phi}{3 \pm \sin\phi}]

where plus signs are for circles passing through the tension corners, and minus signs are for circles passing through compression corners.
Also, [image: \phi] and [image: c] denote friction angle and cohesion, respectively, as defined by the Mohr-Coulomb failure envelope shown in Figure 5.
In GEOSX, we use a compression corner fit (minus signs) to convert the user-specified friction angle and cohesion to [image: a] and [image: b].

[image: ../../../../_images/DevView.png]

Fig. 27 Mohr-Coulomb and Drucker-Prager yield surfaces on the deviatoric plane (Borja, 2013).

[image: ../../../../_images/MohrCoulomb.png]

Fig. 28 The Mohr-Coulomb failure envelope (Borja, 2013).

We consider a non-associative plastic potential to determine the direction of plastic flow.

[image: g (p,q) = q + b' \, p ,]

where [image: b' \leq b] is the dilatancy parameter.
Setting [image: b' = b] leads to associative flow rule, while for [image: b' < b] non-associative flow is obtained.
The parameter [image: b'] is related to dilation angle [https://en.wikipedia.org/wiki/Dilatancy_(granular_material)] as:

[image: b' = \frac{6 \, \sin\psi}{3 \pm \sin\psi},]

where [image: \psi \leq \phi] is the dilation angle.
If [image: \psi > 0], then the plastic flow is dilative.
Again, we use a compression corner fit (minus sign).

A hardening rule is defined which determines how the yield surface will change as a result of plastic deformations.
Here we use linear hardening for the cohesion parameter, [image: a],

[image: \dot{a}= h \, \dot{\lambda},]

where [image: h] is the hardening parameter.
A positive hardening parameter will allow the cohesion to grow, shifting the cohesion intercept vertically on the q-axis.
A negative hardening parameter will cause the cohesion to shrink, though negative cohesion values are not allowed.
Once all cohesion has been lost, the cohesion will remain at zero, so the cone vertex is fixed at the origin.
In either case, the friction and dilation angles remain constant.
See the _ExtendedDruckerPrager model for an alternative version of hardening behavior.

Parameters

The following attributes are supported:

	Name

	Type

	Default

	Description

	defaultBulkModulus

	real64

	-1

	Default Bulk Modulus Parameter

	defaultCohesion

	real64

	0

	Initial cohesion

	defaultDensity

	real64

	required

	Default Material Density

	defaultDilationAngle

	real64

	30

	Dilation angle (degrees)

	defaultFrictionAngle

	real64

	30

	Friction angle (degrees)

	defaultHardeningRate

	real64

	0

	Cohesion hardening/softening rate

	defaultPoissonRatio

	real64

	-1

	Default Poisson’s Ratio

	defaultShearModulus

	real64

	-1

	Default Shear Modulus Parameter

	defaultYoungModulus

	real64

	-1

	Default Young’s Modulus

	name

	string

	required

	A name is required for any non-unique nodes

Example

<Constitutive>
 <DruckerPrager name="drucker"
 defaultDensity="2700"
 defaultBulkModulus="1000.0"
 defaultShearModulus="1000.0"
 defaultFrictionAngle="30.0"
 defaultDilationAngle="20.0"
 defaultHardeningRate="0.0"
 defaultCohesion="10.0" />
</Constitutive>

Variant: J2 plasticity

J2 yield criterion can be obtained as a special case of the Drucker-Prager model by setting the friction and dilation angles to zero, i.e. [image: \phi = \psi = 0].

Model: Extended Drucker-Prager

Overview

This model implements a more sophisticated version of the Drucker-Prager model (see Model: Drucker-Prager) allowing for both
cohesion and friction hardening / softening.
We implement the specific hardening model reported in Liu et al. (2020) [https://doi.org/10.1007/s00603-019-01992-5].
The yield surface is given by

[image: f(p,q) = q + b \left(p - \frac{a_i}{b_i} \right) = 0,]

where [image: b] is the current yield surface slope, [image: b_i] is the initial slope, and [image: a_i] is the
initial cohesion intercept in p-q space.
The vertex of the Drucker-Prager cone is fixed at [image: p=a_i/b_i].
Let [image: \lambda] denote the accumulated plastic strain measure. The current yield surface slope is given by
the hyperbolic relationship

[image: b = b_i + \frac{\lambda}{m+\lambda} \left(b_r - b_i \right)]

with [image: m] a parameter controlling the hardening rate. Here, [image: b_r] is the residual yield surface slope.
If [image: b_r < b_i], hardening behavior will be observed, while for [image: b_r < b_i] softening behavior will occur.

In the resulting model, the yield surface begins at an initial position defined by the initial cohesion and friction angle.
As plastic deformation occurs, the friction angle hardens (or softens) so that it asymptoptically approaches a
residual friction angle. The vertex of the cone remains fixed in p-q space, but the cohesion intercept evolves in
tandem with the friction angle. See Liu et al. (2020) <https://doi.org/10.1007/s00603-019-01992-5> for complete details.

In order to allow for non-associative behavior, we define a “dilation ratio” parameter [image: \theta \in [0,1]] such
that [image: b' = \theta b], where [image: b'] is the slope of the plastic potential surface, while [image: b] is
the slope of the yield surface. Choosing [image: \theta=1] leads to associative behavior, while [image: \theta=0]
implies zero dilatancy.

Parameters

The supported attributes will be documented soon.

Example

<Constitutive>
 <ExtendedDruckerPrager
 name="edp"
 defaultDensity="2700"
 defaultBulkModulus="500"
 defaultShearModulus="300"
 defaultCohesion="0.0"
 defaultInitialFrictionAngle="15.0"
 defaultResidualFrictionAngle="23.0"
 defaultDilationRatio="1.0"
 defaultHardening="0.001"
 />
</Constitutive>

Model: Modified Cam-Clay

This model may be used to represent a solid material with plastic response to loading according to the Modified Cam-Clay (MCC) [https://en.wikipedia.org/wiki/Critical_state_soil_mechanics] critical state model. The MCC yield function is defined as:

[image: f = q^2 + M^2 \left[p(p - p_c) \right] = 0 ,]

where [image: p_c] is the preconsolidation pressure, and [image: M] is the slope of the critical state line (CSL). [image: M] can be related to the critical state friction angle [image: \phi_{cs}] as

[image: M = \frac{6 \sin \phi_{cs}}{3-\sin \phi_{cs}}.]

Here [image: f] represents the yield surface, as shown in Figure 6.

[image: ../../../../_images/ModifiedCamClayPQ.png]

Fig. 29 Cam-Clay and Modified Cam-Clay yield surfaces in p-q space (Borja, 2013).

Here we use a hyper-elastic constitutive law using the following elastic rate constitutive equation

[image: \dot{p} = - \frac{p}{c_r} \dot{\epsilon}^e_v,]

where [image: c_r > 0] is the elastic compressibility index. The tangential elastic bulk modulus is [image: K=- \frac{p}{c_r}] and varies linearly with pressure. We assume a constant shear modulus, and can write stress invariants p and q as

[image: p = p_0 \exp \left(\frac{\epsilon_{v0} - \epsilon_v^e}{c_r}\right) , \quad q = 3 \mu \epsilon_s^e,]

where [image: p_0] is the reference pressure and [image: \epsilon_{v0}] is the reference volumetric strain. The hardening law is derived from the linear relationship between logarithm of specific volume and logarithm of preconsolidation pressure, as show in Figure 7.

[image: ../../../../_images/ModifiedCamClayHardening.png]

Fig. 30 Bilogarithmic hardening law derived from isotropic compression tests (Borja, 2013).

The hardening law describes evolution of the preconsolidation pressure [image: p_c] as

[image: \dot{p_c} = - \frac{tr(\dot{\boldsymbol{\epsilon}}^p)}{c_c-c_r} p_c,]

where [image: c_c] is the virgin compressibility index and we have [image: 0 < c_r < c_c].

Parameters

The supported attributes will be documented soon.

Example

<Constitutive>
 <ModifiedCamClay name="mcc"
 defaultDensity="2700"
 defaultRefPressure="-1.0"
 defaultRefStrainVol="0"
 defaultShearModulus="200.0"
 defaultPreConsolidationPressure="-1.5"
 defaultCslSlope="1.2"
 defaultRecompressionIndex="0.002"
 defaultVirginCompressionIndex="0.003" />
</Constitutive>

Model: Delft Egg

The Delft-Egg [https://link.springer.com/chapter/10.1007%2F978-94-011-1046-4_10] plasticity model uses a generalization of the Modified Cam-Clay yield surface, defined as

[image: f = q^2 - M^2 \left[\alpha^2 \, p \left(\frac{2 \alpha}{\alpha+1} p_c -p \right) - \frac{\alpha^2 (\alpha-1)}{\alpha+1} p_c^2 \right] = 0 \quad (\text{for }p_c > \frac{\alpha}{\alpha+1})]

[image: f = q^2 - M^2 \, p \left(\frac{2 \alpha}{\alpha+1} p_c -p \right) = 0 \quad (\text{for } p_c \leq \frac{\alpha}{\alpha+1})]

where [image: \alpha \geq 1] is the shape parameter. For [image: \alpha = 1], this model leads to a Modified Cam-Clay (MCC) type model with an ellipsoidal yield surface. For [image: \alpha > 1], an egg-shaped yield surface is obtained. The additional parameter makes it easier to fit the cap behavior of a broader range of soils and rocks.

Because Delft-Egg is frequently used for hard rocks, GEOSX uses a linear model for the elastic response, rather than the hyper-elastic model used for MCC. This is a slight deviation from the original formulation proposed in the reference above. For reservoir applications, the ability to use a simpler linear model was a frequent user request.

Parameters

The supported attributes will be documented soon.

Example

<Constitutive>
 <DelftEgg
 name="DE"
 defaultDensity="2700"
 defaultBulkModulus="10.0e9"
 defaultShearModulus="6.0e9"
 defaultPreConsolidationPressure="-20.0e6"
 defaultShapeParameter="6.5"
 defaultCslSlope="1.2"
 defaultVirginCompressionIndex="0.005"
 defaultRecompressionIndex="0.001"/>
</Constitutive>

Damage Models

The damage models are in active development, and documentation will be added when they are ready for production release.

Fluid Models

These models provide density, viscosity, and composition relationships for
single fluids and fluid mixtures.

	Compressible single phase fluid model

	Black-oil fluid model

	Compositional multiphase fluid model

	CO2-brine model

Compressible single phase fluid model

Overview

This model represents a compressible single-phase fluid with constant compressibility
and pressure-dependent viscosity.
These assumptions are valid for slightly compressible fluids, such as water, and some
types of oil with negligible amounts of dissolved gas.

Specifically, fluid density is computed as

[image: \rho(p) = \rho_0 e^{c_\rho(p - p_0)}]

where [image: c_\rho] is compressibility, [image: p_0] is reference pressure, [image: \rho_0] is
density at reference pressure.
Similarly,

[image: \mu(p) = \mu_0 e^{c_\mu(p - p_0)}]

where [image: c_\mu] is viscosibility (viscosity compressibility), [image: \mu_0] is reference viscosity.

Either exponent may be approximated by linear (default) or quadratic terms of Taylor series expansion.
Currently there is no temperature dependence in the model, although it may be added in future.

Parameters

The model is represented by <CompressibleSinglePhaseFluid> node in the input.

The following attributes are supported:

	Name

	Type

	Default

	Description

	compressibility

	real64

	0

	Fluid compressibility

	defaultDensity

	real64

	required

	Default value for density.

	defaultViscosity

	real64

	required

	Default value for viscosity.

	densityModelType

	geosx_constitutive_ExponentApproximationType

	linear

	
Type of density model. Valid options:

* exponential

* linear

* quadratic

	name

	string

	required

	A name is required for any non-unique nodes

	referenceDensity

	real64

	1000

	Reference fluid density

	referencePressure

	real64

	0

	Reference pressure

	referenceViscosity

	real64

	0.001

	Reference fluid viscosity

	viscosibility

	real64

	0

	Fluid viscosity exponential coefficient

	viscosityModelType

	geosx_constitutive_ExponentApproximationType

	linear

	
Type of viscosity model. Valid options:

* exponential

* linear

* quadratic

Example

<Constitutive>
 <CompressibleSinglePhaseFluid name="water"
 referencePressure="2.125e6"
 referenceDensity="1000"
 compressibility="1e-19"
 referenceViscosity="0.001"
 viscosibility="0.0"/>
</Constitutive>

Black-oil fluid model

Overview

In the black-oil model three pseudo-components, oil (o), gas (g) and water (w)
are considered. These are assumed to be partitioned across three fluid phases,
named liquid (l), vapor (v) and aqueous (a).

Phase behavior is characterized by the following quantities which are used to relate
properties of the fluids in the reservoir to their properties at surface conditions.

	[image: B_o]: oil formation volume factor

	[image: B_g]: gas formation volume factor

	[image: R_s]: gas/oil ratio

	[image: R_v]: oil/gas ratio

By tables, that tabulate saturated and undersaturated oil and gas properties
as functions of pressure and solution ratios.

Dead oil

In dead-oil each component occupies only one phase. Thus, the following partition matrix determines the components distribution within the
three phases:

[image: \begin{bmatrix} y_{gv} & y_{gl} & y_{ga}\\ y_{ov} & y_{ol} & y_{oa}\\ y_{wv} & y_{wl} & y_{wa} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}]

and the phase densities are

[image: \rho_{l} = & \, \frac{\rho_{o}^{STC}}{B_{o}} \\ \rho_{v} = & \, \frac{\rho_{g}^{STC}}{B_{g}}.]

Live oil

The live oil fluid model make no assumptions about the partitioning of the
hydrocarbon components and the following composition matrix can be used

[image: \begin{bmatrix} y_{gv} & y_{gl} & y_{ga}\\ \\ y_{ov} & y_{ol} & y_{oa}\\ \\ y_{wv} & y_{wl} & y_{wa} \end{bmatrix} = \begin{bmatrix} \frac{\rho_{g}^{STC}}{\rho_{g}^{STC} + \rho_{o}^{STC} r_{s}} & \frac{\rho_{g}^{STC} R_{s}}{\rho_{o}^{STC} + \rho_{g}^{STC} R_{s}} & 0 \\ \\ \frac{\rho_{o}^{STC} r_{s}}{\rho_{g}^{STC} + \rho_{o}^{STC} r_{s}} & \frac{\rho_{o}^{STC}}{\rho_{o}^{STC} + \rho_{g}^{STC} R_{s}} & 0 \\ \\ 0 & 0 & 1 \end{bmatrix}]

whereas the densities of the two hydrocarbon phases are

[image: \rho_{l} = & \, \frac{\rho_{o}^{STC} + \rho_{g}^{STC} R_{s}}{B_{o}} \\ \rho_{v} = & \, \frac{\rho_{g}^{STC} + \rho_{o}^{STC} R_{v}}{B_{g}}]

See Petrowiki [https://petrowiki.org/Phase_behavior_in_reservoir_simulation#Black-oil_PVT_models] for more information.

Parameters

Both types are represented by <BlackOilFluid> node in the input.
Under the hood this is a wrapper around PVTPackage library, which is included as a submodule.
In order to use the model, GEOSX must be built with -DENABLE_PVTPACKAGE=ON (default).

The following attributes are supported:

	Name

	Type

	Default

	Description

	componentMolarWeight

	real64_array

	required

	Component molar weights

	componentNames

	string_array

	{}

	List of component names

	hydrocarbonFormationVolFactorTableNames

	string_array

	{}

	
List of formation volume factor TableFunction names from the Functions block.

The user must provide one TableFunction per hydrocarbon phase, in the order provided in “phaseNames”.

For instance, if “oil” is before “gas” in “phaseNames”, the table order should be: oilTableName, gasTableName

	hydrocarbonViscosityTableNames

	string_array

	{}

	
List of viscosity TableFunction names from the Functions block.

The user must provide one TableFunction per hydrocarbon phase, in the order provided in “phaseNames”.

For instance, if “oil” is before “gas” in “phaseNames”, the table order should be: oilTableName, gasTableName

	name

	string

	required

	A name is required for any non-unique nodes

	phaseNames

	string_array

	required

	List of fluid phases

	surfaceDensities

	real64_array

	required

	List of surface mass densities for each phase

	tableFiles

	path_array

	{}

	List of filenames with input PVT tables (one per phase)

	waterCompressibility

	real64

	0

	Water compressibility

	waterFormationVolumeFactor

	real64

	0

	Water formation volume factor

	waterReferencePressure

	real64

	0

	Water reference pressure

	waterViscosity

	real64

	0

	Water viscosity

Supported phase names are:

	Value

	Comment

	oil

	Oil phase

	gas

	Gas phase

	water

	Water phase

Example

<Constitutive>
 <BlackOilFluid name="fluid1"
 fluidType="LiveOil"
 phaseNames="{ oil, gas, water }"
 surfaceDensities="{ 800.0, 0.9907, 1022.0 }"
 componentMolarWeight="{ 114e-3, 16e-3, 18e-3 }"
 tableFiles="{ pvto.txt, pvtg.txt, pvtw.txt }"/>
</Constitutive>

Compositional multiphase fluid model

Overview

This model represents a full composition description of a multiphase multicomponent fluid.
Phase behavior is modeled by an Equation of State (EOS) and partitioning of components into
phases is computed based on instantaneous chemical equilibrium via a two- or three-phase flash.
Each component (species) is characterized by molar weight and critical properties that
serve as input parameters for the EOS.
See Petrowiki [https://petrowiki.org/Phase_behavior_in_reservoir_simulation#Equation-of-state_models] for more information.

Parameters

The model represented by <CompositionalMultiphaseFluid> node in the input.
Under the hood this is a wrapper around PVTPackage library, which is included as a submodule.
In order to use the model, GEOSX must be built with -DENABLE_PVTPACKAGE=ON (default).

The following attributes are supported:

	Name

	Type

	Default

	Description

	componentAcentricFactor

	real64_array

	required

	Component acentric factors

	componentBinaryCoeff

	real64_array2d

	{{0}}

	Table of binary interaction coefficients

	componentCriticalPressure

	real64_array

	required

	Component critical pressures

	componentCriticalTemperature

	real64_array

	required

	Component critical temperatures

	componentMolarWeight

	real64_array

	required

	Component molar weights

	componentNames

	string_array

	required

	List of component names

	componentVolumeShift

	real64_array

	{0}

	Component volume shifts

	equationsOfState

	string_array

	required

	List of equation of state types for each phase

	name

	string

	required

	A name is required for any non-unique nodes

	phaseNames

	string_array

	required

	List of fluid phases

Supported phase names are:

	Value

	Comment

	oil

	Oil phase

	gas

	Gas phase

	water

	Water phase

Supported Equation of State types:

	Value

	Comment

	PR

	Peng-Robinson EOS

	SRK

	Soave-Redlich-Kwong EOS

Example

<Constitutive>
 <CompositionalMultiphaseFluid name="fluid1"
 phaseNames="{ oil, gas }"
 equationsOfState="{ PR, PR }"
 componentNames="{ N2, C10, C20, H2O }"
 componentCriticalPressure="{ 34e5, 25.3e5, 14.6e5, 220.5e5 }"
 componentCriticalTemperature="{ 126.2, 622.0, 782.0, 647.0 }"
 componentAcentricFactor="{ 0.04, 0.443, 0.816, 0.344 }"
 componentMolarWeight="{ 28e-3, 134e-3, 275e-3, 18e-3 }"
 componentVolumeShift="{ 0, 0, 0, 0 }"
 componentBinaryCoeff="{ { 0, 0, 0, 0 },
 { 0, 0, 0, 0 },
 { 0, 0, 0, 0 },
 { 0, 0, 0, 0 } }"/>
</Constitutive>

CO2-brine model

Summary

The CO2-brine model implemented in GEOSX includes two components (CO2 and H2O) that are transported by one or two fluid phases (the brine phase and the CO2 phase).
We refer to the brine phase with the subscript [image: \ell] and to the CO2 phase with the subscript [image: g] (although the CO2 phase can be in supercritical, liquid, or gas state).
The water component is only present in the brine phase, while the CO2 component can be present in the CO2 phase as well as in the brine phase.
Thus, considering the phase component fractions, [image: y_{c,p}] (i.e., the fraction of the mass of phase [image: p] represented by component [image: c]) the following partition matrix determines the component distribution within the two phases:

[image: \begin{bmatrix} y_{CO2,g} & y_{CO2,\ell} \\ 0 & 1 \\ \end{bmatrix}]

The update of the fluid properties is done in two steps:

	The phase fractions ([image: \nu_p]) and phase component fractions ([image: y_{c,p}]) are computed as a function of pressure ([image: p]), temperature ([image: T]), component fractions ([image: z_c]), and a constant salinity.

	The phase densities ([image: \rho_p]) and phase viscosities ([image: \mu_p]) are computed as a function of pressure, temperature, the updated phase component fractions, and a constant salinity.

Once the phase fractions, phase component fractions, phase densities, phase viscosities–and their derivatives with respect to pressure, temperature, and component fractions–have been computed, the Compositional Multiphase Flow Solver proceeds to the assembly of the accumulation and flux terms.
Note that the current implementation of the flow solver is isothermal and that the derivatives with respect to temperature are therefore discarded.

The models that are used in steps 1) and 2) are reviewed in more details below.

Step 1: Computation of the phase fractions and phase component fractions (flash)

At initialization, GEOSX performs a preprocessing step to construct a two-dimensional table storing the values of CO2 solubility in brine as a function of pressure, temperature, and a constant salinity.
The user can parameterize the construction of the table by specifying the salinity and by defining the pressure ([image: p]) and temperature ([image: T]) axis of the table in the form:

	FlashModel

	CO2Solubility

	[image: p_{min}]

	[image: p_{max}]

	[image: \Delta p]

	[image: T_{min}]

	[image: T_{max}]

	[image: \Delta T]

	Salinity

Note that the pressures are in Pascal, temperatures are in Kelvin, and the salinity is a molality (moles of NaCl per kg of brine).
The temperature must be between 283.15 and 623.15 Kelvin.
The table is populated using the model of Duan and Sun (2003).
Specifically, we solve the following nonlinear CO2 equation of state (equation (A1) in Duan and Sun, 2003) for each pair [image: (p,T)] to obtain the reduced volume, [image: V_r].

[image: \frac{p_r V_r}{T_r} &= 1 + \frac{a_1 + a_2/T^2_r + a_3/T^3_r}{V_r} + \frac{a_4 + a_5/T^2_r + a_6/T^3_r}{V^2_r} + \frac{a_7 + a_8/T^2_r + a_9/T^3_r}{V^4_r} \\ &+ \frac{a_{10} + a_{11}/T^2_r + a_{12}/T^3_r}{V^5_r} + \frac{a_{13}}{T^3_r V^2_r} \big(a_{14} + \frac{a_{15}}{V^2_r} \big) \exp(- \frac{a_{15}}{V^2_r})]

where [image: p_r = p / p_{crit}] and [image: T_r = T / T_{crit}] are respectively the reduced pressure and the reduced temperature.
We refer the reader to Table (A1) in Duan and Sun (2003) for the definition of the coefficients [image: a_i] involved in the previous equation.
Using the reduced volume, [image: V_r], we compute the fugacity coefficient of CO2, [image: \ln_{\phi}(p,T)], using equation (A6) of Duan and Sun (2003).
To conclude this preprocessing step, we use the fugacity coefficient of CO2 to compute and store the solubility of CO2 in brine, [image: s_{CO2}], using equation (6) of Duan and Sun (2003):

[image: \ln \frac{ x_{CO2} P }{ s_{CO2} } = \frac{\Phi_{CO2}}{RT} - \ln_{\phi}(p,T) + \sum_c 2 \lambda_c m + \sum_a 2 \lambda_a m + \sum_{a,c} \zeta_{a,c} m^2]

where [image: \Phi_{CO2}] is the chemical potential of the CO2 component, [image: R] is the gas constant, and [image: m] is the salinity.
The mole fraction of CO2 in the vapor phase, [image: x_{CO2}], is computed with equation (4) of Duan and Sun (2003).
Note that the first, third, fourth, and fifth terms in the equation written above are approximated using equation (7) of Duan and Sun (2003) as recommended by the authors.

During the simulation, Step 1 starts with a look-up in the precomputed table to get the CO2 solubility, [image: s_{CO2}], as a function of pressure and temperature.
Then, we compute the phase fractions as:

[image: \nu_{\ell} &= \frac{1 + s_{CO2}}{1 + z_{CO2} / (1 - z_{CO2}) } \\ \nu_{g} &= 1 - \nu_{\ell}]

We conclude Step 1 by computing the phase component fractions as:

[image: y_{CO2,\ell} &= \frac{ s_{CO2} }{ 1 + s_{CO2} } \\ y_{H2O,\ell} &= 1 - y_{CO2,\ell} \\ y_{CO2,g} &= 1 \\ y_{H2O,g} &= 0]

Step 2: Computation of the phase densities and phase viscosities

CO2 phase density and viscosity

In GEOSX, the computation of the CO2 phase density and viscosity is entirely based on look-up in precomputed tables.
The user defines the pressure (in Pascal) and temperature (in Kelvin) axis of the density table in the form:

	DensityFun

	SpanWagnerCO2Density

	[image: p_{min}]

	[image: p_{max}]

	[image: \Delta p]

	[image: T_{min}]

	[image: T_{max}]

	[image: \Delta T]

This correlation is valid for pressures less than [image: 8 \times 10^8] Pascal and temperatures less than 1073.15 Kelvin.
Using these parameters, GEOSX internally constructs a two-dimensional table storing the values of density as a function of pressure and temperature.
This table is populated as explained in the work of Span and Wagner (1996) by solving the following nonlinear Helmholtz energy equation for each pair [image: (p,T)] to obtain the value of density, [image: \rho_{g}]:

[image: \frac{p}{RT\rho_{g}} = 1 + \delta \phi^r_{\delta}(\delta, \tau)]

where [image: R] is the gas constant, [image: \delta := \rho_{g} / \rho_{crit}] is the reduced CO2 phase density, and [image: \tau := T_{crit} / T] is the inverse of the reduced temperature.
The definition of the residual part of the energy equation, denoted by [image: \phi^r_{\delta}], can be found in equation (6.5), page 1544 of Span and Wagner (1996).
The coefficients involved in the computation of [image: \phi^r_{\delta}] are listed in Table (31), page 1544 of Span and Wagner (1996).
These calculations are done in a preprocessing step.

The pressure and temperature axis of the viscosity table can be parameterized in a similar fashion using the format:

	ViscosityFun

	FenghourCO2Viscosity

	[image: p_{min}]

	[image: p_{max}]

	[image: \Delta p]

	[image: T_{min}]

	[image: T_{max}]

	[image: \Delta T]

This correlation is valid for pressures less than [image: 3 \times 10^8] Pascal and temperatures less than 1493.15 Kelvin.
This table is populated as explained in the work of Fenghour and Wakeham (1998) by computing the CO2 phase viscosity, [image: \mu_g], as follows:

[image: \mu_{g} = \mu_{0}(T) + \mu_{excess}(\rho_{g}, T) + \mu_{crit}(\rho_{g}, T)]

The “zero-density limit” viscosity, [image: \mu_{0}(T)], is computed as a function of temperature using equations (3), (4), and (5), as well as Table (1) of Fenghour and Wakeham (1998).
The excess viscosity, [image: \mu_{excess}(\rho_{g}, T)], is computed as a function of temperature and CO2 phase density (computed as explained above) using equation (8) and Table (3) of Fenghour and Wakeham (1998).
We currently neglect the critical viscosity, [image: \mu_{crit}].
These calculations are done in a preprocessing step.

During the simulation, the update of CO2 phase density and viscosity is simply done with a look-up in the precomputed tables.

Brine density and viscosity

The computation of the brine density involves a tabulated correlation presented in Phillips et al. (1981).
The user specifies the (constant) salinity and defines the pressure and temperature axis of the brine density table in the form:

	DensityFun

	BrineCO2Density

	[image: p_{min}]

	[image: p_{max}]

	[image: \Delta p]

	[image: T_{min}]

	[image: T_{max}]

	[image: \Delta T]

	Salinity

The pressure must be in Pascal and must be less than [image: 5 \times 10^7] Pascal.
The temperature must be in Kelvin and must be between 283.15 and 623.15 Kelvin.
The salinity is a molality (moles of NaCl per kg of brine).
Using these parameters, GEOSX performs a preprocessing step to construct a two-dimensional table storing the brine density, [image: \rho_{\ell,table}] for the specified salinity as a function of pressure and temperature using the expression:

[image: \rho_{\ell,table} &= A + B x + C x^2 + D x^3 \\ x &= c_1 \exp(a_1 m) + c_2 \exp(a_2 T) + c_3 \exp(a_3 P)]

We refer the reader to Phillips et al. (1981), equations (4) and (5), pages 14 and 15 for the definition of the coefficients involved in the previous equation.
This concludes the preprocessing step.

Then, during the simulation, the brine density update proceeds in two steps.
First, a table look-up is performed to retrieve the value of density, [image: \rho_{\ell,table}].
Then, in a second step, the density is modified using the method of Garcia (2001) to account for the presence of CO2 dissolved in brine as follows:

[image: \rho_{\ell} = \rho_{\ell,table} + M_{CO2} c_{CO2} - c_{CO2} \rho_{\ell,table} V_{\phi}]

where [image: M_{CO2}] is the molecular weight of CO2, [image: c_{CO2}] is the concentration of CO2 in brine, and [image: V_{\phi}] is the apparent molar volume of dissolved CO2.
The CO2 concentration in brine is obtained as:

[image: c_{CO2} = \frac{y_{CO2,\ell} \rho_{\ell,table}}{M_{H2O}(1-y_{CO2,\ell})}]

where [image: M_{H2O}] is the molecular weight of water.
The apparent molar volume of dissolved CO2 is computed as a function of temperature using the expression:

[image: V_{\phi} = 37.51 - 9.585 \times 10^{-2} T + 8.740 \times 10^{-4} T^2 - 5.044 \times 10^{-7} T^3]

The brine viscosity is controlled by a salinity parameter provided by the user in the form:

	ViscosityFun

	BrineViscosity

	Salinity

During the simulation, the brine viscosity is updated as a function of temperature using the analytical relationship of Phillips et al. (1981):

[image: \mu_{\ell} = a T + b]

where the coefficients [image: a] and [image: b] are defined as:

[image: a &= 0.00089 \times 0.000629 (1.0 - \exp(-0.7 m)) \\ b &= 0.00089 (1.0 + 0.0816 m + 0.0122 m^2 + 0.000128 m^3)]

where [image: m] is the user-defined salinity (in moles of NaCl per kg of brine).

Parameters

The model is represented by <CO2BrineFluid> node in the input.

The following attributes are supported:

	Name

	Type

	Default

	Description

	componentMolarWeight

	real64_array

	{0}

	Component molar weights

	componentNames

	string_array

	{}

	List of component names

	flashModelParaFile

	path

	required

	Name of the file defining the parameters of the flash model

	name

	string

	required

	A name is required for any non-unique nodes

	phaseNames

	string_array

	{}

	List of fluid phases

	phasePVTParaFiles

	path_array

	required

	Names of the files defining the parameters of the viscosity and density models

Supported phase names are:

	Value

	Comment

	gas

	CO2 phase

	water

	Water phase

Supported component names are:

	Value

	Component

	co2,CO2

	CO2 component

	water,liquid

	Water component

Example

<Constitutive>
 <CO2BrineFluid
 name="fluid"
 phaseNames="{ gas, water }"
 componentNames="{ co2, water }"
 componentMolarWeight="{ 44e-3, 18e-3 }"
 phasePVTParaFiles="{ pvtgas.txt, pvtliquid.txt }"
 flashModelParaFile="co2flash.txt"/>
</Constitutive>

In the XML code listed above, “co2flash.txt” parameterizes the CO2 solubility table constructed in Step 1.
The file “pvtgas.txt” parameterizes the CO2 phase density and viscosity tables constructed in Step 2, while
the file “pvtliquid.txt” parameterizes the brine density and viscosity tables.

References

	Z. Duan and R. Sun, An improved model calculating CO2 solubility in pure
water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. [https://doi.org/10.1016/S0009-2541(02)00263-2], Chemical Geology,
vol. 193.3-4, pp. 257-271, 2003.

	R. Span and W. Wagner, A new equation of state for carbon dioxide covering
the fluid region from the triple-point temperature to 1100 K at pressure up
to 800 MPa [https://aip.scitation.org/doi/abs/10.1063/1.555991], J. Phys.
Chem. Ref. Data, vol. 25, pp. 1509-1596, 1996.

	A. Fenghour and W. A. Wakeham, The viscosity of carbon dioxide [https://aip.scitation.org/doi/abs/10.1063/1.556013], J. Phys. Chem. Ref.
Data, vol. 27, pp. 31-44, 1998.

	S. L. Phillips et al., A technical databook for geothermal energy
utilization [https://escholarship.org/content/qt5wg167jq/qt5wg167jq.pdf],
Lawrence Berkeley Laboratory report, 1981.

	J. E. Garcia, Density of aqueous solutions of CO2. No. LBNL-49023.
Lawrence Berkeley National Laboratory, Berkeley, CA, 2001.

Relative Permeability Models

There are two ways to specify relative permeabilities in GEOSX.
The user can either select an analytical relative permeability model (e.g., Brooks-Corey or Van Genuchten) or provide relative permeability tables.
This is explained in the following sections.

	Brooks-Corey relative permeability model

	Three-phase relative permeability model

	Table relative permeability

Brooks-Corey relative permeability model

Overview

The following paragraphs explain how the Brooks-Corey
model is used to compute the phase relative permeabilities as a function
of volume fraction (i.e., saturation) with the expression:

[image: k_{r\ell} = k_{\textit{r}\ell,\textit{max}} S_{\ell,\textit{scaled}}^{\lambda_{\ell}},]

where the scaled volume fraction of phase [image: \ell] is computed as:

[image: S_{\ell,\textit{scaled}} = \frac{S_{\ell} - S_{\ell,\textit{min}} }{1 - \sum^{n_p}_{m=1} S_{\textit{m,min}} }.]

The minimum phase volume fractions [image: S_{\ell,\textit{min}}] are model parameters specified by the user.

Parameters

The relative permeability constitutive model is listed in the
<Constitutive> block of the input XML file.
The relative permeability model must be assigned a unique name via
name attribute.
This name is used to assign the model to regions of the physical
domain via a materialList attribute of the <ElementRegions>
node.

The following attributes are supported:

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	phaseMinVolumeFraction

	real64_array

	{0}

	Minimum volume fraction value for each phase

	phaseNames

	string_array

	required

	List of fluid phases

	phaseRelPermExponent

	real64_array

	{1}

	Minimum relative permeability power law exponent for each phase

	phaseRelPermMaxValue

	real64_array

	{0}

	Maximum relative permeability value for each phase

Below are some comments on the model parameters.

	phaseNames - The number of phases can be either two or three. Note that for three-phase flow, this model does not apply a special treatment to the intermediate phase relative permeability (no Stone or Baker interpolation). Supported phase names are:

	Value

	Phase

	oil

	Oil phase

	gas

	Gas phase

	water

	Water phase

	phaseMinVolFraction - The list of minimum volume fractions [image: S_{\ell,min}] for each phase is specified in the same order as in phaseNames. Below this volume fraction, the phase is assumed to be immobile.

	phaseRelPermExponent - The list of exponents [image: \lambda_{\ell}] for each phase is specified in the same order as in phaseNames.

	phaseMaxValue - The list of maximum values [image: k_{\textit{r} \ell,\textit{max}}] for each phase is specified in the same order as in phaseNames.

Examples

For a two-phase water-gas system (for instance in the CO2-brine fluid model), a typical relative permeability input looks like:

<Constitutive>
 ...
 <BrooksCoreyRelativePermeability
 name="relPerm"
 phaseNames="{ water, gas }"
 phaseMinVolumeFraction="{ 0.02, 0.015 }"
 phaseRelPermExponent="{ 2, 2.5 }"
 phaseRelPermMaxValue="{ 0.8, 1.0 }"/>
 ...
</Constitutive>

For a three-phase oil-water-gas system (for instance in the Black-Oil fluid model), a typical relative permeability input looks like:

<Constitutive>
 ...
 <BrooksCoreyRelativePermeability
 name="relPerm"
 phaseNames="{ water, oil, gas }"
 phaseMinVolumeFraction="{ 0.02, 0.1, 0.015 }"
 phaseRelPermExponent="{ 2, 2, 2.5 }"
 phaseRelPermMaxValue="{ 0.8, 1.0, 1.0 }"/>
 ...
</Constitutive>

Three-phase relative permeability model

Overview

For the simulation of three-phase flow in porous media, it is common to use a specific treatment
(i.e., different from the typical two-phase procedure) to evaluate the oil relative permeability.
Specifically, the three-phase oil relative permeability is obtained by interpolation of oil-water
and oil-gas experimental data measured independently in two-phase displacements.

Let [image: k_{rw,wo}] and [image: k_{ro,wo}] be the water-oil two-phase relative permeabilities for the
water phase and the oil phase, respectively. Let [image: k_{rg,go}] and [image: k_{ro,go}] be the oil-gas
two-phase relative permeabilities for the gas phase and the oil phase, respectively.
In the current implementation, the two-phase relative permeability data is computed analytically using the Brooks-Corey relative permeability model.

The water and gas three-phase relative permeabilities are simply given by two-phase data and
only depend on [image: S_w] and [image: S_g], respectively. That is,

[image: k_{rw,wog}(S_w) = k_{rw,wo}(S_w),]

[image: k_{rg,wog}(S_g) = k_{rg,go}(S_g).]

The oil three-phase relative permeability
is obtained using a variant of the saturation-weighted interpolation procedure initially proposed
by Baker [http://dx.doi.org/10.2118/17369-MS]. Specifically, we compute:

[image: k_{ro,wog}(S_w,S_g) = \frac{ (S_w - S_{w,\textit{min}}) k_{ro,wo}(S_w) + S_g k_{rg,go}(S_g) }{ (S_w - S_{w,\textit{min}}) + S_g }.]

This procedure provides a simple but effective formula avoiding
the problems associated with the other interpolation methods (negative values).

Parameters

The relative permeability constitutive model is listed in the
<Constitutive> block of the input XML file.
The relative permeability model must be assigned a unique name via
name attribute.
This name is used to assign the model to regions of the physical
domain via a materialList attribute of the <ElementRegion>
node.

The following attributes are supported:

	Name

	Type

	Default

	Description

	gasOilRelPermExponent

	real64_array

	{1}

	
Rel perm power law exponent for the pair (gas phase, oil phase) at residual water saturation

The expected format is “{ gasExp, oilExp }”, in that order

	gasOilRelPermMaxValue

	real64_array

	{0}

	
Maximum rel perm value for the pair (gas phase, oil phase) at residual water saturation

The expected format is “{ gasMax, oilMax }”, in that order

	name

	string

	required

	A name is required for any non-unique nodes

	phaseMinVolumeFraction

	real64_array

	{0}

	Minimum volume fraction value for each phase

	phaseNames

	string_array

	required

	List of fluid phases

	waterOilRelPermExponent

	real64_array

	{1}

	
Rel perm power law exponent for the pair (water phase, oil phase) at residual gas saturation

The expected format is “{ waterExp, oilExp }”, in that order

	waterOilRelPermMaxValue

	real64_array

	{0}

	
Maximum rel perm value for the pair (water phase, oil phase) at residual gas saturation

The expected format is “{ waterMax, oilMax }”, in that order

Below are some comments on the model parameters.

	phaseNames - The number of phases should be 3. Supported phase names are:

	Value

	Phase

	oil

	Oil phase

	gas

	Gas phase

	water

	Water phase

	phaseMinVolFraction - The list of minimum volume fractions [image: S_{\ell,min}] for each phase is specified in the same order as in phaseNames. Below this volume fraction, the phase is assumed to be immobile.

	waterOilRelPermExponent - The list of exponents [image: \lambda_{\ell,wo}] for the two-phase water-oil relative permeability data, with the water exponent first and the oil exponent next. These exponents are then used to compute [image: k_{r \ell,wo}] in the Brooks-Corey relative permeability model.

	waterOilRelPermMaxValue - The list of maximum values [image: k_{\textit{r} \ell,wo,\textit{max}}] for the two-phase water-oil relative permeability data, with the water max value first and the oil max value next. These exponents are then used to compute [image: k_{r \ell,wo}] in the Brooks-Corey relative permeability model.

	gasOilRelPermExponent - The list of exponents [image: \lambda_{\ell,go}] for the two-phase gas-oil relative permeability data, with the gas exponent first and the oil exponent next. These exponents are then used to compute [image: k_{r \ell,go}] in the Brooks-Corey relative permeability model.

	gasOilRelPermMaxValue - The list of maximum values [image: k_{\textit{r} \ell,go,\textit{max}}] for the two-phase gas-oil relative permeability data, with the gas max value first and the oil max value next. These exponents are then used to compute [image: k_{r \ell,go}] in the Brooks-Corey relative permeability model.

Example

<Constitutive>
 ...
 <BrooksCoreyBakerRelativePermeability name="relperm"
 phaseNames="{oil, gas, water}"
 phaseMinVolumeFraction="{0.05, 0.05, 0.05}"
 waterOilRelPermExponent="{2.5, 1.5}"
 waterOilRelPermMaxValue="{0.8, 0.9}"
 gasOilRelPermExponent="{3, 3}"
 gasOilRelPermMaxValue="{0.4, 0.9}"/>
 ...
</Constitutive>

Table relative permeability

Overview

The user can specify the relative permeabilities using tables describing a piecewise-linear relative permeability function of volume fraction (i.e., saturation) for each phase.
Depending on the number of fluid phases, this model is used as follows:

	For two-phase flow, the user must specify two relative permeability tables, that is, one for the wetting-phase relative permeability, and one for the non-wetting phase relative permeability. During the simulation, the relative permeabilities are then obtained by interpolating in the tables as a function of phase volume fraction.

	For three-phase flow, following standard reservoir simulation practice, the user must specify four relative permeability tables. Specifically, two relative permeability tables are required for the pair wetting-phase–intermediate phase (typically, water-oil), and two relative permeability tables are required for the pair non-wetting-phase–intermediate phase (typically, gas-oil). During the simulation, the relative permeabilities of the wetting and non-wetting phases are computed by interpolating in the tables as a function of their own phase volume fraction. The intermediate phase relative permeability is obtained by interpolating the two-phase relative permeabilities using the Baker interpolation procedure.

Parameters

The relative permeability constitutive model is listed in
the <Constitutive> block of the input XML file.
The relative permeability model must be assigned a unique name via
name attribute.
This name is used to assign the model to regions of the physical
domain via a materialList attribute of the <ElementRegions>
node.

The following attributes are supported:

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	nonWettingIntermediateRelPermTableNames

	string_array

	{}

	
List of relative permeability tables for the pair (non-wetting phase, intermediate phase)

The expected format is “{ nonWettingPhaseRelPermTableName, intermediatePhaseRelPermTableName }”, in that order

Note that this input is only used for three-phase flow.

If you want to do a two-phase simulation, please use instead wettingNonWettingRelPermTableNames to specify the table names

	phaseNames

	string_array

	required

	List of fluid phases

	wettingIntermediateRelPermTableNames

	string_array

	{}

	
List of relative permeability tables for the pair (wetting phase, intermediate phase)

The expected format is “{ wettingPhaseRelPermTableName, intermediatePhaseRelPermTableName }”, in that order

Note that this input is only used for three-phase flow.

If you want to do a two-phase simulation, please use instead wettingNonWettingRelPermTableNames to specify the table names

	wettingNonWettingRelPermTableNames

	string_array

	{}

	
List of relative permeability tables for the pair (wetting phase, non-wetting phase)

The expected format is “{ wettingPhaseRelPermTableName, nonWettingPhaseRelPermTableName }”, in that order

Note that this input is only used for two-phase flow.

If you want to do a three-phase simulation, please use instead wettingIntermediateRelPermTableNames and nonWettingIntermediateRelPermTableNames to specify the table names

Below are some comments on the model parameters.

	phaseNames - The number of phases can be either two or three. For three-phase flow, this model applies a Baker interpolation to the intermediate phase relative permeability. Supported phase names are:

	Value

	Phase

	oil

	Oil phase

	gas

	Gas phase

	water

	Water phase

	wettingNonWettingRelPermTableNames - The list of relative permeability table names for two-phase systems, starting with the name of the wetting-phase relative permeability table, followed by the name of the non-wetting phase relative permeability table. Note that this keyword is only valid for two-phase systems, and is not allowed for three-phase systems (for which the user must specify instead wettingIntermediateRelPermTableNames and nonWettingIntermediateRelPermTableNames).

	wettingIntermediateRelPermTableNames - The list of relative permeability table names for the pair wetting-phase–intermediate-phase, starting with the name of the wetting-phase relative permeability table, and continuing with the name of the intermediate phase relative permeability table. Note that this keyword is only valid for three-phase systems, and is not allowed for two-phase systems (for which the user must specify instead wettingNonWettingRelPermTableNames).

	nonWettingIntermediateRelPermTableNames - The list of relative permeability table names for the pair non-wetting-phase–intermediate-phase, starting with the name of the non-wetting-phase relative permeability table, and continuing with the name of the intermediate phase relative permeability table. Note that this keyword is only valid for three-phase systems, and is not allowed for two-phase systems (for which the user must specify instead wettingNonWettingRelPermTableNames).

Note

We remind the user that the relative permeability must be a strictly increasing function of phase volume fraction. GEOSX throws an error when this condition is not satisfied.

Examples

For a two-phase water-gas system (for instance in the CO2-brine fluid model), a typical relative permeability input looks like:

<Constitutive>
 ...
 <TableRelativePermeability
 name="relPerm"
 phaseNames="{ water, gas }"
 wettingNonWettingRelPermTableNames="{ waterRelativePermeabilityTable, gasRelativePermeabilityTable }"/>
 ...
</Constitutive>

Note

The name of the wetting-phase relative permeability table must be specified before the name of the non-wetting phase relative permeability table.

For a three-phase oil-water-gas system (for instance in the Black-Oil fluid model), a typical relative permeability input looks like:

<Constitutive>
 ...
 <TableRelativePermeability
 name="relPerm"
 phaseNames="{ water, oil, gas }"
 wettingIntermediateRelPermTableNames="{ waterRelativePermeabilityTable, oilRelativePermeabilityTableForWO }"
 nonWettingIntermediateRelPermTableNames="{ gasRelativePermeabilityTable, oilRelativePermeabilityTableForGO }"/>
 ...
</Constitutive>

Note

For the wetting-phase–intermediate-phase pair, the name of the wetting-phase relative permeability table must be specified first. For the non-wetting-phase–intermediate-phase pair, the name of the non-wetting-phase relative permeability table must be specified first. If the results look incoherent, this is something to double-check.

The tables mentioned above by name must be defined in the <Functions> block of the XML file using the <TableFunction> keyword.

Capillary Pressure Models

There are two ways to specify capillary pressures in GEOSX.
The user can either select an analytical capillary pressure model (e.g., Brooks-Corey or Van Genuchten) or provide capillary pressure tables.
This is explained in the following sections.

	Brooks-Corey capillary pressure model

	Van Genuchten capillary pressure model

	Table capillary pressure

Brooks-Corey capillary pressure model

Overview

In GEOSX, the oil-phase pressure is assumed to be the primary pressure.
The following paragraphs explain how the Brooks-Corey capillary pressure
model is used to compute the water-phase and gas-phase pressures as:

[image: p_w = p_o - P_{c,w}(S_w),]

and

[image: p_g = p_o + P_{c,g}(S_g).]

In the Brooks-Corey model, the water-phase capillary pressure
is computed as a function of the water-phase volume fraction with
the following expression:

[image: P_{c,w}(S_w) = p_{e,w} S_{\textit{w,scaled}}^{-1/\lambda_w},]

where the scaled water-phase volume fraction is computed as:

[image: S_{\textit{w,scaled}} = \frac{S_w - S_{\textit{w,min}} }{1 - S_{\textit{w,min}} - S_{\textit{o,min}} - S_{\textit{g,min} }}.]

The gas capillary pressure is computed analogously.

Parameters

The capillary pressure constitutive model is listed in the
<Constitutive> block of the input XML file.
The capillary pressure model must be assigned a unique name via
name attribute.
This name is used to assign the model to regions of the physical
domain via a materialList attribute of the <ElementRegions>
node.

The following attributes are supported:

	Name

	Type

	Default

	Description

	capPressureEpsilon

	real64

	1e-06

	Wetting-phase saturation at which the max cap. pressure is attained; used to avoid infinite cap. pressure values for saturations close to zero

	name

	string

	required

	A name is required for any non-unique nodes

	phaseCapPressureExponentInv

	real64_array

	{2}

	Inverse of capillary power law exponent for each phase

	phaseEntryPressure

	real64_array

	{1}

	Entry pressure value for each phase

	phaseMinVolumeFraction

	real64_array

	{0}

	Minimum volume fraction value for each phase

	phaseNames

	string_array

	required

	List of fluid phases

Below are some comments on the model parameters:

	phaseNames - The number of phases can be either 2 or 3. The names entered for this attribute should match the phase names specified in the relative permeability block, either in Brooks-Corey relative permeability model or in Three-phase relative permeability model. The capillary pressure model assumes that oil is always present. Supported phase names are:

	Value

	Phase

	oil

	Oil phase

	gas

	Gas phase

	water

	Water phase

	phaseMinVolFraction - The list of minimum volume fractions [image: S_{\ell,min}] for each phase is specified in the same order as in phaseNames. Below this volume fraction, the phase is assumed to be immobile. The values entered for this attribute have to match those of the same attribute in the relative permeability block.

	phaseCapPressureExponentInv - The list of exponents [image: \lambda_{\ell}] for each phase is specified in the same order as in phaseNames. The parameter corresponding to the oil phase is currently not used.

	phaseEntryPressure - The list of entry pressures [image: p_{e,\ell}] for each phase is specified in the same order as in phaseNames. The parameter corresponding to the oil phase is currently not used.

	capPressureEpsilon - This parameter is used for both the water-phase and gas-phase capillary pressure. To avoid extremely large, or infinite, capillary pressure values, we set [image: P_{c,w}(S_w) := P_{c,w}(\epsilon)] whenever [image: S_w < \epsilon]. The gas-phase capillary pressure is treated analogously.

Example

<Constitutive>
 ...
 <BrooksCoreyCapillaryPressure name="capPressure"
 phaseNames="{oil, gas}"
 phaseMinVolumeFraction="{0.01, 0.015}"
 phaseCapPressureExponentInv="{0, 6}"
 phaseEntryPressure="{0, 1e8}"
 capPressureEpsilon="1e-8"/>
 ...
</Constitutive>

Van Genuchten capillary pressure model

Overview

In GEOSX, the oil-phase pressure is assumed to be the primary
pressure.
The following paragraphs explain how the
Van Genuchten capillary pressure model
is used to compute the water-phase and gas-phase
pressures as:

[image: p_w = p_o - P_{c,w}(S_w),]

and

[image: p_g = p_o + P_{c,g}(S_g),]

The Van Genuchten model computes the water-phase capillary
pressure as a function of the water-phase volume fraction as:

[image: P_c(S_w) = \alpha_w (S_{w,scaled}^{-1/m_w} - 1)^{ (1-m_w)/2 },]

where the scaled water-phase volume fraction is computed as:

[image: S_{\textit{w,scaled}} = \frac{S_w - S_{\textit{w,min}} }{1 - S_{\textit{w,min}} - S_{\textit{o,min}} - S_{\textit{g,min} }}.]

The gas-phase capillary pressure is computed analogously.

Parameters

The capillary pressure constitutive model is listed in the
<Constitutive> block of the input XML file.
The capillary pressure model must be assigned a unique name via
name attribute.
This name is used to assign the model to regions of the physical
domain via a materialList attribute of the <ElementRegions>
node.

The following attributes are supported:

	Name

	Type

	Default

	Description

	capPressureEpsilon

	real64

	1e-06

	Saturation at which the extremum capillary pressure is attained; used to avoid infinite capillary pressure values for saturations close to 0 and 1

	name

	string

	required

	A name is required for any non-unique nodes

	phaseCapPressureExponentInv

	real64_array

	{0.5}

	Inverse of capillary power law exponent for each phase

	phaseCapPressureMultiplier

	real64_array

	{1}

	Entry pressure value for each phase

	phaseMinVolumeFraction

	real64_array

	{0}

	Minimum volume fraction value for each phase

	phaseNames

	string_array

	required

	List of fluid phases

Below are some comments on the model parameters:

	phaseNames - The number of phases can be either 2 or 3. The phase names entered for this attribute should match the phase names specified in the relative permeability block, either in Brooks-Corey relative permeability model or in Three-phase relative permeability model. The capillary model assumes that oil is always present. Supported phase names are:

	Value

	Phase

	oil

	Oil phase

	gas

	Gas phase

	water

	Water phase

	phaseMinVolFraction - The list of minimum volume fractions [image: S_{\ell,min}] for each phase is specified in the same order as in phaseNames. Below this volume fraction, the phase is assumed to be immobile. The values entered for this attribute have to match those of the same attribute in the relative permeability block.

	phaseCapPressureExponentInv - The list of exponents [image: m_{\ell}] for each phase is specified in the same order as in phaseNames. The parameter corresponding to the oil phase is not used.

	phaseCapPressureMultiplier - The list of multipliers [image: \alpha_{\ell}] for each phase is specified in the same order as in phaseNames. The parameter corresponding to the oil phase is not used.

	capPressureEpsilon - The parameter [image: \epsilon]. This parameter is used for both the water-phase and gas-phase capillary pressure. To avoid extremely large, or infinite, capillary pressure values, we set [image: P_{c,w}(S_w) := P_{c,w}(\epsilon)] whenever [image: S_w < \epsilon]. The gas-phase capillary pressure is treated analogously.

Example

<Constitutive>
 ...
 <VanGenuchtenCapillaryPressure name="capPressure"
 phaseNames="{water, oil}"
 phaseMinVolumeFraction="{0.1, 0.015}"
 phaseCapPressureExponentInv="{0.55, 0}"
 phaseCapPressureMultiplier="1e6 0"
 capPressureEpsilon="1e-7"/>
 ...
</Constitutive>

Table capillary pressure

Overview

The user can specify the capillary pressures using tables describing a piecewise-linear capillary pressure function of volume fraction (i.e., saturation) for each phase, except the reference phase for which capillary pressure is assumed to be zero.
Depending on the number of fluid phases, this model is used as follows:

	For two-phase flow, the user must specify one capillary pressure table. During the simulation, the capillary pressure of the non-reference phase is computed by interpolating in the table as a function of the non-reference phase saturation.

	For three-phase flow, the user must specify two capillary pressure tables. One capillary pressure table is required for the pair wetting-phase–intermediate-phase (typically, water-oil), and one capillary pressure table is required for the pair non-wetting-phase–intermediate-phase (typically, gas-oil). During the simulation, the former is used to compute the wetting-phase capillary pressure as a function of the wetting-phase volume fraction and the latter is used to compute the non-wetting-phase capillary pressure as a function of the non-wetting-phase volume fraction. The intermediate phase is assumed to be the reference phase, and its capillary pressure is set to zero.

Below is a table summarizing the choice of reference pressure for the various phase combinations:

	Phases present in the model

	Reference phase

	oil, water, gas

	Oil phase

	oil, water

	Oil phase

	oil, gas

	Oil phase

	water, gas

	Gas phase

In all cases, the user-provided capillary pressure is used in GEOSX to compute the phase pressure using the formula:

[image: P_c = p_{nw} - p_w.]

where [image: p_{nw}] and [image: p_w] are respectively the non-wetting-phase and wetting-phase pressures.

Parameters

The capillary pressure constitutive model is listed in
the <Constitutive> block of the input XML file.
The capillary pressure model must be assigned a unique name via
name attribute.
This name is used to assign the model to regions of the physical
domain via a materialList attribute of the <ElementRegions>
node.

The following attributes are supported:

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	nonWettingIntermediateCapPressureTableName

	string

	
	
Capillary pressure table for the pair (non-wetting phase, intermediate phase)

Note that this input is only used for three-phase flow.

If you want to do a two-phase simulation, please use instead wettingNonWettingCapPressureTableName to specify the table names

	phaseNames

	string_array

	required

	List of fluid phases

	wettingIntermediateCapPressureTableName

	string

	
	
Capillary pressure table for the pair (wetting phase, intermediate phase)

Note that this input is only used for three-phase flow.

If you want to do a two-phase simulation, please use instead wettingNonWettingCapPressureTableName to specify the table names

	wettingNonWettingCapPressureTableName

	string

	
	
Capillary pressure table for the pair (wetting phase, non-wetting phase)

Note that this input is only used for two-phase flow.

If you want to do a three-phase simulation, please use instead wettingIntermediateCapPressureTableName and nonWettingIntermediateCapPressureTableName to specify the table names

Below are some comments on the model parameters.

	phaseNames - The number of phases can be either two or three. Supported phase names are:

	Value

	Phase

	oil

	Oil phase

	gas

	Gas phase

	water

	Water phase

	wettingNonWettingCapPressureTableName - The name of the capillary pressure table for two-phase systems. Note that this keyword is only valid for two-phase systems, and is not allowed for three-phase systems (for which the user must specify instead wettingIntermediateCapPressureTableName and nonWettingIntermediateCapPressureTableName). This capillary pressure must be a strictly decreasing function of the water-phase volume fraction (for oil-water systems and gas-water systems), or a strictly increasing function of the gas-phase volume fraction (for oil-gas systems).

	wettingIntermediateCapPressureTableName - The name of the capillary pressure table for the pair wetting-phase–intermediate-phase. This capillary pressure is applied to the wetting phase, as a function of the wetting-phase volume fraction. Note that this keyword is only valid for three-phase systems, and is not allowed for two-phase systems (for which the user must specify instead wettingNonWettingCapPressureTableName). This capillary pressure must be a strictly decreasing function of the wetting-phase volume fraction.

	nonWettingIntermediateCapPressureTableName - The name of the capillary pressure table for the pair non-wetting-phase–intermediate-phase. Note that this keyword is only valid for three-phase systems, and is not allowed for two-phase systems (for which the user must specify instead wettingNonWettingCapPressureTableName). This capillary pressure must be a strictly increasing function of the non-wetting-phase volume fraction.

Examples

For a two-phase water-gas system (for instance in the CO2-brine fluid model), a typical capillary pressure input looks like:

<Constitutive>
 ...
 <TableCapillaryPressure
 name="capPressure"
 phaseNames="{ water, gas }"
 wettingNonWettingCapPressureTableNames="waterCapillaryPressureTable"/>
 ...
</Constitutive>

For a three-phase oil-water-gas system (for instance in the Black-Oil fluid model), a typical capillary pressure input looks like:

<Constitutive>
 ...
 <TableCapillaryPressure
 name="capPressure"
 phaseNames="{ water, oil, gas }"
 wettingIntermediateCapPressureTableName="waterCapillaryPressureTable"
 nonWettingIntermediateCapPressureTableName="gasCapillaryPressureTable"/>
 ...
</Constitutive>

The tables mentioned above by name must be defined in the <Functions> block of the XML file using the <TableFunction> keyword.

Porosity models

	Pressure dependent porosity

	Biot Porosity Model

Pressure dependent porosity

Overview

This model assumes a simple exponential law for the porosity as function of pressure, i.e.

[image: \phi = \phi_{ref} \, exp (c \cdot (p - p_{ref}))]

where [image: \phi_{ref}] is the reference porosity at reference pressure, [image: p_{ref}] , [image: p] is the pressure and, [image: c] is the compressibility.

Parameters

The following attributes are supported:

	Name

	Type

	Default

	Description

	compressibility

	real64

	required

	Solid compressibility

	defaultReferencePorosity

	real64

	required

	Default value of the reference porosity

	name

	string

	required

	A name is required for any non-unique nodes

	referencePressure

	real64

	required

	Reference pressure for solid compressibility

Example

<Constitutive>
 ...
 <PressurePorosity name="rockPorosity"
 referencePressure="1.0e27"
 defaultReferencePorosity="0.3"
 compressibility="1.0e-9"/>
 ...
</Constitutive>

Biot Porosity Model

Overview

According to the poroelasticity theory, the porosity (pore volume), [image: \phi], can be computed as

[image: \phi = \phi_{ref} + \alpha (\epsilon_v - \epsilon_{v,\,ref}) + (p - p_{ref}) / N.]

Here, [image: \phi_{ref}] is the porosity at a reference state with pressure [image: p_{ref}] and
volumetric strain [image: \epsilon_{v,\,ref}]. Additionally, [image: \alpha] is the Biot coefficient,
[image: \epsilon_v] is the volumetric strain, [image: p] is the fluid pressure
and [image: N = \frac{K_s}{\alpha - \phi_{ref}}], where [image: {K_s}] is the grain bulk modulus.

Parameters

The Biot Porosity Model can be called in the
<Constitutive> block of the input XML file.
This porosity model must be assigned a unique name via the
name attribute.
This name is used to assign the model to regions of the physical
domain via a materialList attribute in the <ElementRegions>
block.

The following attributes are supported:

	Name

	Type

	Default

	Description

	defaultReferencePorosity

	real64

	required

	Default value of the reference porosity

	grainBulkModulus

	real64

	required

	Grain bulk modulus

	name

	string

	required

	A name is required for any non-unique nodes

Example

<Constitutive>
 ...
 <BiotPorosity name="rockPorosity"
 grainBulkModulus="1.0e27"
 defaultReferencePorosity="0.3"/>
 ...
</Constitutive>

Permeability models

	Constant Permeability Model

	Kozeny-Carman Permeability Model

	Parallel Plates Permeability Model

Constant Permeability Model

Overview

This model is used to define a diagonal permeability tensor that does not depend on any primary variable.

Parameters

The following attributes are supported:

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityComponents

	R1Tensor

	required

	xx, yy and zz components of a diagonal permeability tensor.

Example

<Constitutive>
 ...
 <ConstantPermeability name="matrixPerm"
 permeabilityComponents="{1.0e-12, 1.0e-12, 1.0e-12}"/>
 ...
</Constitutive>

Kozeny-Carman Permeability Model

Overview

In the Kozeny-Carman model (see ref [https://en.wikipedia.org/wiki/Kozeny%E2%80%93Carman_equation]), the permeability of a porous medium
is governed by several key parameters, including porosity, grain size, and grain shape:

[image: k = \frac{({s_{\epsilon}}{D_p})^2 {\phi}^3} {150({1-\phi})^2}]

where [image: s_{\epsilon}] is the sphericity of the particles, [image: D_p] is the particle
diameter, [image: \phi] is the porosity of the porous medium.

Parameters

The Kozeny-Carman Permeability Model can be called in the
<Constitutive> block of the input XML file.
This permeability model must be assigned a unique name via the
name attribute.
This name is used to assign the model to regions of the physical
domain via a materialList attribute in the <ElementRegions>
block.

The following attributes are supported:

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	particleDiameter

	real64

	required

	Diameter of the spherical particles.

	sphericity

	real64

	required

	Sphericity of the particles.

Example

<Constitutive>
 ...
 <CarmanKozenyPermeability name="matrixPerm"
 particleDiameter="0.0002"
 sphericity="1.0"/>
 ...
</Constitutive>

Parallel Plates Permeability Model

Overview

The parallel plates permeability model defines the relationship between the hydraulic
fracture aperture and its corresponding permeability following the classic lubrication model (Witherspoon et al. [https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/WR016i006p01016]) .
In this model, the two fracture walls are assumed to be smooth and parallel to each other and separated by a uniform aperture.

[image: k = \frac{a^3}{12}]

where [image: a] denotes the hydraulic fracture aperture.

Remark: [image: k], dimensionally, is not a permeability (as it is expressed in [image: m^3]).

Parameters

The Parallel Plates Permeability Model can be called in the
<Constitutive> block of the input XML file.
This permeability model must be assigned a unique name via the
name attribute.
This name is used to assign the model to regions of the physical
domain via a materialList attribute in the <ElementRegions>
block.

The following attributes are supported:

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

Porous Solids

Overview

Simulation of fluid flow in porous media and of poromechanics,
requires to define, along with fluid properties, the hydrodynamical properties of
the solid matrix. Thus, for porous media flow and and poromecanical simulation in GEOSX,
two types of composite constitutive models can be defined to specify the characteristics
of a porous material: (1) a CompressibleSolid model, used for flow-only simulations and which
assumes that all poromechanical effects can be represented by the pressure dependency of the
porosity; (2) a PorousSolid model which, instead, allows to couple any solid model with
a BiotPorosity model and to include permeability’s dependence on the mechanical response.

Both these composite models require the names of the solid, porosity and permeability models
that, combined, define the porous material. The following sections outline how these models can be
defined in the Constitutive block of the xml input files and which type of submodels they
allow for.

CompressibleSolid

This composite constitutive model requires to define a NullModel as solid model (since
no mechanical properties are used), a PressurePorosity model and any type of Permeability model.

To define this composite model the keyword CompressibleSolid has to be appended to the name
of the permeability model of choice, as shown in the following example for the ConstantPermeability model.

<Constitutive>
 <CompressibleSolidConstantPermeability name="porousRock"
 solidModelName="nullSolid"
 porosityModelName="rockPorosity"
 permeabilityModelName="rockPermeability"/>

 <NullModel name="nullSolid"/>

 <PressurePorosity name="rockPorosity"
 referencePressure="1.0e27"
 defaultReferencePorosity="0.3"
 compressibility="1.0e-9"/>

 <ConstantPermeability name="rockPermeability"
 permeabilityComponents="{ 1.0e-4, 1.0e-4, 1.0e-4 }"/>

</Constitutive>

PorousSolid

To run poromechanical problems, the total stress is decomposed into an “effective stress” (driven by mechanical deformations) and a pore fluid
pressure component, following the Biot theory of poroelasticity [https://doi.org/10.1016/B978-0-08-040615-2.50011-3].
For single-phase flow, or multiphase problems with no capillarity, this decomposition reads

[image: \sigma_{ij} = \sigma\prime_{ij} - b p \delta_{ij}]

where [image: \sigma_{ij}] is the [image: ij] component of the total stress tensor,
[image: \sigma\prime_{ij}] is the [image: ij] component of the effective (Cauchy) stress tensor,
[image: b] is Biot’s coefficient,
[image: p] is fluid pressure,
and [image: \delta] is the Kronecker delta.

The PorousSolid models simply append the keyword Porous in front of the solid model they contain,
e.g., PorousElasticIsotropic, PorousDruckerPrager, and so on. Additionally, they require to
define a BiotPorosity model and a ConstantPermeability model. For example, a Poroelastic material
with a certain permeability can be defined as

<Constitutive>
 <PorousElasticIsotropic name="porousRock"
 porosityModelName="rockPorosity"
 solidModelName="rockSkeleton"
 permeabilityModelName="rockPermeability"/>

 <ElasticIsotropic name="rockSkeleton"
 defaultDensity="0"
 defaultYoungModulus="1.0e4"
 defaultPoissonRatio="0.2"/>

 <BiotPorosity name="rockPorosity"
 grainBulkModulus="1.0e27"
 defaultReferencePorosity="0.3"/>

 <ConstantPermeability name="rockPermeability"
 permeabilityComponents="{ 1.0e-4, 1.0e-4, 1.0e-4 }"/>
</Constitutive>

Note that any of the previously described solid models is used by the PorousSolid model
to compute the effective stress, leading to either poro-elastic, poro-plastic, or poro-damage
behavior depending on the specific model chosen.

Initial and Boundary Conditions

	Aquifer Boundary Condition

Aquifer Boundary Condition

Overview

Aquifer boundary conditions allow simulating flow between the computational domain (the reservoir) and one or multiple aquifers.
In GEOSX, we use a Carter-Tracy aquifer model parameterized in Aquifer tags of the FieldSpecifications XML input file blocks.

Aquifer model

An aquifer [image: A] is a source of volumetric flow rate [image: q^A_f], where [image: f] is the index of a face connecting the aquifer and the reservoir.
We use a Carter-Tracy model in GEOSX to compute this volumetric flow rate.

Once [image: q^A_f] is computed, the aquifer mass contribution [image: F^A_f] is assembled and added to the mass conservation equations of the reservoir cell [image: K] connected to face [image: f].
The computation of [image: F^A_f] depends on the sign of the volumetric flow rate [image: q^A_f].

The upwinding procedure is done as follows:
if the sign of [image: q^A_f] indicates that flow goes from the aquifer to the reservoir, the aquifer contribution to the conservation equation of component [image: c] is:

[image: F^A_{f,c} = \rho^A_w y^A_{w,c} q^A_f]

where [image: \rho^A_w] is the aquifer mass/molar water phase density and [image: y^A_{w,c}] is the aquifer mass/molar fraction of component [image: c] in the water phase.
We assume that the aquifer is fully saturated with the water phase.

If the sign of [image: q^A_f] indicates that flow goes from the reservoir into the aquifer, the aquifer contribution to the mass/molar conservation equation of component [image: c] is computed as:

[image: F^A_{f,c} = \sum_{\ell = 1}^{n_p} (\rho_{\ell} S_{\ell} y_{\ell,c})_K q^A_f]

where [image: n_p] is the number of fluid phases, [image: (\rho_{\ell})_K] is the reservoir cell mass/molar density of phase [image: \ell], [image: (S_{\ell})_K] is the reservoir cell saturation of phase [image: \ell], and [image: (y_{\ell,c})_K] is the reservoir cell mass/molar fraction of component [image: c] in phase [image: \ell].

In the next section, we review the computation of the aquifer volumetric flow rate [image: q^A_f].

Carter-Tracy analytical aquifer

The Carter-Tracy aquifer model is a simplified approximation to a fully transient model
(see R. D. Carter and G. W. Tracy,
`An improved method for calculating water influx<https://onepetro.org/TRANS/article/219/01/415/162367/An-Improved-Method-for-Calculating-Water-Influx>`__,
Transactions of the AIME, 1960).

Although the theory was developed for a radially symmetric reservoir surrounded by an annular aquifer, this method applies to any geometry where the dimensionless pressure can be expressed as a function of a dimensionless time.

The two main parameters that govern the behavior of the aquifer are the time constant and the influx constant.
These two parameters are precomputed at the beginning of the simulation and are later used to compute the aquifer volumetric flow rate.

Time constant

The time constant, [image: T_c], has the dimension of time (in seconds).

It is computed as:

[image: T_c = \frac{\mu^A_w \phi^A c_t^A (r^A_0)^2}{k^A}]

where [image: \mu^A_w] is the aquifer water phase viscosity, [image: \phi^A] is the aquifer porosity, [image: c_t^A] is the aquifer total compressibility (fluid and rock), [image: r^A_0] is the inner radius of the aquifer, and [image: k^A] is the aquifer permeability.

The time constant is used to convert time ([image: t], in seconds) into dimensionless time, [image: t_D] using the following expression:

[image: t_D = \frac{t}{T_c}]

Influx constant

The influx constant, [image: \beta], has the dimension of [image: m^3.Pa^{-1}].

It is computed as:

[image: \beta = 6.283 h^A \theta^A \phi^A c^A_t (r^A_0)^2]

where [image: h^A] is the aquifer thickness, [image: \theta^A] is the aquifer angle, [image: \phi^A] is the aquifer porosity, [image: c_t^A] is the aquifer total compressibility (fluid and rock), and [image: r^A_0] is the inner radius of the aquifer.

Aquifer volumetric flow rate

Let us consider a reservoir cell [image: K] connected to aquifer [image: A] through face [image: f], and the corresponding aquifer volumetric flow rate [image: q^A_f] over time interval [image: [t^n, t^{n+1}]].

The computation of [image: q^A_f] proceeds as follows:

[image: q^A_f = \alpha^A_f (a - b (p_K(t^{n+1}) - p_K(t^n)))]

where [image: \alpha^A_f] is the area fraction of face f, and [image: p_K(t^{n+1})] and [image: p_K(t^n)] are the pressures in cell [image: K] at time [image: t^{n+1}] and time [image: t^n], respectively.

The area fraction of face [image: f] with area [image: |f|] is computed as:

[image: \alpha^A_f = \frac{ |f| }{ \sum_{ f_i \in A } |f_i| }]

The coefficient [image: a] is computed as:

[image: a = \frac{1}{T_c} \frac{ \beta \Delta \Phi^A_K(t^n_D) - W^A(t^n_D) P_D^{\prime}(t^{n+1}_D) }{ P_D (t^{n+1}_D) - t^{n+1}_D P_D^{\prime} (t^{n+1}_D) }]

and the coefficient [image: b] is given by the formula:

[image: b = \frac{1}{T_c} \frac{\beta}{ P_D(t^{n+1}_D) - t^{n+1}_D P^{\prime}_D(t^{n+1}_D) }]

where [image: \Delta \Phi^A_K(t^n_D) := p^A - p_K(t^n) - \rho^A_w g (z_K - z^A)] is the potential difference between the reservoir cell and the aquifer at time [image: t^n], [image: P_D(t_D)] is the dimensionless pressure evaluated at dimensionless time [image: t_D], [image: P^{\prime}_D(t_D)] is the derivative of the dimensionless pressure with respect to dimensionless time, evaluated at dimensionless time [image: t_D].

The functional relationship of dimensionless pressure, [image: P_D], as a function of dimensionless time is provided by the user. A default table is also available, as shown below.
The cumulative aquifer flow rate, [image: W^A(t^n_D)], is an explicit quantity evaluated at [image: t^n_D] and updated at the end of each converged time step using the formula:

[image: W^A(t^{n+1}_D) = W^A(t^{n}_D) + (t^{n+1} - t^{n}) \sum_{f \in A} q^A_f]

with [image: W^A(0) := 0].

Parameters

The main Carter-Tracy parameters and the expected units are listed below:

	aquiferPorosity: the aquifer porosity [image: \phi^A].

	aquiferPermeability: the aquifer permeability [image: k^A] (in m2).

	aquiferInitialPressure: the aquifer initial pressure [image: p^A] (in Pa), used to compute [image: \Delta \Phi^A_K].

	aquiferWaterViscosity: the aquifer water viscosity [image: \mu^A_w] (in Pa.s).

	aquiferWaterDensity: the aquifer water mass/molar density [image: \rho^A_w] (in kg/m3 or mole/m3).

	aquiferWaterPhaseComponentNames: the name of the components in the water phase. These names must match the component names listed in the fluid model of the Constitutive block. This parameter is ignored in single-phase flow simulations.

	aquiferWaterPhaseComponentFraction: the aquifer component fractions in the water phase, [image: y^A_{w,c}]. The components must be listed in the order of the components in aquiferWaterPhaseComponentNames. This parameter is ignored in single-phase flow simulations.

	aquiferTotalCompressibility: the aquifer total compressibility (for the fluid and the solid) [image: c^A_t] (in 1/Pa).

	aquiferElevation: the elevation of the aquifer (in m).

	aquiferThickness: the thickness of the aquifer (in m).

	aquiferInnerRadius: the aquifer inner radius (in m).

	aquiferAngle: the angle subtended by the aquifer boundary from the center of reservoir (in degrees, must be between 0 and 360).

	allowAllPhasesIntoAquifer: flag controlling the behavior of the aquifer when there is flow from the reservoir to the aquifer. If the flag is equal to 1, all phases can flow into the aquifer. If the flag is equal to 0, only the water phase can flow into the aquifer. The default value of this optional parameter is 0.

	pressureInfluenceFunctionName: the name of the table providing the dimensionless pressure as a function of dimensionless time. This table must be defined as a TableFunction in the Functions block of the XML file. If this optional parameter is omitted, a default pressure influence table is used.

	setNames: the names of the face sets on which the aquifer boundary condition is applied.

Note

Following the GEOSX convention, the z-coordinate is increasing upward. This convention must be taken into account when providing the aquiferElevation. In other words, the z-value is not a depth.

The full list of parameters is provided below:

Examples

Setting up the Aquifer boundary condition requires two additional pieces of information in the XML input file: a set of faces to specify where the aquifer boundary conditions will apply, and an aquifer tag that specifies the physical characteristics of the aquifer and determines how the boundary condition is applied.

	To specifiy a set of faces: on simple grids, in the Geometry block of the XML file, we can define a Box that selects and assigns a name to a set of faces. To be included in a set, the faces must be fully enclosed in the Box (all vertices of a face must be inside the box for the face to be included to the set). The name of this box is a user-defined string, and it will be used in the aquifer tag to locate the face set. Here is an example of XML code to create such a face set from a box:

<Geometry>
 ...
 <Box
 name="aquifer"
 xMin="{ 999.99, 199.99, 3.99 }"
 xMax="{ 1010.01, 201.01, 6.01 }"/>
 ...
</Geometry>

Note

This step captures faces, not cells. For now, the user must ensure that the box actually contains faces (GEOSX will proceed even if the face set is empty).

For more complex meshes, sch as those imported using the PAMELAMeshGenerator, using a Box to perform a face selection is challenging. We recommend using a tagged PhysicalEntity in the .msh file instead. This physical entity will be used to locate the face set.

	To specify the aquifer characteristics: in the FieldSpecifications block of the XML file, we include an Aquifer tag. For single-phase flow, the aquifer definition looks like:

<FieldSpecifications>
 ...
 <Aquifer
 name="aquiferBC"
 aquiferPorosity="2e-1"
 aquiferPermeability="3e-13"
 aquiferInitialPressure="9e6"
 aquiferWaterViscosity="0.00089"
 aquiferWaterDensity="962.81"
 aquiferTotalCompressibility="1e-10"
 aquiferElevation="4"
 aquiferThickness="18"
 aquiferInnerRadius="2000"
 aquiferAngle="20"
 setNames="{ aquifer }"/>
 ...
</FieldSpecifications>

For compositional multiphase flow, the user must include additional parameters to specify the water composition. We have additional influx controls over the aquifer with allowAllPhasesIntoAquifer. This is illustrated below for the CO2-brine fluid model:

<FieldSpecifications>
 ...
 <Aquifer
 name="aquiferBC"
 aquiferPorosity="2e-1"
 aquiferPermeability="3e-13"
 aquiferInitialPressure="9e6"
 aquiferWaterViscosity="0.00089"
 aquiferWaterDensity="962.81"
 aquiferWaterPhaseComponentFraction="{ 0.0, 1.0 }"
 aquiferWaterPhaseComponentNames="{ co2, water }"
 aquiferTotalCompressibility="1e-10"
 aquiferElevation="4"
 aquiferThickness="18"
 aquiferInnerRadius="2000"
 aquiferAngle="20"
 allowAllPhasesIntoAquifer="1"
 setNames="{ aquifer }"/>
 ...
</FieldSpecifications>

Finally, for both single-phase and multiphase flow, if a pressureInfluenceFunctionName attribute is specified in the Aquifer tag, a TableFunction must be included in the Functions block of the XML file as follows:

<Functions>
 ...
 <TableFunction
 name="pressureInfluenceFunction"
 coordinates="{ 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5,
 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 15.0, 20.0, 25.0, 30.0, 40.0,
 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 200.0, 800.0, 1600.0, 3200.0, 6400.0, 12800.0 }"
 values="{ 0.112, 0.229, 0.315, 0.376, 0.424, 0.469, 0.503, 0.564, 0.616, 0.659, 0.702, 0.735, 0.772, 0.802,
 0.927, 1.02, 1.101, 1.169, 1.275, 1.362, 1.436, 1.5, 1.556, 1.604, 1.651, 1.829, 1.96, 2.067, 2.147,
 2.282, 2.388, 2.476, 2.55, 2.615, 2.672, 2.723, 3.0537, 3.7468, 4.0934, 4.44, 4.7866, 5.1331 }"/>
 ...
</Functions>

Note

The values provided in the table above are the default values used internally in GEOSX when the user does not specify the pressure influence function in the XML file.

Event Management

The goal of the GEOSX event manager is to be flexible with regards to event type, application order, and method of triggering. The event manager is configured via the Event block in an input .xml file, i.e.:

<Events maxTime="1.0e-2">
 <PeriodicEvent name="event_a"
 target="/path/to/event"
 forceDt="1" />
 <HaltEvent name="event_b"
 target="/path/to/halt_target"
 maxRunTime="1e6" />
</Events>

Event Execution Rules

The EventManager will repeatedly iterate through a list of candidate events specified via the Events block in the order they are defined in the xml. When certain user-defined criteria are met, they will trigger and perform a task. The simulation cycle denotes the number of times the primary event loop has completed, time denotes the simulation time at the beginning of the loop, and dt denotes the global timestep during the loop.

During each cycle, the EventManager will do the following:

	Loop through each event and obtain its timestep request by considering:

	The maximum dt specified via the target’s GetTimestepRequest method

	The time remaining until user-defined points (e.g. application start/stop times)

	Any timestep overrides (e.g. user-defined maximum dt)

	The timestep request for any of its children

	Set the cycle dt to the smallest value requested by any event

	Loop through each event and:

	Calculate the event forecast, which is defined as the expected number of cycles until the event is expected to execute.

	if (forecast == 1) the event will signal its target to prepare to execute. This is useful for preparing time-consuming I/O operations.

	if (forecast <= 0) the event will call the Execute method on its target object

	Check to see if the EventManager exit criteria have been met

After exiting the main event loop, the EventManager will call the Cleanup method for each of its children (to produce final plots, etc.). Note: if the code is resuming from a restart file, the EventManager will pick up exactly where it left off in the execution loop.

Event Manager Configuration

Event

The children of the Event block define the events that may execute during a simulation. These may be of type HaltEvent, PeriodicEvent, or SoloEvent. The exit criteria for the global event loop are defined by the attributes maxTime and maxCycle (which by default are set to their max values). If the optional logLevel flag is set, the EventManager will report additional information with regards to timestep requests and event forecasts for its children.

	Name

	Type

	Default

	Description

	logLevel

	integer

	0

	Log level

	maxCycle

	integer

	2147483647

	Maximum simulation cycle for the global event loop.

	maxTime

	real64

	1.79769e+308

	Maximum simulation time for the global event loop.

	HaltEvent

	node

	
	Element: HaltEvent

	PeriodicEvent

	node

	
	Element: PeriodicEvent

	SoloEvent

	node

	
	Element: SoloEvent

PeriodicEvent

This is the most common type of event used in GEOSX. As its name suggests, it will execute periodically during a simulation. It can be triggered based upon a user-defined cycleFrequency or timeFrequency.

If cycleFrequency is specified, the event will attempt to execute every X cycles. Note: the default behavior for a PeriodicEvent is to execute every cycle. The event forecast for this case is given by: forecast = cycleFrequency - (cycle - lastCycle) .

If timeFrequency is specified, the event will attempt to execute every X seconds (this will override any cycle-dependent behavior). By default, the event will attempt to modify its timestep requests to respect the timeFrequency (this can be turned off by specifying targetExactTimestep=”0”). The event forecast for this case is given by: if (dt > 0), forecast = (timeFrequency - (time - lastTime)) / dt, otherwise forecast=max

By default, a PeriodicEvent will execute throughout the entire simulation. This can be restricted by specifying the beginTime and/or endTime attributes. Note: if either of these values are set, then the event will modify its timestep requests so that a cycle will occur at these times (this can be turned off by specifying targetExactStartStop=”0”).

The timestep request event is typically determined via its target. However, this value can be overridden by setting the forceDt or maxEventDt attributes.

	Name

	Type

	Default

	Description

	beginTime

	real64

	0

	Start time of this event.

	cycleFrequency

	integer

	1

	Event application frequency (cycle, default)

	endTime

	real64

	1e+100

	End time of this event.

	finalDtStretch

	real64

	0.001

	Allow the final dt request for this event to grow by this percentage to match the endTime exactly.

	forceDt

	real64

	-1

	While active, this event will request this timestep value (ignoring any children/targets requests).

	function

	string

	
	Name of an optional function to evaluate when the time/cycle criteria are met.If the result is greater than the specified eventThreshold, the function will continue to execute.

	logLevel

	integer

	0

	Log level

	maxEventDt

	real64

	-1

	While active, this event will request a timestep <= this value (depending upon any child/target requests).

	name

	string

	required

	A name is required for any non-unique nodes

	object

	string

	
	If the optional function requires an object as an input, specify its path here.

	set

	string

	
	If the optional function is applied to an object, specify the setname to evaluate (default = everything).

	stat

	integer

	0

	If the optional function is applied to an object, specify the statistic to compare to the eventThreshold.The current options include: min, avg, and max.

	target

	string

	
	Name of the object to be executed when the event criteria are met.

	targetExactStartStop

	integer

	1

	If this option is set, the event will reduce its timestep requests to match any specified beginTime/endTimes exactly.

	targetExactTimestep

	integer

	1

	If this option is set, the event will reduce its timestep requests to match the specified timeFrequency perfectly: dt_request = min(dt_request, t_last + time_frequency - time)).

	threshold

	real64

	0

	If the optional function is used, the event will execute if the value returned by the function exceeds this threshold.

	timeFrequency

	real64

	-1

	Event application frequency (time). Note: if this value is specified, it will override any cycle-based behavior.

	HaltEvent

	node

	
	Element: HaltEvent

	PeriodicEvent

	node

	
	Element: PeriodicEvent

	SoloEvent

	node

	
	Element: SoloEvent

SoloEvent

This type of event will execute once once the event loop reaches a certain cycle (targetCycle) or time (targetTime). Similar to the PeriodicEvent type, this event will modify its timestep requests so that a cycle occurs at the exact time requested (this can be turned off by specifying targetExactTimestep=”0”). The forecast calculations follow an similar approach to the PeriodicEvent type.

	Name

	Type

	Default

	Description

	beginTime

	real64

	0

	Start time of this event.

	endTime

	real64

	1e+100

	End time of this event.

	finalDtStretch

	real64

	0.001

	Allow the final dt request for this event to grow by this percentage to match the endTime exactly.

	forceDt

	real64

	-1

	While active, this event will request this timestep value (ignoring any children/targets requests).

	logLevel

	integer

	0

	Log level

	maxEventDt

	real64

	-1

	While active, this event will request a timestep <= this value (depending upon any child/target requests).

	name

	string

	required

	A name is required for any non-unique nodes

	target

	string

	
	Name of the object to be executed when the event criteria are met.

	targetCycle

	integer

	-1

	Targeted cycle to execute the event.

	targetExactStartStop

	integer

	1

	If this option is set, the event will reduce its timestep requests to match any specified beginTime/endTimes exactly.

	targetExactTimestep

	integer

	1

	If this option is set, the event will reduce its timestep requests to match the specified execution time exactly: dt_request = min(dt_request, t_target - time)).

	targetTime

	real64

	-1

	Targeted time to execute the event.

	HaltEvent

	node

	
	Element: HaltEvent

	PeriodicEvent

	node

	
	Element: PeriodicEvent

	SoloEvent

	node

	
	Element: SoloEvent

HaltEvent

This event type is designed to track the wall clock. When the time exceeds the value specified via maxRunTime, the event will trigger and set a flag that instructs the main EventManager loop to cleanly exit at the end of the current cycle. The event for cast for this event type is given by: forecast = (maxRuntime - (currentTime - startTime)) / realDt

	Name

	Type

	Default

	Description

	beginTime

	real64

	0

	Start time of this event.

	endTime

	real64

	1e+100

	End time of this event.

	finalDtStretch

	real64

	0.001

	Allow the final dt request for this event to grow by this percentage to match the endTime exactly.

	forceDt

	real64

	-1

	While active, this event will request this timestep value (ignoring any children/targets requests).

	logLevel

	integer

	0

	Log level

	maxEventDt

	real64

	-1

	While active, this event will request a timestep <= this value (depending upon any child/target requests).

	maxRuntime

	real64

	required

	The maximum allowable runtime for the job.

	name

	string

	required

	A name is required for any non-unique nodes

	target

	string

	
	Name of the object to be executed when the event criteria are met.

	targetExactStartStop

	integer

	1

	If this option is set, the event will reduce its timestep requests to match any specified beginTime/endTimes exactly.

	HaltEvent

	node

	
	Element: HaltEvent

	PeriodicEvent

	node

	
	Element: PeriodicEvent

	SoloEvent

	node

	
	Element: SoloEvent

Other Event Features

Event Progress Indicator

Because the event manager allows the user to specify the order of events, it could introduce ambiguity into the timestamps of output files. To resolve this, we pass two arguments to the target’s Execute method:

	eventCounter (integer) - the application index for the event (or sub-event)

	eventProgress (real64) - the percent completion of the event loop, paying attention to events whose targets are associated with physics (from the start of the event, indicated via target->GetTimestepBehavior())

For example, consider the following Events block:

<Events maxTime="1.0e-2">
 <PeriodicEvent name="outputs"
 timeFrequency="1e-6"
 targetExactTimestep="0"
 target="/Outputs/siloOutput">
 <PeriodicEvent name="solverApplications_a"
 forceDt="1.0e-5"
 target="/Solvers/lagsolve" />
 <PeriodicEvent name="solverApplications_b"
 target="/Solvers/otherSolver" />
 <PeriodicEvent name="restarts"
 timeFrequency="5.0e-4"
 targetExactTimestep="0"
 target="/Outputs/restartOutput"/>
</Events>

In this case, the events solverApplications_a and solverApplications_b point target physics events. The eventCounter, eventProgress pairs will be: outputs (0, 0.0), solverApplications_a (1, 0.0), solverApplications_b (2, 0.5), and restarts (3, 1.0). These values are supplied to the target events via their Execute methods for use. For example, for the name of a silo output file will have the format: “%s_%06d%02d” % (name, cycle, eventCounter), and the time listed in the file will be time = time + dt*eventProgress

Nested Events

The event manager allows its child events to be nested. If this feature is used, then the manager follows the basic execution rules, with the following exception: When its criteria are met, an event will first execute its (optional) target. It will then estimate the forecast for its own sub-events, and execute them following the same rules as in the main loop. For example:

<Events maxTime="1.0e-2">
 <PeriodicEvent name="event_a"
 target="/path/to/target_a" />

 <PeriodicEvent name="event_b"
 timeFrequency="100">

 <PeriodicEvent name="subevent_b_1"
 target="/path/to/target_b_1"/>

 <PeriodicEvent name="subevent_b_2"
 target="/path/to/target_b_2"/>
 <PeriodicEvent/>
</Events>

In this example, event_a will trigger during every cycle and call the Execute method on the object located at /path/to/target_a. Because it is time-driven, event_b will execute every 100 s. When this occurs, it will execute it will execute its own target (if it were defined), and then execute subevent_b_1 and subevent_b_2 in order. Note: these are both cycle-driven events which, by default would occur every cycle. However, they will not execute until each of their parents, grandparents, etc. execution criteria are met as well.

Tasks Manager

The GEOSX tasks manager allows a user to specify tasks to be executed. These tasks are compatible targets for the Event Management.

The tasks manager is configured via the Tasks block in an input .xml file, i.e.:

<Tasks>
 <PackCollection name="historyCollection" objectPath="nodeManager" fieldName="Velocity" />
</Tasks>

Tasks Manager Configuration

Task

The children of the Tasks block define different Tasks to be triggered by events specified in the Event Management during the execution of the simulation. At present the only supported task is the PackCollection used to collect time history data for output by a TimeHistory output.

	Name

	Type

	Default

	Description

	PackCollection

	node

	
	Element: PackCollection

	TriaxialDriver

	node

	
	Element: TriaxialDriver

PackCollection

The PackCollection Task is used to collect time history information from fields. Either the entire field or specified named sets of indices in the field can be collected.

	Name

	Type

	Default

	Description

	fieldName

	string

	required

	The name of the (packable) field associated with the specified object to retrieve data from

	name

	string

	required

	A name is required for any non-unique nodes

	objectPath

	string

	required

	The name of the object from which to retrieve field values.

	onlyOnSetChange

	localIndex

	0

	Whether or not to only collect when the collected sets of indices change in any way.

	setNames

	string_array

	{}

	The set(s) for which to retrieve data.

Note: The time history information collected via this task is buffered internally until it is output by a linked TimeHistory Output.

Triggering the Tasks

Tasks can be triggered using the Event Management.
Recurring tasks sould use a <PeriodicEvent> and one-time tasks should use a <SoloEvent>:

<PeriodicEvent name="historyCollectEvent"
 timeFrequency="1.0"
 targetExactTimeset="1"
 target="/Tasks/historyCollection" />

The keyword target has to match the name of a Task specified as a child of the <Tasks> block.

Functions

Functions are the primary avenue for specifying values that change in space, time, or any other dimension.
These are specified in the Functions block, and may be referenced by name throughout the rest of the .xml file.
For example:

<Functions>
 <TableFunction name="q"
 inputVarNames="time"
 coordinates="0 60 1000"
 values="0 1 1" />
</Functions>
<FieldSpecifications>
 <SourceFlux name="sourceTerm"
 objectPath="ElementRegions/Region1/block1"
 scale="0.001"
 functionName="q"
 setNames="{source}"/>
</FieldSpecifications>

Function Inputs and Application

The inputs to each function type are specified via the inputVarName attribute.
These can either be the name of an array (e.g. “Pressure”) or the special keyword “time” (time at the beginning of the current cycle).
If any of the input variables are vectors (e.g. “referencePosition”), the components will be given as function arguments in order.

In the .xml file, functions are referenced by name.
Depending upon the application, the functions may be applied in one of three ways:

	Single application:
The function is applied to get a single scalar value.
For example, this could define the flow rate applied via a BC at a given time.

	Group application:
The function is applied to a (user-specified) ManagedGroup of size N.
When called, it will iterate over the inputVarNames list and build function inputs from the group’s wrappers.
The resulting value will be a wrapper of size N.
For example, this could be used to apply a user-defined constitutive relationship or specify a complicated boundary condition.

	Statistics mode:
The function is applied in the same manner as the group application, except that the function will return an array that contains the minimum, average, and maximum values of the results.

Function Types

There are three types of functions available for use: TableFunction, SymbolicFunction, and CompositeFunction.
Note: the symbolic and composite function types are currently only available for x86-64 systems.

TableFunction

A table function uses a set of pre-computed values defined at points on a structured grid to represent an arbitrary-dimensional function.
Typically, the axes of the table will represent time and/or spatial dimensions; however, these can be applied to represent phase diagrams, etc.

	Name

	Type

	Default

	Description

	coordinateFiles

	path_array

	{}

	List of coordinate file names for ND Table

	coordinates

	real64_array

	{0}

	Coordinates inputs for 1D tables

	inputVarNames

	string_array

	{}

	Name of fields are input to function.

	interpolation

	geosx_TableFunction_InterpolationType

	linear

	
Interpolation method. Valid options:

* linear

* nearest

* upper

* lower

	name

	string

	required

	A name is required for any non-unique nodes

	values

	real64_array

	{0}

	Values for 1D tables

	voxelFile

	path

	
	Voxel file name for ND Table

1D Table

For 1D tables, the function may be defined using the coordinates and values attributes.
These represent the location of the grid nodes (ordered from smallest to largest) and the function values at those points, respectively.
For example, the following function defines a simple ramp function with a rise-time of 60 seconds:

<TableFunction name="q"
 inputVarNames="time"
 coordinates="0 60 1000"
 values="0 1 1" />

ND Table

For ND tables, the grid coordinates and values may be defined using a set of .csv files.
The coordinateFiles attribute specifies the file names that define the coordinates for each axis.
The values in each coordinate file must be comma-delimited and ordered from smallest to largest.
The dimensionality of the table is defined by the number of coordinate files (coordinateFiles=”x.csv” would indicate a 1D table, coordinateFiles=”x.csv y.csv z.csv t.csv” would indicate a 4D table, etc.).
The voxelFile attribute specifies name of the file that defines the value of the function at each point along the grid.
These values must be comma-delimited (line-breaks are allowed) and be specified in Fortran order, i.e., column-major order (where the index of the first dimension changes the fastest, and the index of the last dimension changes slowest).

The following would define a simple 2D function c = a + 2*b:

<TableFunction name="c"
 inputVarNames="a b"
 coordinateFiles="a.csv b.csv"
 voxelFile="c.csv" />

	a.csv: “0, 1”

	b.csv: “0, 0.5, 1”

	c.csv: “0, 1, 1, 2, 2, 3”

Interpolation Methods

There are four interpolation methods available for table functions.
Within the table axes, these will return a value:

	linear: using piecewise-linear interpolation

	upper: equal to the value of the next table vertex

	nearest: equal to the value of the nearest table vertex

	lower: equal to the value of the previous table vertex

Outside of the table axes, these functions will return the edge-values.
The following figure illustrates how each of these methods work along a single dimension, given identical table values:

[image: ../../../_images/interp_methods.png]

Table Generation Example

The following is an example of how to generate the above tables in Python:

import numpy as np

Define table axes
a = np.array([0.0, 1.0])
b = np.array([0.0, 0.5, 1.0])

Generate table values (note: the indexing argument is important)
A, B = np.meshgrid(a, b, indexing='ij')
C = A + 2.0*B

Write axes, value files
np.savetxt('a.csv', a, fmt='%1.2f', delimiter=',')
np.savetxt('b.csv', b, fmt='%1.2f', delimiter=',')
values = np.reshape(C, (-1), order='F')
np.savetxt('c.csv', values, fmt='%1.2f', delimiter=',')

SymbolicFunction

This function leverages the symbolic expression library mathpresso to define and evaluate functions.
These functions are processed using an x86-64 JIT compiler, so are nearly as efficient as natively compiled C++ expressions.

	Name

	Type

	Default

	Description

	expression

	string

	required

	Symbolic math expression

	inputVarNames

	string_array

	{}

	Name of fields are input to function.

	name

	string

	required

	A name is required for any non-unique nodes

	variableNames

	string_array

	required

	List of variables in expression. The order must match the evaluate argument

The variableNames attribute defines a set of single-character names for the inputs to the symbolic function.
There should be a definition for each scalar input and for each component of a vector input.
For example if inputVarName="time, ReferencePosition", then variableNames="t, x, y, z".
The expression attribute defines the symbolic expression to be executed.
Aside from the following exceptions, the syntax mirrors python:

	The function string cannot contain any spaces

	The power operator is specified using the C-style expression (e.g. pow(x,3) instead of x**3)

The following would define a simple 2D function c = a + 2*b:

<SymbolicFunction name="c"
 inputVarNames="a b"
 variableNames="x y"
 expression="x+(2*y)"/>

CompositeFunction

This function is derived from the symbolic function.
However, instead of using the time or object as inputs, it is used to combine the outputs of other functions using a symbolic expression.

	Name

	Type

	Default

	Description

	expression

	string

	
	Composite math expression

	functionNames

	string_array

	{}

	List of source functions. The order must match the variableNames argument.

	inputVarNames

	string_array

	{}

	Name of fields are input to function.

	name

	string

	required

	A name is required for any non-unique nodes

	variableNames

	string_array

	{}

	List of variables in expression

The functionNames attribute defines the set of input functions to use (these may be of any type, and may each have any number of inputs).
The variableNames attribute defines a set of single-character names for each function.
The expression attribute defines the symbolic expression, and follows the same rules as above.
The inputVarNames attribute is ignored for this function type.

The following would define a simple 1D table function f(t) = 1 + t, a 3D symbolic function g(x, y, z) = x**2 + y**2 + z**2, and a 4D composite function h = sin(f(t)) + g(x, y, z):

<Functions>
 <TableFunction name="f"
 inputVarNames="time"
 coordinates="0 1000"
 values="1 1001" />

 <SymbolicFunction name="g"
 inputVarNames="ReferencePosition"
 variableNames="x y z"
 expression="pow(x,2)+pow(y,2)+pow(z,2)"/>

 <CompositeFunction name="h"
 inputVarNames="ignored"
 functionNames="f g"
 variableNames="x y"
 expression="sin(x)+y"/>
</Events>

Linear Solvers

Introduction

Any physics solver relying on standard finite element and finite volume techniques requires the solution of algebraic linear systems, which are obtained upon linearization and discretization of the governing equations, of the form:

[image: \mathsf{A} \mathsf{x} = \mathsf{b}]

with a [image: \mathsf{A}] a square sparse matrix, [image: \mathsf{x}] the solution vector, and [image: \mathsf{b}] the right-hand side.
For example, in a classical linear elastostatics problem [image: \mathsf{A}] is the stiffness matrix, and [image: \mathsf{x}] and [image: \mathsf{b}] are the displacement and nodal force vectors, respectively.

This solution stage represents the most computationally expensive portion of a typical simulation.
Solution algorithms generally belong to two families of methods: direct methods and iterative methods.
In GEOSX both options are made available wrapping around well-established open-source linear algebra libraries, namely
HYPRE [https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods],
PETSc [https://www.mcs.anl.gov/petsc/],
SuperLU [http://crd-legacy.lbl.gov/~xiaoye/SuperLU/], and
Trilinos [https://trilinos.github.io/].

Direct methods

The major advantages are their reliability, robustness, and ease of use.
However, they have large memory requirements and exhibit poor scalability. Direct methods should be used in a prototyping stage, for example when developing a new formulation or algorithm, when the dimension of the problem, namely the size of matrix [image: \mathsf{A}], is small.
Irrespective of the selected direct solver implementation, three stages can be idenitified:

	Setup Stage: the matrix is first analyzed and then factorized

	Solve Stage: the solution to the linear systems involving the factorized matrix is computed

	Finalize Stage: the systems involving the factorized matrix have been solved and the direct solver lifetime ends

The default option in GEOSX relies on SuperLU [http://crd-legacy.lbl.gov/~xiaoye/SuperLU/], a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations, that is called taking advantage of the interface provided in HYPRE [https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods].

Iterative methods

As the problem size (number of computational cells) increases, global iterative solution strategies are the method of choice—typically nonsymmetric Krylov solvers.
Because of the possible poor conditioning of [image: \mathsf{A}], preconditioning is essential to solve such systems efficiently.
‘’Preconditioning is simply a means of transforming the original linear system into one which has the same solution, but which is likely to be easier to solve with an iterative solver’’ [Saad (2003)].

The design of a robust and efficient preconditioner is based on a trade-off between two competing objectives:

	Robustness: reducing the number of iterations needed by the preconditioned solver to achieve convergence;

	Efficiency: limiting the time required to construct and apply the preconditioner.

Assuming a preconditioning matrix [image: \mathsf{M}] is available, three standard approaches are used to apply the preconditioner:

	Left preconditioning: the preconditioned system is [image: \mathsf{M}^{-1} \mathsf{A} \mathsf{x} = \mathsf{M}^{-1} \mathsf{b}]

	Right preconditioning: the preconditioned system is [image: \mathsf{A} \mathsf{M}^{-1} \mathsf{y} = \mathsf{b}], with [image: \mathsf{x} = \mathsf{M}^{-1} \mathsf{y}]

	Split preconditioning: the preconditioned system is [image: \mathsf{M}^{-1}_L \mathsf{A} \mathsf{M}^{-1}_R \mathsf{y} = \mathsf{M}^{-1}_L \mathsf{b}], with [image: \mathsf{x} = \mathsf{M}^{-1}_R \mathsf{y}]

Summary

The following table summarizes the available input parameters for the linear solver.

	Name

	Type

	Default

	Description

	amgAggresiveCoarseningLevels

	integer

	0

	
AMG number levels for aggressive coarsening

Available options are: TODO

	amgCoarseSolver

	geosx_LinearSolverParameters_AMG_CoarseType

	direct

	AMG coarsest level solver/smoother type. Available options are: default\|jacobi\|l1jacobi\|gs\|sgs\|l1sgs\|chebyshev\|direct

	amgCoarseningType

	string

	HMIS

	
AMG coarsening algorithm

Available options are: TODO

	amgInterpolationType

	integer

	6

	
AMG interpolation algorithm

Available options are: TODO

	amgNullSpaceType

	geosx_LinearSolverParameters_AMG_NullSpaceType

	constantModes

	AMG near null space approximation. Available options are:constantModes\|rigidBodyModes

	amgNumFunctions

	integer

	1

	
AMG number of functions

Available options are: TODO

	amgNumSweeps

	integer

	2

	AMG smoother sweeps

	amgSmootherType

	geosx_LinearSolverParameters_AMG_SmootherType

	gs

	AMG smoother type. Available options are: default\|jacobi\|l1jacobi\|gs\|sgs\|l1sgs\|chebyshev\|ilu0\|ilut\|ic0\|ict

	amgThreshold

	real64

	0

	AMG strength-of-connection threshold

	directCheckResidual

	integer

	0

	Whether to check the linear system solution residual

	directColPerm

	geosx_LinearSolverParameters_Direct_ColPerm

	metis

	How to permute the columns. Available options are: none\|MMD_AtplusA\|MMD_AtA\|colAMD\|metis\|parmetis

	directEquil

	integer

	1

	Whether to scale the rows and columns of the matrix

	directIterRef

	integer

	1

	Whether to perform iterative refinement

	directParallel

	integer

	1

	Whether to use a parallel solver (instead of a serial one)

	directReplTinyPivot

	integer

	1

	Whether to replace tiny pivots by sqrt(epsilon)*norm(A)

	directRowPerm

	geosx_LinearSolverParameters_Direct_RowPerm

	mc64

	How to permute the rows. Available options are: none\|mc64

	iluFill

	integer

	0

	ILU(K) fill factor

	iluThreshold

	real64

	0

	ILU(T) threshold factor

	krylovAdaptiveTol

	integer

	0

	Use Eisenstat-Walker adaptive linear tolerance

	krylovMaxIter

	integer

	200

	Maximum iterations allowed for an iterative solver

	krylovMaxRestart

	integer

	200

	Maximum iterations before restart (GMRES only)

	krylovTol

	real64

	1e-06

	
Relative convergence tolerance of the iterative method

If the method converges, the iterative solution [image: \mathsf{x}_k] is such that

the relative residual norm satisfies:

[image: \left\lVert \mathsf{b} - \mathsf{A} \mathsf{x}_k \right\rVert_2] < krylovTol * [image: \left\lVert\mathsf{b}\right\rVert_2]

	krylovWeakestTol

	real64

	0.001

	Weakest-allowed tolerance for adaptive method

	logLevel

	integer

	0

	Log level

	preconditionerType

	geosx_LinearSolverParameters_PreconditionerType

	iluk

	Preconditioner type. Available options are: none\|jacobi\|l1-jacobi\|gs\|sgs\|l1-sgs\|chebyshev\|iluk\|ilut\|icc\|ict\|amg\|mgr\|block\|direct

	solverType

	geosx_LinearSolverParameters_SolverType

	direct

	Linear solver type. Available options are: direct\|cg\|gmres\|fgmres\|bicgstab\|preconditioner

	stopIfError

	integer

	1

	Whether to stop the simulation if the linear solver reports an error

Preconditioner descriptions

This section provides a brief description of the available preconditioners.

	None: no preconditioning is used, i.e., [image: \mathsf{M}^{-1} = \mathsf{I}].

	Jacobi: diagonal scaling preconditioning, with [image: \mathsf{M}^{-1} = \mathsf{D}^{-1}], with [image: \mathsf{D}] the matrix diagonal.
Further details can be found in:

	HYPRE documentation [https://hypre.readthedocs.io/en/latest/api-sol-parcsr.html],

	PETSc documentation [https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCJACOBI.html],

	Trilinos documentation [https://docs.trilinos.org/dev/packages/ifpack/doc/html/classIfpack__PointRelaxation.html].

	ILUK: incomplete LU factorization with fill level k of the original matrix: [image: \mathsf{M}^{-1} = \mathsf{U}^{-1} \mathsf{L}^{-1}].
Further details can be found in:

	HYPRE documentation [https://hypre.readthedocs.io/en/latest/solvers-hypre-ilu.html],

	PETSc documentation [https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCILU.html],

	Trilinos documentation [https://docs.trilinos.org/dev/packages/ifpack/doc/html/classIfpack__ILU.html].

	ILUT: a dual threshold incomplete LU factorization: [image: \mathsf{M}^{-1} = \mathsf{U}^{-1} \mathsf{L}^{-1}].
Further details can be found in:

	HYPRE documentation [https://hypre.readthedocs.io/en/latest/solvers-hypre-ilu.html],

	not yet available through PETSc interface,

	Trilinos documentation [https://docs.trilinos.org/dev/packages/ifpack/doc/html/classIfpack__ILUT.html].

	ICC: incomplete Cholesky factorization of a symmetric positive definite matrix: [image: \mathsf{M}^{-1} = \mathsf{L}^{-T} \mathsf{L}^{-1}].
Further details can be found in:

	not yet available through hypre interface,

	PETSc documentation [https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCICC.html],

	Trilinos documentation [https://docs.trilinos.org/dev/packages/ifpack/doc/html/classIfpack__IC.html].

	AMG: algebraic multigrid (can be classical or aggregation-based according to the specific package).
Further details can be found in:

	HYPRE documentation [https://hypre.readthedocs.io/en/latest/solvers-boomeramg.html],

	PETSc documentation [https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGAMG.html],

	Trilinos documentation [https://docs.trilinos.org/dev/packages/ml/doc/html/index.html].

	MGR: multigrid reduction. Available through hypre interface only. Specific documentation coming soon.
Further details can be found in MGR documentation [https://hypre.readthedocs.io/en/latest/solvers-mgr.html].

	Block: custom preconditioner designed for a 2 x 2 block matrix.

HYPRE MGR Preconditioner

MGR stands for multigrid reduction, a multigrid method that uses the interpolation, restriction operators, and the Galerkin triple product, to reduce a linear system to a smaller one, similar to a Schur complement approach. As such, it is designed to target block linear systems resulting from discretizations of multiphysics problems. GEOSX uses MGR through an implementation in HYPRE [https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods]. More information regarding MGR can be found here [https://hypre.readthedocs.io/en/latest/solvers-mgr.html]. Currently, MGR strategies are implemented for hydraulic fracturing, poroelastic, compositional flow with and without wells. More multiphysics solvers with MGR will be enabled in the future.

To use MGR for a specific block system, several components need to be specified.

	The number of reduction levels and the coarse points (corresponding to fields) for each level. For example, for single-phase hydraulic fracturing, there are two fields, i.e. displacement and fluid pressure, a two-level MGR strategy can be used with the fluid pressure being the coarse degrees of freedom.

	Interpolation/restriction operators and the coarse-grid computation strategy. A simple but effective strategy is to use Jacobi diagonalization for interpolation and injection for restriction. For most cases, a Galerkin coarse grid strategy can be used, but for special cases such as poroelastic, a non-Galerkin approach is preferable.

	Global smoother. Depending on the problem, a global relaxation step could be beneficial. Some options include ILU(k), (block) Jacobi, (block) Gauss-Seidel.

	Solvers for F-relaxation and coarse-grid correction. These solvers should be chosen carefully for MGR to be effective. The choice of these solvers should correspond to the properties of the blocks specified by the C- and F-points. For example, if the [image: \mathsf{A}_{FF}] block is hyperbolic, a Jacobi smoother is sufficient while for an elliptic operator an AMG V-cycle might be required. For the single-phase hydraulic fracturing case, an AMG V-cycle is needed for both F-relaxation and coarse-grid correction.

Note that these are only general guidelines for designing a working MGR recipe. For complicated multiphysics problems, experimentation with different numbers of levels, choices of C- and F-points, and smoothers/solvers, etc., is typically needed to find the best strategy. Currently, these options are only available to developers. We are working on exposing these functionalities to the users in future releases.

Block preconditioner

This framework allows the user to design a block preconditioner for a 2 x 2 block matrix. The key component is the Schur complement
[image: \mathsf{S} = \mathsf{A}_{11} - \mathsf{A}_{10} \mathsf{\widetilde{A}}_{00}^{-1} \mathsf{A}_{01}] computation, that requires
an approximation of the leading block. Currently, available options for [image: \mathsf{\widetilde{A}}_{00}^{-1}] are:

	diagonal with diagonal values (essentially, a Jacobi preconditioner);

	diagonal with row sums as values (e.g., used for CPR-like preconditioners).

Once the Schur complement is computed, to properly define the block preconditioner we need:

	the preconditioner for [image: \mathsf{A}_{00}] (any of the above listed single-matrix preconditioner);

	the preconditioner for [image: \mathsf{S}] (any of the above listed single-matrix preconditioner);

	the application strategy. This can be:

	diagonal: none of the coupling terms is used;

	upper triangular: only the upper triangular coupling term is used;

	lower-upper triangular: both coupling terms are used.

Moreover, a block scaling is available. Feasible options are:

	none: keep the original scaling;

	Frobenius norm: equilibrate Frobenius norm of the diagonal blocks;

	user provided.

Numerical Methods

This section describes the specification of numerical methods used by solvers.

	Name

	Type

	Default

	Description

	FiniteElements

	node

	unique

	Element: FiniteElements

	FiniteVolume

	node

	unique

	Element: FiniteVolume

Finite Element Discretization

We are currently refactoring the finite element infrastructure, and will update the documentation soon
to reflect the new structure.

Finite Volume Discretization

Two different finite-volume discretizations are available to simulate single-phase flow in GEOSX, namely, a standard cell-centered TPFA approach, and a hybrid finite-volume scheme relying on both cell-centered and face-centered degrees of freedom.
The key difference between these two approaches is the computation of the flux, as detailed below.

Standard cell-centered TPFA FVM

This is the standard scheme implemented in the SinglePhaseFVM flow solver.
It only uses cell-centered degrees of freedom and implements a Two-Point Flux Approximation (TPFA) for the computation of the flux.
The numerical flux is obtained using the following expression for the mass flux between cells [image: K] and [image: L]:

[image: F_{KL} = \Upsilon_{KL} \frac{\rho^{upw}}{\mu^{upw}} \big(p_K - p_L - \rho^{avg} g (d_K - d_L) \big),]

where [image: p_K] is the pressure of cell [image: K], [image: d_K] is the depth of cell [image: K], and [image: \Upsilon_{KL}] is the standard TPFA transmissibility coefficient at the interface.
The fluid density, [image: \rho^{upw}], and the fluid viscosity, [image: \mu^{upw}], are upwinded using the sign of the potential difference at the interface.

This is currently the only available discretization in the Compositional Multiphase Flow Solver.

Hybrid FVM

This discretization scheme overcomes the limitations of the standard TPFA on non K-orthogonal meshes.
The hybrid finite-volume scheme–equivalent to the well-known hybrid Mimetic Finite Difference (MFD) scheme–remains consistent with the pressure equation even when the mesh does not satisfy the K-orthogonality condition.
This numerical scheme is currently implemented in the SinglePhaseHybridFVM solver.

The hybrid FVM scheme uses both cell-centered and face-centered pressure degrees of freedom.
The one-sided face flux, [image: F_{K,f}], at face [image: f] of cell [image: K] is computed as:

[image: F_{K,f} = \frac{\rho^{upw}}{\mu^{upw}} \widetilde{F}_{K,f},]

where [image: \widetilde{F}_{K,f}] reads:

[image: \widetilde{F}_{K,f} = \sum_{f'} \Upsilon_{ff'} \big(p_K - \pi_f - \rho_K g (d_K - d_f) \big).]

In the previous equation, [image: p_K] is the cell-centered pressure, [image: \pi_f] is the face-centered pressure, [image: d_K] is the depth of cell [image: K], and [image: d_f] is the depth of face [image: f].
The fluid density, [image: \rho^{upw}], and the fluid viscosity, [image: \mu^{upw}], are upwinded using the sign of [image: \widetilde{F}_{K,f}].
The local transmissibility [image: \Upsilon] of size [image: n_{\textit{local faces}} \times n_{\textit{local faces}}] satisfies:

[image: N K = \Upsilon C]

Above, [image: N] is a matrix of size [image: n_{\textit{local faces}} \times 3] storing the normal vectors to each face in this cell, [image: C] is a matrix of size [image: n_{\textit{local faces}} \times 3] storing the vectors from the cell center to the face centers, and [image: K] is the permeability tensor.
The local transmissibility matrix, [image: \Upsilon], is currently computed using the quasi-TPFA approach described in Chapter 6 of this book [https://doi.org/10.1017/9781108591416].
The scheme reduces to the TPFA discretization on K-orthogonal meshes but remains consistent when the mesh does not satisfy this property.
The mass flux [image: F_{K,f}] written above is then added to the mass conservation equation of cell [image: K].

In addition to the mass conservation equations, the hybrid FVM involves algebraic constraints at each mesh face to enforce mass conservation.
For a given interior face [image: f] between two neighboring cells [image: K] and [image: L], the algebraic constraint reads:

[image: \widetilde{F}_{K,f} + \widetilde{F}_{L,f} = 0.]

We obtain a numerical scheme with [image: n_{\textit{cells}}] cell-centered degrees of freedom and [image: n_{\textit{faces}}] face-centered pressure degrees of freedom.
The system involves [image: n_{\textit{cells}}] mass conservation equations and [image: n_{\textit{faces}}] face-based constraints.
The linear systems can be efficiently solved using the MultiGrid Reduction (MGR) preconditioner implemented in the Hypre linear algebra package.

The implementation of the hybrid FVM scheme for Compositional Multiphase Flow Solver is in progress.

Parallel Partitioning

Parallel GEOSX simulations involves multiple partitions and there are ghost objects in each partition.
Users need to understand these concepts to effectively design models and visualize results.

Partition and ghosting : simple examples

A model, or more strictly, a computational domain, is stored in a distributed fashion among many processors.
In the following simple example, the computational domain has 10 cells and the simulation involves two processors.
The first processor, “partition 0” (“0” is called the “rank” of the processor) owns the first five cells (0 to 4) while “partition 1” owns 5 to 9.
When the whole domain is divided into partitions, each partition will number the cells and other objects such as nodes, faces, and edges in the partition .
Therefore, in both partitions, the cells IDs start from zero.
Element 0 in partition 1 is cell 5 (or the sixthc cell) of the original domain.
In parallel computing, each partition does not only need to know information about its own cells,
but it also needs to know information about some cells owned by the neighbor partitions if these cells are directly connected to objects in this partition.
For example, cell 0 in partition 1 (i.e. cell 5 in the original whole domain) is connected to cell 4 in partition 0.
Therefore, partition 0 will keep a copy of this cell (including the data associated with this cell) which is synchronized with the corresponding information in the partition that actually owns this cell.

In summary, a partition owns a number of cells and other objects (e.g. faces) and also keeps copies of objects from neighbor partitions.
Partitioning is automatically handled by GEOSX once the user specifies how the domain should be divided.

The following figure show the partitioning of a simple mesh.
Real nodes appear as solid red circles in the owning partition and ghost nodes are shown as hollow circles.

[image: ../../../../_images/SimplePartitioning_GEOSX.svg]

This concept of ghosting and communications between owned cells and ghost cells can also be applied to the
other types of elements in GEOSX (Faces, Edges, Nodes).
The next figure summarizes the way nodes, edges, faces and cells are ghosted.

[image: ../../../../_images/split.svg]

Specifying partitioning pattern

Cartesian partitioning

In the command line to run GEOSX, the user can specify the partitioning pattern by adding the following switches:

	-x, --x-partitions - Number of partitions in the x-direction

	-y, --y-partitions - Number of partitions in the y-direction

	-z, --z-partitions - Number of partitions in the z-direction

Graph-based partitioning

The Graph-based partitioning is used only when importing exernal meshes using the PAMELAMeshGenerator
(see Tutorial 3: Regions and Property Specifications section for more details using external meshes). While importing the
mesh, PAMELA computes the graph of connectivity between all the volume elements of the mesh. The partitioning
is then done using the METIS [http://glaros.dtc.umn.edu/gkhome/metis/metis/overview] library. The graph is not weighted so the expected result is as mesh divided
in n parts, with n being the number of MPI ranks used for simulation containing a similar amount
of cells.

Ghost ranks

Each object (node, edge, face, or cell) has a ghost rank attribute, stored in the ghostRank field.
If a object does not appear in any other partition as a ghost, its ghost rank is a large negative number, -2.14e9 in a typical system.
If a object is real (owned by the current partition) but exists in other partitions as ghosts, its ghost rank is -1.
The ghost rank of a ghost object is the rank of the partition that owns the corresponding real object.

Considerations for visualization

In VisIt, a partition is called a domain.
The ID of a domain is the rank of the corresponding partition in GEOSX plus one.
VisIt would display all elements/objects regardless if they are real or ghosts.
As information about a ghost is synchronized with the real object, VisIt just overlaying the same images on top of each other.
The user would not perceive the overlapping between partitions unless the models are shown as semi-transparent entities.
Note that if ghosts are not hidden, results from a query operation, such as summation of variable values, would be wrong due to double-counting.
Therefore, it is a good practice or habit to hide ghost objects using ghostRank as a filter.

If the visualization method involves interpolation, such as interpolating a zonal field into a nodal field or generating contours,
the interpretation near partition boundaries is not accurate.

Outputs

This section describes how outputs are handled by GEOSX

The outputs are defined in a <Outputs> XML block.

There are three available formats to output the results of a simulation: SILO [https://wci.llnl.gov/simulation/computer-codes/silo], VTK [https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf], and Time History output into simple dataset HDF5 [https://portal.hdfgroup.org/display/HDF5/HDF5] files which are consumable by post-processing scripts..

Defining an output

SILO Output

The SILO output is defined through the <Silo> XML node (subnode of <Outputs> XML block) as shown here:

<Outputs>
 <Silo name="siloOutput"/>
</Outputs>

The parameter options are listed in the following table:

	Name

	Type

	Default

	Description

	childDirectory

	string

	
	Child directory path

	name

	string

	required

	A name is required for any non-unique nodes

	parallelThreads

	integer

	1

	Number of plot files.

	plotFileRoot

	string

	plot

	(no description available)

	plotLevel

	integer

	1

	(no description available)

	writeCellElementMesh

	integer

	1

	(no description available)

	writeEdgeMesh

	integer

	0

	(no description available)

	writeFEMFaces

	integer

	0

	(no description available)

	writeFaceElementMesh

	integer

	1

	(no description available)

VTK Output

The VTK output is defined through the <VTK> XML node (subnode of <Outputs> XML block) as shown here:

<Outputs>
 <VTK name="vtkOutput"/>
</Outputs>

The parameter options are listed in the following table:

	Name

	Type

	Default

	Description

	childDirectory

	string

	
	Child directory path

	name

	string

	required

	A name is required for any non-unique nodes

	parallelThreads

	integer

	1

	Number of plot files.

	plotFileRoot

	string

	VTK

	Name of the root file for this output.

	plotLevel

	integer

	1

	Level detail plot. Only fields with lower of equal plot level will be output.

	writeBinaryData

	integer

	1

	Output the data in binary format

	writeFEMFaces

	integer

	0

	(no description available)

TimeHistory Output

The TimeHistory output is defined through the <TimeHistory> XML node (subnode of <Outputs> XML block) as shown here:

<Outputs>
 <TimeHistory name="timeHistoryOutput" sources="{/Tasks/collectionTask}" filename="timeHistory" />
</Outputs>

The parameter options are listed in the following table:

	Name

	Type

	Default

	Description

	childDirectory

	string

	
	Child directory path

	filename

	string

	TimeHistory

	The filename to which to write time history output.

	format

	string

	hdf

	The output file format for time history output.

	name

	string

	required

	A name is required for any non-unique nodes

	parallelThreads

	integer

	1

	Number of plot files.

	sources

	string_array

	required

	A list of collectors from which to collect and output time history information.

In order to properly collect and output time history information the following steps must be accomplished:

	Specify one or more collection tasks using the Tasks Manager.

	Specify a TimeHistory Output using the collection task(s) as source(s).

	Specify an event in the Event Management to trigger the collection task(s).

	Specify an event in the Event Management to trigger the output.

Note: Currently if the collection and output events are triggered at the same simulation time, the one specified first will also trigger first. Thus in order to output time history for the current time in this case, always specify the time history collection events prior to the time history output events.

Triggering the outputs

The outputs can be triggered using the Event Management.
It is recommended to use a <PeriodicEvent> to output results with a defined frequency:

<PeriodicEvent name="outputs"
 timeFrequency="5000.0"
 targetExactTimestep="1"
 target="/Outputs/siloOutput" />

The keyword target has to match with the name of the <Silo>, <VTK>, or <TimeHistory> node.

Visualisation of the outputs

We suggest the use of VisIT [https://wci.llnl.gov/simulation/computer-codes/visit/downloads], Paraview [https://www.paraview.org/], and MatPlotLib [https://matplotlib.org/] to visualize the outputs.

Visualizing Silo outputs with VisIT

If the <Silo> XML node was defined, GEOSX writes the results in a folder called siloFiles.

In VisIT :

	File > Open file…

	On the right panel, browse to the siloFiles folder.

	On the left panel, select the file(s) you want to visualize. Usually, one file is written according the
frequency defined in the timeFrequency keyword of the Event that has triggered the output.

	To load fields, use the “Add” button and browse to the fields you want to plot.

	To plot fields, use the “Draw” button.

Please consult the VisIT [https://wci.llnl.gov/simulation/computer-codes/visit/downloads] documentation for further explanations on its usage.

Visualizing VTK outputs with Paraview

If the <VTK> XML node was defined, GEOSX writes a folder and a .pvd file named after the string defined
in name keyword.

The .pvd file contains references to the .pvtu files. One .pvtu file is output according the frequency defined in the timeFrequency keyword of the Event that has triggered the output.

One .pvtu contains references to .vtu files. There is as much .vtu file as there were MPI processes
used for the computation.

All these files can be opened with paraview. To have the whole results for every output time steps, you can
open the .pvd file.

Visualizing TimeHistory outputs with MatPlotLib

If the <TimeHistory> XML node was defined, GEOSX writes a file named after the string defined
in the filename keyword and formatted as specified by the string defined in the format
keyword (only HDF5 [https://portal.hdfgroup.org/display/HDF5/HDF5] is currently supported).

The TimeHistory file contains the collected time history information from each specified time history collector.
This information includes datasets for the time itself, any metadata sets describing index association with specified
collection sets, and the time history information itself.

It is recommended to use MatPlotLib [https://matplotlib.org/] and format-specific accessors (like H5PY for HDF5 [https://portal.hdfgroup.org/display/HDF5/HDF5]) to access and easily plot the
time history datat.

pygeosx — GEOSX in Python

GEOSX can be manipulated and executed through a Python script.

High-level control of GEOSX is managed through the top-level pygeosx functions,
like initialize and run. GEOSX’s data can be manipulated by getting
pylvarray views of LvArray objects living in GEOSX’s data repository.
These pylvarray views are fetched by calling Wrapper.value() after getting
a Wrapper out of the data repository.

Warning

The pygeosx module provides plenty of opportunities to crash Python.
See the Segmentation Faults section below.

Only Python 3 is supported.

Module Functions

	
pygeosx.initialize(rank, args)

	Initialize GEOSX for the first time, with a rank and command-line arguments.

This function should only be called once. To reinitialize, use the reinit function.

Generally the rank is obtained from the mpi4py [https://mpi4py.readthedocs.io/en/stable/]
module and the arguments are obtained from sys.argv.

Returns a Group representing the ProblemManager instance.

	
pygeosx.reinit(args)

	Reinitialize GEOSX with a new set of command-line arguments.

Returns a Group representing the ProblemManager instance.

	
pygeosx.apply_initial_conditions()

	Apply the initial conditions.

	
pygeosx.finalize()

	Finalize GEOSX. After this no calls into pygeosx or to MPI are allowed.

	
pygeosx.run()

	Enter the GEOSX event loop.

Runs until hitting a breakpoint defined in the input deck, or until the simulation
is complete.

Returns one of the state constants defined below.

GEOSX State

	
pygeosx.UNINITIALIZED

	

	
pygeosx.INITIALIZED

	

	
pygeosx.READY_TO_RUN

	This state indicates that GEOSX still has time steps left to run.

	
pygeosx.COMPLETED

	This state indicates that GEOSX has completed the current simulation.

Module Classes

	
class pygeosx.Group

	Python interface to geosx::dataRepository::Group.

Used to get access to other groups, and ultimately to get wrappers
and convert them into Python views of C++ objects.

	
groups()

	Return a list of the subgroups.

	
wrappers()

	Return a list of the wrappers.

	
get_group(path)

	

	
get_group(path, default)

	Return the Group at the relative path path; default is optional.
If no group exists and default is not given, raise a ValueError;
otherwise return default.

	
get_wrapper(path)

	

	
get_wrapper(path, default)

	Return the Wrapper at the relative path path; default is optional.
If no Wrapper exists and default is not given, raise a ValueError;
otherwise return default.

	
register(callback)

	Register a callback on the physics solver.

The callback should take two arguments: the CRSMatrix and the array.

Raise TypeError if the group is not the Physics solver.

	
class pygeosx.Wrapper

	Python interface to geosx::dataRepository::WrapperBase.

Wraps a generic C++ object. Use repr to get a description of the type.

	
value()

	Return a view of the wrapped value, or None if it cannot be exported to Python.

A breakdown of the possible return types:

	Instance of a pylvarray class
If the wrapped type is one of the LvArray types that have a Python wrapper type.

	1D numpy.ndarray
If the wrapped type is a numeric constant. The returned array is a shallow copy and
has a single entry.

	str
If the wrapped type is a std::string this returns a copy of the string.

	list of str
If the wrapped type is a LvArray::Array< std::string, 1, … > or a std::vector< std::string >.
This is a copy.

	None
If the wrapped type is not covered by any of the above.

Segmentation Faults

Improper use of this module and associated programs can easily cause Python to crash.
There are two main causes of crashes. Both can be avoided by following some
general guidelines.

Stale Numpy Views

The pylvarray classes (which may be returned from Wrapper.value())
provide various ways to get Numpy views of
their data. However, those views are only valid as long as the
LvArray object’s buffer is not reallocated. The buffer may be reallocated
by invoking methods (the ones that require
the pylarray.RESIZEABLE permission) or by calls into pygeosx.
It is strongly recommended that you do not keep Numpy views of
LvArray objects around after calls to pygeosx.

my_array = pygeosx.get_wrapper("path").value()
view = my_array.to_numpy()
my_array.resize(1000)
print(view) # segfault

Destroyed LvArray C++ objects

As mentioned earlier, the classes defined in this
module cannot be created in Python; pygeosx must create an LvArray
object in C++, then create a
pylvarray view of it. However, the Python view will only be
valid as long as the underlying LvArray C++ object is kept around. If
that is destroyed, the Python object will be left holding an invalid
pointer and subsequent attempts to use the Python object will cause
undefined behavior. Unfortunately, pygeosx may destroy LvArray
objects without warning. It is therefore strongly recommended that you do
not keep pylvarray objects around after calls to pygeosx. The following
code snippet, for instance, could segfault:

my_array = pygeosx.get_wrapper("path").value()
pygeosx.run()
view = my_array.to_numpy() # segfault

Indices and tables

	Index

	Module Index

	Search Page

Developer Guide

Welcome to the GEOSX developer guide.

	Contributing
	Code style
	Introduction

	Naming Conventions

	Const Keyword

	Code Format

	Header Guards

	Git Workflow
	Git Credentials

	Downloading the Code

	Branching Model

	Keeping Your Branch Current

	Branching off of a Branch

	Submitting a Pull Request

	Keeping Submodules Current

	Working on the Submodules

	Resolving Submodule Changes in Primary Branch PRs

	Sphinx Documentation
	Generating the documentation

	Documenting the code

	Doxygen Documentation
	Accessing

	Guidelines

	Example

	Current Doxygen

	Unit Testing
	GEOSX Specific Recommendations

	MPI

	Input Files

	Integrated Tests
	About

	Structure

	Arguments

	How to Run the Tests

	Output Created By a Test

	The .ats File

	Adding a Test

	Rebaselining Tests

	Benchmarks
	Running the benchmarks

	Specifying a benchmark

	Adding a benchmark problem

	Viewing the results

	Basic profiling with CALIPER
	GEOSX/Caliper Annotation Macros

	Configuring Caliper

	Using Adiak

	Using Spot

	Opening Spot caliper files in Python

	[Unsupported] Developing inside Docker with precompiled TPL binaries

	Code Components
	Data Repository
	MappedVector

	Group

	Wrapper

	ObjectCatalog

	XML Input
	GEOSX data structure overview

	Example: adding a new relative permeability model

	Input Schema Generation

	Working with data in GEOSX
	Working with data on the Mesh objects

	Mesh Hierarchy
	DomainPartition

	MeshBody

	MeshLevel

	Topological Mesh Objects

	DoF Manager
	Brief description

	Methods

	Example

	Real mesh and patterns

	LvArray
	Use in GEOSX

	LvArray documentation

	Kernel interface
	Finite Element Method Kernel Interface

	Adding a new Physics Solver
	LaplaceFEM overview

	Start doing your own Physic solver

	Last steps

Contributing

	Code style
	Introduction

	Naming Conventions
	File Names

	Function Names

	Variable Names

	Member Names

	Class/Struct Names

	Alias/Typedef Names

	Namespace Names

	Example

	Const Keyword

	Code Format

	Header Guards

	Git Workflow
	Git Credentials

	Downloading the Code

	Branching Model
	Feature Branches

	Bugfix Branches

	Release Candidate Branches

	Hotfix Branches

	Documentation Branches

	Keeping Your Branch Current

	Branching off of a Branch

	Submitting a Pull Request

	Keeping Submodules Current

	Working on the Submodules

	Resolving Submodule Changes in Primary Branch PRs

	Sphinx Documentation
	Generating the documentation

	Documenting the code

	Doxygen Documentation
	Accessing
	Build locally

	On readthedocs

	Guidelines
	What to document

	How to document

	Example

	Current Doxygen

	Unit Testing
	GEOSX Specific Recommendations

	MPI

	Input Files

	Integrated Tests
	About

	Structure

	Arguments

	How to Run the Tests

	Output Created By a Test
	The RestartCheck File

	The .diff.hdf5 File

	The .ats File

	Adding a Test

	Rebaselining Tests
	Tips

	Benchmarks
	Running the benchmarks

	Specifying a benchmark
	The Run block

	Adding a benchmark problem

	Viewing the results

	Basic profiling with CALIPER
	GEOSX/Caliper Annotation Macros

	Configuring Caliper

	Using Adiak

	Using Spot

	Opening Spot caliper files in Python

	[Unsupported] Developing inside Docker with precompiled TPL binaries

Code style

Introduction

GEOSX is written in standard c++14. In general, target platforms are:

	Linux

	Mac OS X

Currently, our CI/CD system tests on these platforms:

	Ubuntu 18.04, with gcc 8.0 and clang 8.0.0 + cuda10.1.243

	Centos 7.6.1810, with gcc 8.3.1 + cuda10.1.243

	Centos 7.7, with clang 9.0.0

	Mac OS X, with xcode 11.2

Naming Conventions

File Names

	File names should be PascalCase [https://en.wikipedia.org/wiki/Camel_case].

	C++ header files are always named with a file extension of *.hpp.

	C++ header implementation files, which contain templated or inline function definitions, are always named *Helpers.hpp.

	C++ source files are always named with a file extension of *.cpp.

	C++ class declarations and definitions are contained files with identical names, except for the extensions.

	C++ free function headers and source files are declared/defined in files with identical names, except for the extension.

For example, a class named “Foo” may be declared in a file named “Foo.hpp”, with inline/templated functions
defined in “FooHelpers.hpp”, with the source implementation contained in Foo.cpp.

Warning

There should not be identical filenames that only differ by case. Some filesystems are not case-sensitive,
and worse, some filesystems such as MacOSX are case-preserving but not case sensitive.

Function Names

Function and member function names should be camelCase [https://en.wikipedia.org/wiki/Camel_case].

Variable Names

Variables should be camelCase [https://en.wikipedia.org/wiki/Camel_case].

Member Names

Member data should be camelCase [https://en.wikipedia.org/wiki/Camel_case] prefix with “m_” (i.e. double m_dataVariable;)

Class/Struct Names

Please use PascalCase [https://en.wikipedia.org/wiki/Camel_case] for typenames (i.e. classes)

class MyClass;

class MyClass
{
 double m_doubleDataMember;
 int m_integerDataMember;
}

Alias/Typedef Names

Alias and typedefs should be the case of the underlying type that they alias. If no clear format is apparent,
as is the case with double, then use camelCase [https://en.wikipedia.org/wiki/Camel_case]

Namespace Names

Namespaces names are all lower camel case [https://en.wikipedia.org/wiki/Camel_case].

Example

One example of would be a for a class named “Foo”, the declaration would be in a header file named “Foo.hpp”

/*
 * Foo.hpp
 */

namespace bar
{

class Foo
{
public:
 Foo();
private:
 double m_myDouble;
}
}

and a source file named “Foo.cpp”

/*
 * Foo.cpp
 */
namespace bar
{
 Foo::Foo():
 m_myDouble(0.0)
 {
 // some constructor stuff
 }
}

Const Keyword

	All functions and accessors should be declared as “const” functions unless modification to the class is required.

	In the case of accessors, both a “const” and “non-const” version should be provided.

	The const keyword should be placed in the location read by the compiler, which is right to left.

The following examples are provided:

int a=0; // regular int
int const b = 0; // const int
int * const c = &a; // const pointer to non const int
int const * const d = &b; // const pointer to const int
int & e = a; // reference to int
int const & f = b; // reference to const int

Code Format

GEOSX applies a variant of the
BSD/Allman Style [https://en.wikipedia.org/wiki/Indentation_style#Allman_style].
Key points to the GEOSX style are:

	Opening braces (i.e. “{”) go on the next line of any control statement, and are not indented from the control statement.

	NO TABS. Only spaces. In case it isn’t clear … NO TABS!

	2-space indentation

for(int i=0 ; i<10 ; ++i)
{
 std::cout << "blah" << std::endl;
}

	Try to stay under 100 character line lengths. To achieve this apply these rules in order

	Align function declaration/definitions/calls on argument list

	Break up return type and function definition on new line

	Break up scope resolution operators

void
SolidMechanics_LagrangianFEM::
TimeStepExplicit(real64 const& time_n,
 real64 const& dt,
 const int cycleNumber,
 DomainPartition * const domain)
{
 code here
}

As part of the continuous integration testing, this GEOSX code style is enforced via the uncrustify tool.
While quite extensive, uncrustify does not enforce every example of the preferred code style.
In cases where uncrusitfy is unable to enforce code style, it will ignore formatting rules.
In these cases it is acceptable to proceed with pull requests, as there is no logical recourse.

Header Guards

Header guard names should consist of the name GEOSX, followed by the component name (e.g. dataRepository),
and finally the name of the header file.
All characters in the macro should be capitalized.

Git Workflow

The GEOSX project is hosted on github here [https://github.com/GEOSX].
For instructions on how to clone and build GEOSX, please refer to the Quick Start Guide.
Consider consulting https://try.github.io/ for practical references on how to use git.

Git Credentials

Those who want to contribute to GEOSX should setup SSH keys for authentication, and connect
to github through SSH as discussed in this article [https://help.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh].
Before going further, you should test your ssh connection [https://help.github.com/en/github/authenticating-to-github/testing-your-ssh-connection].
If it fails (perhaps because of your institution’s proxy),
you may consider the personal access token option [https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line] as an alternative.

Downloading the Code

Once you have created an ssh-key and you have added it to your Github account you can download
the code through SSH. The following steps clone the repository into your_geosx_dir:

git clone git@github.com:GEOSX/GEOSX.git your_geosx_dir
cd your_geosx_dir
git lfs install
git submodule init
git submodule update

If all goes well, you should have a complete copy of the GEOSX source at this point.
The most common errors people encounter here have to do with Github not recognizing
their authentication settings.

Branching Model

The branching model used in GEOSX is a modified
Gitflow [https://nvie.com/posts/a-successful-git-branching-model/] approach,
with some modifications to the merging strategy, and the treatment of release
branches, and hotfix branches.

In GEOSX, there are two main branches, release and develop.
The develop branch serves as the main branch for the development of new
features.
The release branch serves as the “stable release” branch.
The remaining branch types are described in the following subsections.

Note

The early commits in GEOSX (up to version 0.2) used a pure
Gitflow [https://nvie.com/posts/a-successful-git-branching-model/]
approach for merging feature branches into develop.
This was done without cleaning the commit history in each feature
branch prior to the merge into develop, resulting in an overly verbose history.
Furthermore, as would be expected, having many active feature branches resulted
in a fairly wide (spaghetti) history.
At some point in the development process, we chose to switch primarily to a
squash-merge approach which results in a linear develop history.
While this fixes the spaghetti history, we do potentially lose important
commit history during the development process.
Options for merging are discussed in the following sections.

Feature Branches

New developments (new features or modifications to features) are branched off
of develop into a feature branch.
The naming of feature branches should follow feature/[developer]/[branch-description]
if you expect that only a single developer will contribute to the branch,
or feature/[branch-description] if you expect it will be a collaborative effort.
For example, if a developer named neo were to add or modify a code feature
expecting that they would be the only contributor, they would create a branch
using the following commands to create the local branch and push it to the remote
repository:

git checkout -b feature/neo/freeYourMind
git push -u origin feature/neo/freeYourMind

However if the branch is a collaborative branch amongst many developers, the
appropriate commands would be:

git checkout -b feature/freeYourMind
git push -u origin feature/freeYourMind

When feature branches are ready to be merged into develop, a Pull Request
should be created to perform the review and merging process.

An example lifecycle diagram for a feature branch:

create new feature branch:
git checkout -b feature/neo/freeYourMind

A-------B-------C (develop)
 \
 \
 BA (feature/neo/freeYourMind)

Add commits to 'feature/neo/freeYourMind' and merge back into develop:

A-------B--------C-------D--------E (develop)
 \ /
 \ /
 BA----BB----BC (feature/neo/freeYourMind)

See below for details about Submitting a Pull Request.

Bugfix Branches

Bugfix branches are used to fix bugs that are present in the develop branch.
A similar naming convention to that of the feature branches is used, replacing
“feature” with “bugfix” (i.e. bugfix/neo/squashAgentSmith).
Typically, bugfix branches are completed by a single contributor, but just as with
the feature branches, a collaborative effort may be required resulting a
dropping the developer name from the branch name.

When bugfix branches are ready to be merged into develop, a Pull Request
should be created to perform the review and merging process.
See below for details about Submitting a Pull Request.

Release Candidate Branches

When develop has progressed to a point where we would like to create a new
release, we will create a release candidate branch with the name consisting
of release_major.minor.x number, where the x represents the sequence of patch tags that
will be applied to the branch.
For instance if we were releasing version 1.2.0, we would name the branch
release_1.2.x.
Once the release candidate is ready, it is merged back into develop.
Then the develop branch is merged into the release branch and tagged.
From that point the release branch exists to provide a basis for maintaining
a stable release version of the code.
Note that the absence of hotfix branches, the history for release and
develop would be identical.

An example lifecycle diagram for a release candidate branch:

 v1.2.0 (tag)
 G (release)
 ^
 |
A----B-----C----D-----E-----F-----G------------ (develop)
 \ \ /
 \ \ /
 BA----BB----BC----BD (release_1.2.x)

Hotfix Branches

A hotfix branch fixes a bug in the release branch.
It uses the same naming convention as a bugfix branch.
The main difference with a bugfix branch is that the primary target branch is the
release branch instead of develop.
As a soft policy, merging a hotfix into a release branch should result in
a patch increment for the release sequence of tags.
So if a hotfix was merged into release with a most recent tag of
1.2.1, the merged commit would be tagged with 1.2.2.
Finally, at some point prior to the next major/minor release, the release
branch should be merged back into develop to incorporate any hotfix changes
into develop.

An example lifecycle diagram for hotfix branchs:

 v1.2.0 v1.2.1 v1.2.2 v1.3.0 (tag)
 B------------H1-----------H2 I (release)
 ^\ /| \ / \ ^
 | \ / \ \ / \ |
 | BA-----BB \ H1A--H1B \ | (hotfix/xyz)
 | \ \ |
A----B-----C-----D----E------F------G----H----I--- (develop)

Documentation Branches

A docs branch is focused on writing and improving the documentation for GEOSX.
The use of the docs branch name root applies to both sphinx documentation
and doxygen documentation.
The docs branch follows the same naming conventions as described in the Feature Branches
section.
The html produced by a documentation branch should be proofread using sphinx/doxygen
prior to merging into develop.

Keeping Your Branch Current

Over the course of a long development effort in a single feature branch, a
developer may need to either merge develop into their feature branch, or rebase
their feature branch on develop.
We do not have a mandate on how you keep your branch current, but we do have
guidelines on the branch history when merging your branch into develop.
Typically, merging develop into your branch is the easiest approach, but will
lead to a complex relationship with develop with multiple interactions… which
can lead to a confusing history.
Conversely, rebasing your branch onto develop is more difficult, but will lead
to a linear history within the branch.
For a complex history, we will perform a squash merge into develop, thereby
the work from the branch will appear as a single commit in develop.
For clean branch histories where the individual commits are meaningful and should
be preserved, we have the option to perform a merge commit in with the PR is merged
into develop, with the addition of a merge commit, thus maintaining the commit history.

Branching off of a Branch

During the development processes, sometimes it is appropriate to create a branch
off of a branch.
For instance, if there is a large collaborative development effort on the branch
feature/theMatrix, and a developer would like to add a self-contained and easily
reviewable contribution to that effort, he/she should create a branch as follows:

git checkout feature/theMatrix
git checkout -b feature/smith/dodgeBullets
git push -u origin feature/smith/dodgeBullets

If feature/smith/dodgeBullets is intended to be merged into feature/theMatrix,
and the commit history of feature/theMatrix is not changed via git rebase, then
the process of merging the changes back into feature/theMatrix is fairly standard.

However, if feature/theMatrix is merged into develop via a squash merge,
and then smith would like to merge feature/smith/dodgeBullets into develop,
there is a substantial problem due to the diverged history of the branches.
Specifically, feature/smith/dodgeBullets branched off a commit in feature/theMatrix
that does not exist in develop (because it was squash-merged).
For simplicity, let us assume that the commit hash that feature/smith/dodgeBullets
originated from is CC, and that there were commits CA, CB, CC, CD in feature/theMatrix.
When feature/theMatrix was squash-merged, all of the changes appear in develop as commit G.
To further complicate the situation, perhaps a complex PR was merged after G, resulting
in E on develop.
The situation is illustrated by:

A----B----C----D----E----F----G----E (develop)
 \ /
 CA---CB---CC---CD (feature/theMatrix)
 \
 CCA--CCB--CCC (feature/smith/dodgeBullets)

In order to successfully merge feature/smith/dodgeBullets into develop, all
commits present in feature/smith/dodgeBullets after CC must be included, while discarding
CA, CB, which exist in feature/smith/dodgeBullets as part of its history, but not
in develop.

One “solution” is to perform a git rebase --onto of feature/smith/dodgeBullets onto
develop.
Specifically, we would like to rebase CCA, CCB, CCC onto G, and proceed with our
development of feature/smith/dodgeBullets.
This would look like:

git checkout develop
git pull
git checkout feature/smith/dodgeBullets
git rebase -onto G CC

As should be apparent, we have specified the starting point as G, and the point
at which we replay the commits in feature/smith/dodgeBullets as all commits
AFTER CC.
The result is:

A----B----C----D----E----F----G----E (develop)
 \
 CCA'--CCB'--CCC' (feature/smith/dodgeBullets)

Now you may proceed with standard methods for keeping feature/smith/dodgeBullets
current with develop.

Submitting a Pull Request

Once you have created your branch and pushed changes to Github, you can create a
Pull Request [https://github.com/GEOSX/GEOSX/pulls] on Github.
The PR creates a central place to review and discuss the ongoing work on the branch.
Creating a pull request early in the development process is preferred as it allows
for developers to collaborate on the branch more readily.

Note

When initially creating a pull request (PR) on GitHub, always create it as a draft PR while
work is ongoing and the PR is not ready for testing, review, and merge consideration.

When you create the initial draft PR, please ensure that you apply appropriate labels.
Applying labels allows other developers to more quickly filter the live PRs and access
those that are relevant to them. Always add the new label upon PR creation, as well
as to the appropriate type, priority, and effort labels. In addition, please
also add any appropriate flags.

Note

If your branch and PR will resolve any open issues, be sure to link them to
the PR to ensure they are appropriately resolved once the PR is merged.
In order to link the issue to the PR for automatic resolution, you must use
one of the keywords followed by the issue number (e.g. resolves #1020) in either
the main description of the PR, or a commit message.
Entries in PR comments that are not the main description or a commit message
will be ignored, and the issue will not be automatically closed.
A complete list of keywords are:

	close

	closes

	closed

	fix

	fixes

	fixed

	resolve

	resolves

	resolved

For more details, see the Github Documentation [https://docs.github.com/en/github/managing-your-work-on-github/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword].

Once you are satisfied with your work on the branch, you may promote the PR out of
draft status, which will allow our integrated testing suite to execute on the PR branch
to ensure all tests are passing prior to merging.

Once the tests are passing – or in some cases immediately – add the flag: ready for review
label to the PR, and be sure to tag any relevant developers to review the PR. The PR
must be approved by reviewers in order to be merged.

Note that whenever a pull request is merged into develop, commits are either
squashed, or preserved depending on the cleanliness of the history.

Keeping Submodules Current

Whenever you switch between branches locally, pull changes from origin and/or
merge from the relevant branches, it is important to update the submodules to
move the head to the proper commit.

git submodule update --recursive

You may also wish to modify your git pull behavior to update your submodules
recursively for you in one command, though you forfeit some control granularity
to do so. The method for accomplishing this varies between git versions, but
as of git 2.15 you should be able to globally configure git to accomplish this via:

git config --global submodule.recurse true

In some cases, code changes will require to rebaseline the Integrated Tests.
If that is the case, you will need to modify the integrated tests submodule.
Instructions on how to modify a submodule are presented in the following section.

Working on the Submodules

Sometimes it may be necessary to modify one of the submodules. In order to do so,
you need to create a pull request on the submodule repository. The following steps
can be followed in order to do so.

Move to the folder of the submodule that you intend to modify.

cd submodule-folder

Currently the submodule is in detached head mode, so you first need to move
to the main branch (either develop or master) on the
submodule repository, pull the latest changes, and then create a new branch.

git checkout <main-branch>
git pull
git checkout -b <branch-name>

You can perform some work on this branch, add and commit the changes and then push
the newly created branch to the submodule repository on which you can eventually
create a pull request using the same process discussed above in Submitting a Pull Request.

git push --set-upstream origin <branch-name>

Resolving Submodule Changes in Primary Branch PRs

When you conduct work on a submodule during work on a primary GEOSX
branch with an open PR, the merging procedure requires that the submodule referenced
by the GEOSX PR branch be consistent with the submodule in the main branch of the project.
This is checked and enforced via TravisCI.

Thus, in order to merge a PR that includes modifications to submodules, the various PRs for
each repository should be staged and finalized, to the point they are all ready to be merged,
with higher-level PRs in the merge hierarchy having the correct submodule references for the
current main branch for their repository.

Starting from the bottom of the submodule hierarchy, the PRs are resolved, after which the
higher-level PRs with reference to a resolved PR must update their submodule references
to point to the new main branch of the submodule with the just-resolved PR merged.
After any required automated tests pass, the higher-level PRs can then be merged.

The name of the main branch of each submodule is presented in the table below.

	Submodule

	Main branch

	blt

	develop

	LvArray

	develop

	integratedTests

	develop

	hdf5_interface

	master

	PAMELA

	master

	PVTPackage

	master

Sphinx Documentation

Generating the documentation

	To generate the documentation files, you will need to install Sphinx using

sudo apt install python-sphinx

Then you can generate the documentation files with the following command

cd GEOSX/build-your-platform-release
make geosx_docs

	That will create a new folder

GEOSX/build-your-platform-release/html/docs/sphinx

which contains all the html files generated.

Documenting the code

The documentation is generated from restructured text files (.rst). Most files
can be found in src/docs/sphinx. Files which are specific to parts of the code,
like those describing a specific class, can instead be found in docs subdirectory
in the folder containing the source code.

Information about how to write rst files can be found here [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html] .

Doxygen Documentation

Developer documentation of code is provided in the form of Doxygen-style comment blocks.
Doxygen [http://www.doxygen.nl/] is a tool for generating html/xml/latex documentation for C++ code from specially marked code comments.
Having concise but high quality documentation of public APIs helps both users and developers of these APIs.
We use Doxygen and Ctest to enforce documentation coverage. If Doxygen produces any warnings, your pull request will fail CI checks!
See Git Workflow for more on pull requests and CI.

Accessing

There are two ways to access Doxygen documentation.

Build locally

Prior to configuring a GEOSX build, have Doxygen installed:

sudo apt install doxygen

Note

Eventually, doxygen (version 1.8.13) is provided within the thirdPartyLibs repository.

Configure GEOSX and go the build directory:

cd GEOSX/build-your-platform-release

Build doxygen docs only:

make geosx_doxygen

Or build all docs:

make geosx_docs

Open in browser:

google-chrome html/doxygen_output/html/index.html

On readthedocs

Go to GEOSX documentation [https://geosx-geosx.readthedocs-hosted.com/], select the version of interest, and follow
the Doxygen link at the left-hand-side.

Guidelines

What to document

The following entities declared in project header files within geosx namespace require documentation:

	all classes and structs, including public nested ones

	global functions, variables and type aliases

	public and protected member functions, variables and type aliases in classes

	preprocessor macros

Exceptions are made for:

	overrides of virtual functions in derived types

	implementation details nested in namespace internal

	template specializations in some cases

How to document

The following rules and conventions are used. Some are stricter than others.

	We use @-syntax for all Doxygen commands (e.g. @brief instead of \brief).

	Entities such as type aliases and member variables that typically only require a brief description,
can have a single-line documentation starting with ///.

	@brief is not required for single-line comments.

	Entities such as classes and functions that typically require either detailed explanation or parameter documentation,
are documented with multiline comment blocks.

	@brief is required for comment blocks.

	Brief and detailed descriptions should be complete sentences (i.e. start with a capital letter and end with a dot).

	Prefer concise wording in @brief, e.g. “Does X.” instead of “This is a function that does X.”

	All functions parameters and return values must be explicitly documented via @param and @return.

	An exception to this rule seem to be copy/move constructor/assignment, where parameter documentation can be omitted.

	Add [in] and [out] tags to function parameters, as appropriate.

	Function and template parameter descriptions are not full sentences (i.e. not capitalized nor end with a dot).

	For hierarchies with virtual inheritance, document base virtual interfaces rather than overriding implementations.

	Documented functions cannot use GEOSX_UNUSED_ARG() in their declarations.

	For empty virtual base implementations that use GEOSX_UNUSED_ARG(x) to remove compiler warnings, use one of two options:

	move empty definition away (e.g. out of class body) and keep GEOSX_UNUSED_ARG(x) in definition only;

	put GEOSX_UNUSED_VAR(x) into the inline empty body.

	For large classes, logically group functions using member groups via ///@{ and ///@} and give them group names
and descriptions (if needed) via a @name comment block. Typical groups may include:

	constructors/destructor/assignment operators;

	getter/setter type functions;

	overridable virtual functions;

	any other logically coherent groups (functions related to the same aspect of class behavior).

	In-header implementation details (e.g. template helpers) often shouldn’t appear in user documentation.
Wrap these into internal namespace.

	Use /// @cond DO_NOT_DOCUMENT and /// @endcond tags to denote a section of public API that should not be
documented for some reason. This should be used rarely and selectively. An example is in-class helper structs
that must be public but that user should not refer to explicitly.

Example

/// This is a documented macro
#define USEFUL_MACRO

/**
 * @brief Short description.
 * @tparam T type of input value
 * @param[in] x input value explanation
 * @return return value explanation
 *
 * Detailed description goes here.
 *
 * @note A note warning users of something unexpected.
 */
template<typename T>
int Foo(T const & x);

/**
* @brief Class for showing Doxygen.
* @tparam T type of value the class operates on
*
* This class does nothing useful except show how to use Doxygen.
*/
template<typename T>
class Bar
{
public:

 /// A documented member type alias.
 using size_type = typename std::vector<T>::size_type;

 /**
 * @name Constructors/destructors.
 */
 ///@{

 /**
 * @brief A documented constructor.
 * @param value to initialize the object
 */
 explicit Bar(T t);

 /**
 * @brief A deleted, but still documented copy constructor.
 * @param an optionally documented parameter
 */
 Bar(Bar const & source) = delete;

 /**
 * @brief A defaulted, but still documented move constructor.
 * @param an optionally documented parameter
 */
 Bar(Bar const & source) = default;

 /**
 * @brief A documented desctructor.
 * virtual ~Bar() = default;
 */

 ///@}

 /**
 * @name Getters for stored value.
 */
 ///@{

 /**
 * @brief A documented public member function.
 * @return a reference to contained value
 */
 T & getValue();

 /**
 * @copydoc getValue()
 */
 T const & getValue() const;

 ///@}

protected:

 /**
 * @brief A documented protected pure virtual function.
 * @param[in] x the input value
 * @param[out] y the output value
 *
 * Some detailed explanation for users and implementers.
 */
 virtual void doSomethingOverridable(int const x, T & y) = 0;

 /// @cond DO_NOT_DOCUMENT
 // Some stuff we don't want showing up in Doxygen
 struct BarHelper
 {};
 /// @endcond

private:

 /// An optionally documented (not enforced) private member.
 T m_value;

};

Current Doxygen

Link to Doxygen

Unit Testing

Unit testing is integral to the GEOSX development process. While not all components naturally lend themselves to unit testing (for example a physics solver) every effort should be made to write comprehensive quality unit tests.

Each sub-directory in coreComponents should have a unitTests directory containing the test sources. Each test consists of a cpp file whose name begins with test followed by a name to describe the test. Please read over the LvArray unit test documentation as it gives an intro to the Google Test framework and a set of best practices.

GEOSX Specific Recommendations

An informative example is testSinglePhaseBaseKernels which tests the single phase flow mobility and accumulation kernels on a variety of inputs.

TEST(SinglePhaseBaseKernels, mobility)
{
 int constexpr NTEST = 3;

 real64 const dens[NTEST] = { 800.0, 1000.0, 1500.0 };
 real64 const dDens_dPres[NTEST] = { 1e-5, 1e-10, 0.0 };
 real64 const visc[NTEST] = { 5.0, 2.0, 1.0 };
 real64 const dVisc_dPres[NTEST] = { 1e-7, 0.0, 0.0 };

 for(int i = 0; i < NTEST; ++i)
 {
 SCOPED_TRACE("Input # " + std::to_string(i));

 real64 mob;
 real64 dMob_dPres;

 MobilityKernel::compute(dens[i], dDens_dPres[i], visc[i], dVisc_dPres[i], mob, dMob_dPres);

 // compute etalon
 real64 const mob_et = dens[i] / visc[i];
 real64 const dMob_dPres_et = mob_et * (dDens_dPres[i] / dens[i] - dVisc_dPres[i] / visc[i]);

 EXPECT_DOUBLE_EQ(mob, mob_et);
 EXPECT_DOUBLE_EQ(dMob_dPres, dMob_dPres_et);
 }
}

[Source: coreComponents/physicsSolvers/fluidFlow/unitTests/testSinglePhaseBaseKernels.cpp]

What makes this such a good test is that it depends on very little other than kernels themselves. There is no need to involve the data repository or parse an XML file. Sometimes however this is not possible, or at least not without a significant duplication of code. In this case it is better to embed the XML file into the test source as a string instead of creating a separate XML file and passing it to the test as a command line argument or hard coding the path. One example of this is testLaplaceFEM which tests the laplacian solver. The embedded XML is shown below.

char const * xmlInput =
 "<Problem>\n"
 " <Solvers gravityVector=\"{ 0.0, 0.0, -9.81 }\">\n"
 " <CompositionalMultiphaseFVM name=\"compflow\"\n"
 " logLevel=\"0\"\n"
 " discretization=\"fluidTPFA\"\n"
 " targetRegions=\"{Region2}\"\n"
 " fluidNames=\"{fluid1}\"\n"
 " solidNames=\"{rock}\"\n"
 " permeabilityNames=\"{rockPerm}\"\n"
 " relPermNames=\"{relperm}\"\n"
 " capPressureNames=\"{cappressure}\"\n"
 " temperature=\"297.15\"\n"
 " useMass=\"1\">\n"
 " \n"
 " <NonlinearSolverParameters newtonTol=\"1.0e-6\"\n"
 " newtonMaxIter=\"2\"/>\n"
 " <LinearSolverParameters solverType=\"gmres\"\n"
 " krylovTol=\"1.0e-10\"/>\n"
 " </CompositionalMultiphaseFVM>\n"
 " </Solvers>\n"
 " <Mesh>\n"
 " <InternalMesh name=\"mesh1\"\n"
 " elementTypes=\"{C3D8}\" \n"
 " xCoords=\"{0, 3}\"\n"
 " yCoords=\"{0, 1}\"\n"
 " zCoords=\"{0, 1}\"\n"
 " nx=\"{3}\"\n"
 " ny=\"{1}\"\n"
 " nz=\"{1}\"\n"
 " cellBlockNames=\"{cb1}\"/>\n"
 " </Mesh>\n"
 " <Geometry>\n"
 " <Box name=\"source\" xMin=\"{ -0.01, -0.01, -0.01 }\" xMax=\"{ 1.01, 1.01, 1.01 }\"/>\n"
 " <Box name=\"sink\" xMin=\"{ 1.99, -0.01, -0.01 }\" xMax=\"{ 3.01, 1.01, 1.01 }\"/>\n"
 " </Geometry>\n"
 " <NumericalMethods>\n"
 " <FiniteVolume>\n"
 " <TwoPointFluxApproximation name=\"fluidTPFA\"\n"
 " fieldName=\"pressure\"\n"
 " coefficientName=\"permeability\"\n"
 " coefficientModelNames=\"{rockPerm}\"/>\n"
 " </FiniteVolume>\n"
 " </NumericalMethods>\n"
 " <ElementRegions>\n"
 " <CellElementRegion name=\"Region2\" cellBlocks=\"{cb1}\" materialList=\"{fluid1, rock, relperm, cappressure}\" />\n"
 " </ElementRegions>\n"
 " <Constitutive>\n"
 " <CompositionalMultiphaseFluid name=\"fluid1\"\n"
 " phaseNames=\"{oil, gas}\"\n"
 " equationsOfState=\"{PR, PR}\"\n"
 " componentNames=\"{N2, C10, C20, H2O}\"\n"
 " componentCriticalPressure=\"{34e5, 25.3e5, 14.6e5, 220.5e5}\"\n"
 " componentCriticalTemperature=\"{126.2, 622.0, 782.0, 647.0}\"\n"
 " componentAcentricFactor=\"{0.04, 0.443, 0.816, 0.344}\"\n"
 " componentMolarWeight=\"{28e-3, 134e-3, 275e-3, 18e-3}\"\n"
 " componentVolumeShift=\"{0, 0, 0, 0}\"\n"
 " componentBinaryCoeff=\"{ {0, 0, 0, 0},\n"
 " {0, 0, 0, 0},\n"
 " {0, 0, 0, 0},\n"
 " {0, 0, 0, 0} }\"/>\n"
 " <CompressibleSolidConstantPermeability name=\"rock\"\n"
 " solidModelName=\"nullSolid\"\n"
 " porosityModelName=\"rockPorosity\"\n"
 " permeabilityModelName=\"rockPerm\"/>\n"
 " <NullModel name=\"nullSolid\"/> \n"
 " <PressurePorosity name=\"rockPorosity\"\n"
 " defaultReferencePorosity=\"0.05\"\n"
 " referencePressure = \"0.0\"\n"
 " compressibility=\"1.0e-9\"/>\n"
 " <BrooksCoreyRelativePermeability name=\"relperm\"\n"
 " phaseNames=\"{oil, gas}\"\n"
 " phaseMinVolumeFraction=\"{0.1, 0.15}\"\n"
 " phaseRelPermExponent=\"{2.0, 2.0}\"\n"
 " phaseRelPermMaxValue=\"{0.8, 0.9}\"/>\n"
 " <BrooksCoreyCapillaryPressure name=\"cappressure\"\n"
 " phaseNames=\"{oil, gas}\"\n"
 " phaseMinVolumeFraction=\"{0.2, 0.05}\"\n"
 " phaseCapPressureExponentInv=\"{4.25, 3.5}\"\n"
 " phaseEntryPressure=\"{0., 1e8}\"\n"
 " capPressureEpsilon=\"0.0\"/> \n"
 " <ConstantPermeability name=\"rockPerm\"\n"
 " permeabilityComponents=\"{2.0e-16, 2.0e-16, 2.0e-16}\"/> \n"
 " </Constitutive>\n"
 " <FieldSpecifications>\n"
 " <FieldSpecification name=\"initialPressure\"\n"
 " initialCondition=\"1\"\n"
 " setNames=\"{all}\"\n"
 " objectPath=\"ElementRegions/Region2/cb1\"\n"
 " fieldName=\"pressure\"\n"
 " functionName=\"initialPressureFunc\"\n"
 " scale=\"5e6\"/>\n"
 " <FieldSpecification name=\"initialComposition_N2\"\n"
 " initialCondition=\"1\"\n"
 " setNames=\"{all}\"\n"
 " objectPath=\"ElementRegions/Region2/cb1\"\n"
 " fieldName=\"globalCompFraction\"\n"
 " component=\"0\"\n"
 " scale=\"0.099\"/>\n"
 " <FieldSpecification name=\"initialComposition_C10\"\n"
 " initialCondition=\"1\"\n"
 " setNames=\"{all}\"\n"
 " objectPath=\"ElementRegions/Region2/cb1\"\n"
 " fieldName=\"globalCompFraction\"\n"
 " component=\"1\"\n"
 " scale=\"0.3\"/>\n"
 " <FieldSpecification name=\"initialComposition_C20\"\n"
 " initialCondition=\"1\"\n"
 " setNames=\"{all}\"\n"
 " objectPath=\"ElementRegions/Region2/cb1\"\n"
 " fieldName=\"globalCompFraction\"\n"
 " component=\"2\"\n"
 " scale=\"0.6\"/>\n"
 " <FieldSpecification name=\"initialComposition_H20\"\n"
 " initialCondition=\"1\"\n"
 " setNames=\"{all}\"\n"
 " objectPath=\"ElementRegions/Region2/cb1\"\n"
 " fieldName=\"globalCompFraction\"\n"
 " component=\"3\"\n"
 " scale=\"0.001\"/>\n"
 " </FieldSpecifications>\n"
 " <Functions>\n"
 " <TableFunction name=\"initialPressureFunc\"\n"
 " inputVarNames=\"{elementCenter}\"\n"
 " coordinates=\"{0.0, 3.0}\"\n"
 " values=\"{1.0, 0.5}\"/>\n"
 " </Functions>"
 "</Problem>";

[Source: coreComponents/physicsSolvers/fluidFlow/unitTests/testCompMultiphaseFlow.cpp]

MPI

Often times it makes sense to write a unit test that is meant to be run with multiple MPI ranks. This can be accomplished by simply adding the NUM_MPI_TASKS parameter to blt_add_test in the CMake file. For example

blt_add_test(NAME testWithMPI
 COMMAND testWithMPI
 NUM_MPI_TASKS ${NUMBER_OF_MPI_TASKS})

With this addition make test or calling ctest directly will run testWithMPI via something analogous to mpirun -n NUMBER_OF_MPI_TASKS testWithMPI.

Input Files

As part of the development cycle, functional input files should be introduced
into the repository in order to provide 1) testing, 2) examples of proper use of
the code.
The input files should be modulerized such that the majority of the input
resides in a base file, and the variations in input are contained in specific
files for integrated/smoke testing, and benchmarking.
For example if we had a single input file named myProblem.xml, we would break
it up into myProblem_base.xml, myProblem_smoke.xml`', and
``myProblem_benchmark.xml.
Each of the smoke/benchark files should include the base file using an
include block as follows:

<Included>
 <File name="./myProblem_base.xml"/>
</Included>

The files should be placed in the appropriate application specific subdirectory
under the GEOSX/inputFiles directory.
For example, the beamBending problem input files reside in the
inputFiles/solidMechanics directory.
The files then be linked to from the appropriate location in the integratedTests
repository as described in the following section.

Integrated Tests

About

integratedTests is a submodule of GEOSX residing at the top level of the directory structure. It will run GEOSX with various .xml files and compare the output against a baseline.

Note: you may need to install h5py [http://docs.h5py.org/en/latest/build.html] and mpi4py [https://mpi4py.readthedocs.io/en/stable/].

Structure

The integratedTests directory is composed of two main directories, integratedTests/geosxats and integratedTests/update/run. The integratedTests/geosxats directory contains all the machinery involved in running the tests including the main executable integratedTests/geosxats/geosxats. The integratedTests/update/run directory contains all the actual tests themselves, including the .xml files and the baselines.

- integratedTests/
 - geosxats/
 - geosxats
- update/
 - run/
 - sedov/
 - beamBending/
 - baselines/
 - beamBending/
 - <baseline-files>
 - beamBending.ats
 - beamBending.xml

Arguments

The program takes a number of arguments, the most important ones are

	The path to the GEOSX binary directory (<build-dir>/bin)

	–workingDir WORKINGDIR which sets the working (test) directory.

	-N NUMNODES specifies the number of nodes to use the default is the minimum number that the tests require.

	-a {veryclean, rebaseline, …} specify a specific action, veryclean deletes all output files, and rebaseline lets you rebaseline all or some of the tests.

	-h prints out the geosxats help.

How to Run the Tests

To run all the tests from the top level GEOSX directory you would do

integratedTests/geosxats/geosxats <build-path>/bin --workingDir integratedTests/update/run

To run only the sedov tests you would do

integratedTests/geosxats/geosxats <build-path>/bin --workingDir integratedTests/update/run/sedov

However if you want to run all the tests there’s an easier way. In the build directory there’s a symbolic link to integratedTests/update/run called integratedTests and a bash script geosxats.sh that wraps integratedTests/geosxats/geosxats and passes it the path to the binary directory and the integratedTests/update/run directory along with any other command line arguments. To run this script do the following

cd <build-path>
./geosxats.sh

If the script or symbolic link is not present you will need to reconfigure by running the `config-build.py script.

When the program has finished running you will see something like this

 FAIL RUN : 0

 UNEXPECTEDPASS : 0

 FAIL RUN (OPTIONAL STEP) : 0

 FAIL CHECK : 1
 (beamBending)

 FAIL CHECK (MINOR) : 0

 TIMEOUT : 0

 NOT RUN : 0

 INPROGRESS : 0

 FILTERED : 0

 RUNNING : 0

 PASSED : 3
 (sedov 2D_100x100_incompr_linear 2D_100x100_incompr_linear_faceBC)

 EXPECTEDFAIL : 0

 SKIPPED : 0

 BATCHED : 0

 NOT BUILT : 0

 TOTAL TIME : 0:01:13
 TOTAL PROCESSOR-TIME : 0:02:13
 AVAIL PROCESSOR-TIME : 1:28:26
 RESOURCE UTILIZATION : 2.51%

 LONGEST RUNNING TESTS:
 0:01:13 sedov
 0:00:23 2D_100x100_incompr_linear_faceBC
 0:00:22 2D_100x100_incompr_linear
 0:00:14 beamBending

 Status : TestCase : Directory : Elapsed : Resources : TestStep
 ---------- : ----------- : ----------------------- : ------- : --------- : ------------
 FAIL CHECK : beamBending : beamBending/beamBending : 0:00:14 : 0:00:14 : restartcheck
 ---------- : ----------- : ----------------------- : ------- : --------- : ------------

Generating HTML documentation files (running 'atddoc')...
 Failed to create HTML documentation in /g/g14/corbett5/geosx/mirror/integratedTests/update/doc

Undocumented test problems:
beamBending 2D_100x100_incompr_linear 2D_100x100_incompr_linear_faceBC sedov

Ignore the error regarding the failure to create a HTML documentation file and the warning about the undocumented test problems. The only important thing is if any of the tests aren’t in the PASSED category. For a nice summary of the results open the test_results.html file in the geosxats working directory.

When running the tests multiple times in a row, only tests that failed to pass will run. If you would like to run all the tests again call

./geosxats.sh -a veryclean

which will delete all the generated files. Furthermore these generated files are not ignored by git, so until you run veryclean the integratedTests repo will register changes.

Note: On some development machines geosxats won’t run parallel tests by default (e.g. on an linux laptop or workstation), and as a result many tests will be skipped. We highly recommend running tests on an MPI-aware platform.

Output Created By a Test

Since the beamBending test failed let’s look at it’s output. The output for the beamBending test is stored in integratedTests/update/run/beamBending/beamBending directory. In addition to any files GEOSX itself creates you will find

	beamBending.data which holds all of the standard output of the various steps.

	beamBending.err which holds all of the standard error output of the various steps.

	beamBending.geosx.out which holds all of the standard output for only the geosx step.

	beamBending_restart_000000003.restartcheck which holds all of the standard output for only the restartcheck step.

	beamBending_restart_000000003_diff.hdf5 which mimmics the hierarchy of the restart file and has links to the differing data datasets.

The RestartCheck File

Currently the only manner of check that we support is a restart check, this check compares a restart file output at the end of a run against a baseline. The program that does the diff
is integratedTests/geosxats/helpers/restartcheck.py. The program compares the two restart files and writes out a .restart_check file with the results, as well as exiting with an error code if the files compare differently.

This program takes a number of arguments
and they are as follows

	Regex specifying the restart file. If the regex matches multiple files the one with the greater string is selected. For example restart_100.hdf5 wins out over restart_088.hdf5.

	Regex specifying the baseline file.

	-r The relative tolerance for floating point comparison, the default is 0.0.

	-a The absolute tolerance for floating point comparison, the default is 0.0.

	-e A list of regex expressions that match paths in the restart file tree to exclude from comparison. The default is [.*/commandLine].

	-w Force warnings to be treated as errors, default is false.

	-s Suppress output to stdout, default is False.

The .restart_check file itself starts off with a summary of the arguments. The program then compares the .root files and if they are similar proceeds to compare all the .hdf5 data files.

If the program encounters any differences it will spit out an error message. An error message for scalar values looks as follows

Error: /datagroup_0000000/sidre/external/ProblemManager/domain/ConstitutiveManager/shale/YoungsModulus
 Scalar values of types float64 and float64 differ: 22500000000.0, 10000022399.9.

Where the first value is the value in the test’s restart file and the second is the value in the baseline.

An example of an error message for arrays is

Error: /datagroup_0000000/sidre/external/ProblemManager/domain/MeshBodies/mesh1/Level0/nodeManager/TotalDisplacement
 Arrays of types float64 and float64 have 1836 values of which 1200 have differing values.
 Statistics of the differences greater than 0:
 max_index = (1834,), max = 2.47390764755, mean = 0.514503482629, std = 0.70212888881

This means that the max absolute difference is 2.47 which occurs at value 1834. Of the values that are not equal the mean absolute difference is 0.514 and the standard deviation of the absolute difference is 0.702.

When the tolerances are non zero the comparison is a bit more complicated. From the FileComparison.compareFloatArrays method documentation

Entries x1 and x2 are considered equal iff
 |x1 - x2| <= ATOL or |x1 - x2| <= RTOL * |x2|.
To measure the degree of difference a scaling factor q is introduced. The goal is now to minimize q such that
 |x1 - x2| <= ATOL * q or |x1 - x2| <= RTOL * |x2| * q.
If RTOL * |x2| > ATOL
 q = |x1 - x2| / (RTOL * |x2|)
else
 q = |x1 - x2| / ATOL.
If the maximum value of q over all the entries is greater than 1.0 then the arrays are considered different and an error message is produced.

An sample error message is

Error: /datagroup_0000000/sidre/external/ProblemManager/domain/MeshBodies/mesh1/Level0/nodeManager/TotalDisplacement
 Arrays of types float64 and float64 have 1836 values of which 1200 fail both the relative and absolute tests.
 Max absolute difference is at index (1834,): value = 2.07474948094, base_value = 4.54865712848
 Max relative difference is at index (67,): value = 0.00215842135281, base_value = 0.00591771127792
 Statistics of the q values greater than 1.0 defined by the absolute tolerance: N = 1200
 max = 16492717650.3, mean = 3430023217.52, std = 4680859258.74
 Statistics of the q values greater than 1.0 defined by the relative tolerance: N = 0

The restart check step can be run in parallel using mpi via

mpirun -n NUM_PROCESSES python -m mpi4py restartcheck.py ...

In this case rank zero reads in the restart root file and then each rank parses a subset of the data files creating a .$RANK.restartcheck file. Rank zero then merges the output from each of these files into the main .restartcheck file and prints it to standard output.

The .diff.hdf5 File

Each error generated in the restartcheck step creates a group with three children in the _diff.df5 file. For example the error given above will generate a hdf5 group

/FILENAME/datagroup_0000000/sidre/external/ProblemManager/domain/MeshBodies/mesh1/Level0/nodeManager/TotalDisplacement

with datasets baseline, run and message where FILENAME is the name of the restart data file being compared. The message dataset contains a copy of the error message while baseline is a symbolic link to the baseline dataset and run is a sumbolic link to the dataset genereated by the run. This allows for easy access to the raw data underlying the diff without data duplication. For example if you want to extract the datasets into python you could do this:

import h5py
file_path = "beamBending_restart_000000003_diff.hdf5"
path_to_data = "/beamBending_restart_000000011_0000000.hdf5/datagroup_0000000/sidre/external/ProblemManager/domain/MeshBodies/mesh1/Level0/nodeManager/TotalDisplacement"
f = h5py.File("file_path", "r")
error_message = f["path_to_data/message"]
run_data = f["path_to_data/run"][:]
baseline_data = f["path_to_data/baseline"][:]

Now run_data and baseline_data are numpy arrays that you may use as you see fit.
rtol = 1e-10
atol = 1e-15
absolute_diff = np.abs(run_data - baseline_data) < atol
hybrid_diff = np.close(run_data, baseline_data, rtol, atol)

When run in parallel each rank creates a .$RANK.diff.hdf5 file which contains the diff of each data file processed by that rank.

The .ats File

The .ats file is a python script that describes the TestCases to run and steps for each TestCase. Each .ats file needs to have at least one TestCase and each TestCase needs to have at least one step.

A simple example is the beamBending.ats file

TestCase(
 name = "beamBending",
 desc = "Tests beam bending.",
 label = "auto",
 owner = "Ben Corbett",
 independent = True,
 steps = (geosx(deck="beamBending.xml"),)

This creates a TestCase called beamBending with a single step that runs GEOSX with the beamBending.xml input file, a restartcheck step automatically follows each geosx step. So this file describes a test that runs the beamBending problem and compares the restart file against the baseline.

A slightly more complicated example is the singlePhaseFlow.ats file.

decks = ("2D_100x100_incompr_linear",
 "2D_100x100_incompr_linear_faceBC")
descriptions = ("Testing the single phase incompressible flow solver.",
 "Testing the single phase incompressible flow solver with face boundary conditions.")

for i in range(len(decks)):
 deck = decks[i]
 description = descriptions[i]
 TestCase(
 name = deck,
 desc = description,
 label = "auto",
 owner = "Ben Corbett",
 independent = True,
 steps = (geosx(deck=deck + ".xml"),)
)

This creates two TestCases each of which runs a different problem. The independent parameter means that the two TestCases can be executed independently of each other. When a TestCase executes it uses it’s name to create a directory where all the output files are stored so if you have multiple TestCases in an .ats file it’s imperative that they have unique names.

Finally there’s the sedov.ats file which tests that starting from a restart file has no impact on the final solution.

import os

TestCase(
 name = "sedov",
 desc = "Test the basic sedov problem and restart capabilities.",
 label = "auto",
 owner = "Ben Corbett",
 independent = True,
 steps = (geosx(deck="sedov.xml",
 name="0to100"),
 geosx(deck="sedov.xml",
 name="50to100",
 restart_file=os.path.join(testcase_name, "0to100_restart_000000050.root"),
 baseline_pattern="0to100_restart_[0-9]+\.root",
 allow_rebaseline=False)
)
)

This creates a single TestCase That executes GEOSX twice. The first step does 100 time steps followed by a restartcheck step. The second geosx step executes the original 100 time step xml file but restarts using the restart file output half way through the first run. Each geosx step gets its name from the xml file, but this can be overridden by the name parameter Furthermore the default behavior is to look for a baseline in the baselines/<TestCaseName> directory named TestStepName_restart_[0-9]+.root, however the second step overrides this to instead compare against the “0to100” baseline. Because of this it does not allow rebaselining.

You can pass parameters to the restartcheck step in a dictionary passed as an argument to the geosx step. For example to set the tolerance you would do

restartcheck_params={}
restartcheck_params["atol"] = 1.5E-10
restartcheck_params["rtol"] = 1E-12

TestCase(
 name = "sedov",
 desc = "Test the basic sedov problem and restart capabilities.",
 label = "auto",
 owner = "Ben Corbett",
 independent = True,
 steps = (geosx(deck="sedov.xml",
 name="0to100",
 restartcheck_params=restartcheck_params))
)

For more info see integratedTests/geosxats/GeosxAtsTestSteps.py and integratedTests/geosxats/GeosxAtsTestCase.py

Adding a Test

To add a new test create a new folder in the `integratedTests/update/run* directory. At a minimum this new folder needs to include an .ats file. Using the beamBending example, after creating beamBending.ats the directory should look like

- integratedTests/update/run/beamBending/
 - beamBending.ats
 - beamBending.xml

At this point you should run the test. Assuming the geosx step is successful the restartcheck step will fail because there are no baselines. At this point the directory should look like

- integratedTests/update/run/beamBending/
 - beamBending/
 - <geosx files>...
 - <ats files>...
 - beamBending.ats
 - beamBending.xml
 - <ats files>...

Now run

./geosxats.sh -a rebaseline

and rebaseline your test. Finally run the test a second time and confirm that it passes. Note that unless you disable the restartcheck step you will need to output a restart file. Although not strictly necessary it is best to put the xml file in the main GEOSX repo and create an relative symbolic link to it in the test directory.

Rebaselining Tests

Occasionally it is necessary to rebaseline one or more tests due to feature changes in the code. We suggest the following workflow:

In the GEOSX repository, create a branch with your modifications:

cd <GEOSX-path>
git checkout -b user/feature/newFeature

Add your changes, confirm it passes all the continuous integration tests, and get approval for a pull request.

Now, confirm that your integratedTests submodule is up to date:

git submodule

This will list the commit hash for all submodules. Check that the integrated tests submodule is on develop and that the commit hash is the same one as the latest GEOSX develop branch points to. If you have somehow fallen behind, go into integratedTests, checkout develop, and pull.

Now go to the integratedTests submodule and check out a branch for your new baselines. It is a good idea to name branch something similar to your feature branch so it is obvious the two branches are related.

cd <integratedTests-path>
git checkout -b user/rebase/newFeature

Go back to your GEOSX build directory and run the integrated tests

cd <build-path>
./geosxats.sh

Confirm that any tests that fail need to be legitimately rebaselined. Arbitrarily changing baselines defeats the purpose of the integrated tests. In your PR discussion, please identify which tests will change and any unusual behavior.

We can now actually rebaseline the tests

./geosxats -a rebaseline

You’ll be prompted to confirm whether rebaselining is required for every integrated test, one at a time, via a [y/n] prompt. Make sure to only answer y to the tests that you actually want to rebaseline, otherwise correct baselines for already passing tests will still be updated and bloat your pull request and repository size.

Confirm that the rebaselines are working as expected, by cleaning the test dir and re-running the checks:

./geosxats -a veryclean
./geosxats

At this point you should pass all the integratedTests. Clean the branch and commit your changes to the baseline branch.

./geosxats -a veryclean
cd <integratedTests-path>
git status
git add *
git commit -m "Updating baselines"
git push

If you haven’t already set up your local branch to point to a remote branch, you will be prompted to do so when attempting to push. You will then want to create a pull request in the integratedTests repository. Once you have merge approval for your PR, you can merge your rebaseline branch into integratedTests/develop.

At this point, you need to get your GEOSX user/feature/newFeature branch pointing to the head commit on integratedTests/develop. We will check out the latest version of the test repo and add it to our feature branch:

cd <integratedTests-path>
git checkout develop
git pull

cd <GEOSX-path>
git add integratedTests
git commit -m "Updating integratedTests hash"
git push

You may also want to run git submodule to confirm the submodule hash is what we expect, the last commit in integratedTests/develop. Once your feature branch passes all Continuous Integration tests, it can be successfully merged into GEOSX/develop.

Tips

Parallel Tests: On some development machines geosxats won’t run parallel tests by default (e.g. on an linux laptop or workstation), and as a result many baselines will be skipped. We highly recommend running tests and rebaselining on an MPI-aware platform.

Filtering Checks: A common reason for rebaselining is that you have changed the name of an XML node in the input files. While the baselines may be numerically identical, the restarts will fail because they contain different node names. In this situation, it can be useful to add a filter to the restart check script. If you open integratedTests/geosxats/helpers/restartcheck.py, at line 12 you will find a line:

EXCLUDE_DEFAULT = [".*/commandLine", ".*/schema$", ".*/globalToLocalMap"]

This variable contains paths to be excluded from the restart checks. For example, we recently renamed the XML block <SystemSolverParameters/> to <LinearSolverParameters/>. In doing so, we had to rebaseline every test even though we expected no numerical differences. Temporarily adding the following filter helped us rapidly check this was indeed the case:

EXCLUDE_DEFAULT = [".*/SystemSolverParameters", ".*/LinearSolverParameters", ".*/commandLine", ".*/schema$", ".*/globalToLocalMap"]

You may find this approach useful for quickly filtering tests to distinguish between expected and unexpected failures.

Benchmarks

In addition to the integrated tests which track code correctness we have a suite of benchmarks that track performance.

Running the benchmarks

Because performance is system specific we currently only support running the benchmarks on the LLNL machines Quartz and Lassen. If you are on either of these machines the script benchmarks/runBenchmarks.py can be used to run the benchmarks.

> python ../benchmarks/runBenchmarks.py --help
usage: runBenchmarks.py [-h] [-t TIMELIMIT] [-o TIMINGCOLLECTIONDIR]
 [-e ERRORCOLLECTIONDIR]
 geosxPath outputDirectory

positional arguments:
 geosxPath The path to the GEOSX executable to benchmark.
 outputDirectory The parent directory to run the benchmarks in.

optional arguments:
 -h, --help show this help message and exit
 -t TIMELIMIT, --timeLimit TIMELIMIT
 Time limit for the entire script in minutes, the
 default is 60.
 -o TIMINGCOLLECTIONDIR, --timingCollectionDir TIMINGCOLLECTIONDIR
 Directory to copy the timing files to.
 -e ERRORCOLLECTIONDIR, --errorCollectionDir ERRORCOLLECTIONDIR
 Directory to copy the output from any failed runs to.

At a minimum you need to pass the script the path to the GEOSX executable and a directory to run the benchmarks in. This directory will be created if it doesn’t exist. The script will collect a list of benchmarks to be run and submit a job to the system’s scheduler for each benchmark. This means that you don’t need to be in an allocation to run the benchmarks. Note that this is different from the integrated tests where you need to already be in an allocation and an internal scheduler is used to run the individual tests. Since a benchmark is a measure of performance to get consistent results it is important that each time a benchmark is run it has access to the same resources. Using the system scheduler guarantees this.

In addition to whatever outputs the input would normally produce (plot files, restart files, …) each benchmark will produce an output file output.txt containing the standard output and standard error of the run and a .cali file containing the Caliper timing data in a format that Spot [https://lc.llnl.gov/spot2/?sf=/usr/gapps/GEOSX/timingFiles] can read.

Note

A future version of the script will be able to run only a subset of the benchmarks.

Specifying a benchmark

A group of benchmarks is specified with a standard GEOSX input XML file with an extra Benchmarks block added at the top level. This block is ignored by GEOSX itself and only used by the runBenchmarks.py script.

[Source: benchmarks/SSLE-small.xml]

The Benchmarks block consists of a block for each machine the benchmarks are to run on. Currently the only options are quartz and lassen.

The Run block

Each machine block contains a number of Run blocks each of which specify a family of benchmarks to run. Each Run block must have the following required attributes

	name: The name of the family of benchmarks, must be unique among all the other Run blocks on that system.

	nodes: An integer which specifies the base number of nodes to run the benchmark with.

	tasksPerNode: An integer that specifies the number of tasks to launch per node.

Each Run block may contain the following optional attributes

	threadsPerTask: An integer specifying the number of threads to allocate each task.

	timeLimit: An integer specifying the time limit in minutes to pass to the system scheduler when submitting the benchmark.

	args: containing any extra command line arguments to pass to GEOSX.

	autoPartition: Either On or Off, not specifying autoPartition is equivalent to autoPartition="Off". When auto partitioning is enabled the script will compute the number of x, y and z partitions such that the the resulting partition is close to a perfect cube as possible, ie with 27 tasks x = 3, y = 3, z = 3 and with 36 tasks x = 4, y = 3, z = 3. This is optimal when the domain itself is a cube, but will be suboptimal otherwise.

	strongScaling: A list of unique integers specifying the factors to scale the number of nodes by. If N number are provided then N benchmarks are run and benchmark i uses nodes * strongScaling[i] nodes. Not specifying strongScaling is equivalent to strongScaling="{ 1 }".

Looking at the example Benchmarks block above on Lassen one benchmark from the OMP_CUDA family will be run with one node and one task. Four benchmarks from the MPI_OMP_CUDA family will be run with one, two, four and eight nodes and four tasks per node.

Note that specifying a time limit for each benchmark family can greatly decrease the time spent waiting in the scheduler’s queue. A good rule of thumb is that the time limit should be twice as long as it takes to run the longest benchmark in the family.

Adding a benchmark problem

To add a new group of benchmarks you need to create an XML input file describing the problem to be run. Then you need to add the Benchmarks block described above which specifies the specific benchmarks. Finally add a symbolic link to the input file in benchmarks and run the benchmarks to make sure everything works as expected.

Viewing the results

Each night the NightlyTests [https://github.com/GEOSX/NightlyTests] repository runs the benchmarks on both Quartz and Lassen, the timingFiles directory contains all of the resulting caliper output files. If you’re on LC then these files are duplicated at /usr/gapps/GEOSX/timingFiles/ and if you have LC access you can view them in Spot [https://lc.llnl.gov/spot2/?sf=/usr/gapps/GEOSX/timingFiles]. You can also open these files in Python and analyse them (See Opening Spot caliper files in Python).

If you want to run the benchmarks on your local branch and compare the results with develop you can use the benchmarks/compareBenchmarks.py python script. This requires that you run the benchmarks on your branch and on develop. It will print out a table with the initialization time speed up and run time speed up, so a run speed up of of 2x means your branch runs twice as fast as develop where as a initialization speed up of 0.5x means the set up takes twice as long.

Note

A future version of the script will be able to pull timing results straight from the .cali files so that if you have access to the NightlyTests [https://github.com/GEOSX/NightlyTests] timing files you won’t need to run the benchmarks on develop. Furthermore it will be able to provide more detailed information than just initialization and run times.

Basic profiling with CALIPER

GEOSX is equipped with Caliper [https://github.com/LLNL/Caliper] timers.
We integrate Caliper into GEOSX by marking source-code sections of interest such as computational kernels or initialization steps.
Caliper is included in the GEOSX TPL library and is built by adding the following cmake configuration to a host-config file.

option(ENABLE_CALIPER "Enables CALIPER" On)

GEOSX/Caliper Annotation Macros

The following macros may be used to annotate GEOSX:

	GEOSX_MARK_SCOPE(name) - Marks a scope with the given name.

	GEOSX_MARK_FUNCTION - Marks a function with the name of the function. The name includes the namespace the function is in but not any of the template arguments or parameters. Therefore overloaded function all show up as one entry. If you would like to mark up a specific overload use GEOSX_MARK_SCOPE with a unique name.

	GEOSX_MARK_BEGIN(name) - Marks the beginning of a user defined code region.

	GEOSX_MARK_END(name) - Marks the end of user defined code region.

Configuring Caliper

Caliper configuration is done by specifying a string to initialize Caliper with via the
-t option. A few options are listed below but we refer the reader to
Caliper Config [https://software.llnl.gov/Caliper/BuiltinConfigurations.html] for the full Caliper tutorial.

	-t runtime-report,max_column_width=200 Will make Caliper print aggregated timing information to standard out, with a column width large enought that it doesn’t truncate most function names.

	-t runtime-report,max_column_width=200,profile.cuda Does the same as the above, but also instruments CUDA API calls. This is only an option when building with CUDA.

	-t runtime-report,aggregate_across_ranks=false Will make Caliper write per rank timing information to standard out. This isn’t useful when using more than one rank but it does provide more information for single rank runs.

	-t spot() Will make Caliper output a .cali timing file that can be viewed in the Spot web server.

Using Adiak

Adiak is a library that allows the addition of meta-data to the Caliper Spot output, it is enabled with Caliper.
This meta-data allows you to easily slice and dice the timings available in the Spot web server. To export meta-data
use the adiak::value function.

See Adiak API [https://github.com/LLNL/Adiak/blob/f27ba674b88c2435e5e3245acbda9fc0a57bf88f/docs/Adiak%20API.docx]
for the full Adiak documentation.

Using Spot

To use Spot you will need an LC account and a directory full of .cali files you would like to analyse.
Point your browser to Spot [https://lc.llnl.gov/spot2] and open up the directory containing the timing files.

Opening Spot caliper files in Python

An example Python program for analyzing Spot Caliper files in Python is provided below. Note that it requires pandas and hatchet both of which can be installed with a package manager. In addition it requires that cali-query is in the PATH variable, this is built with Caliper so we can just point it into the TPLs.

import sys
import subprocess
import json
import os

import pandas as pd
from IPython.display import display, HTML

Import hatchet, on LC this can be done by adding hatchet to PYTHONPATH
sys.path.append('/usr/gapps/spot/live/hatchet')
import hatchet as ht

Add cali-query to PATH
cali_query_path = "/usr/gapps/GEOSX/thirdPartyLibs/2020-06-12/install-quartz-gcc@8.1.0-release/caliper/bin"
os.environ["PATH"] += os.pathsep + cali_query_path

CALI_FILES = [
{ "cali_file": "/usr/gapps/GEOSX/timingFiles/200612-04342891243.cali", "metric_name": "avg#inclusive#sum#time.duration"},
{ "cali_file": "/usr/gapps/GEOSX/timingFiles/200611-044740108300.cali", "metric_name": "avg#inclusive#sum#time.duration"},
]

grouping_attribute = "prop:nested"
default_metric = "avg#inclusive#sum#time.duration"
query = "select %s,sum(%s) group by %s format json-split" % (grouping_attribute, default_metric, grouping_attribute)

gf1 = ht.GraphFrame.from_caliper(CALI_FILES[0]['cali_file'], query)
gf2 = ht.GraphFrame.from_caliper(CALI_FILES[1]['cali_file'], query)

Print the tree representation using the default metric
Also print the resulting dataframe with metadata
print(gf1.tree(color=True, metric="sum#"+default_metric))
display(HTML(gf1.dataframe.to_html()))

Print the tree representation using the default metric
Also print the resulting dataframe with metadata
print(gf2.tree(color=True, metric="sum#"+default_metric))
display(HTML(gf2.dataframe.to_html()))

Compute the speedup between the first two cali files (exlusive and inclusive metrics only)
gf3 = (gf1 - gf2) / gf2
print(gf3.tree(color=True, metric="sum#"+default_metric))

Compute the difference between the first two cali files (exclusive and inclusive metrics only)
Print the resulting tree
gf4 = gf1 - gf2
print(gf4.tree(color=True, metric="sum#"+default_metric))

Compute the sum of the first two cali files (exclusive and inclusive metrics only)
Print the resulting tree
gf5 = gf1 + gf2
print(gf5.tree(color=True, metric="sum#"+default_metric))

[Unsupported] Developing inside Docker with precompiled TPL binaries

For development purposes, you may want to use the publicly available docker images or the OSX tarball instead of compiling them yourself.
While this is possible and this page will help you in through this journey, please note that this is not officially supported by the GEOSX team that reserves the right to modify its workflow or delete elements on which you may have build your own workflow.

There are multiple options to use the exposed docker images.

	A lot of IDE now provide remote development modes (e.g. CLion [https://www.jetbrains.com/help/clion/remote-projects-support.html], VS Code [https://code.visualstudio.com/docs/remote/remote-overview], Eclipse Che [https://www.eclipse.org/che/] and surely others).
Depending on your choice, please read their documentation carefully so you can add their own requirements on top the TPL images that are already available.

	Another option is to develop directly inside the container (i.e. not remotely).
Install your favorite development inside the image (be mindful of X display issues), connect to the running container and start hacking!

You must first install docker [https://docs.docker.com/get-docker/] on your machine.
Note that there now exists a rootless install [https://docs.docker.com/engine/security/rootless/] that may help you in case you are not granted extended permissions on your environment.
Also be aware that nvidia provides its own nvidia-docker [https://github.com/NVIDIA/nvidia-docker] that grants access to GPUs.

Once you’ve installed docker, you must select from our docker registry [https://hub.docker.com/u/geosx/] the target environment you want to develop into.

	You can select the distribution you are comfortable with, or you may want to mimic (to some extend) a production environment.

	Our containers are built with a relative CPU agnosticism (still x86_64), so you should be fine.

	Our GPU containers are built for a dedicated compute capability that may not match yours. Please dive into our configuration files and refer to the official nvidia page [https://developer.nvidia.com/cuda-gpus] to see what matches your needs.

	There may be risks of kernel inconsistency between the container and the host, but if you have relatively modern systems (and/or if you do not interact directly with the kernel like perf) it should be fine.

	You may have noticed that our docker containers are tagged like 155-669. Please refer to _Continuous_Integration_process for further information.

Now that you’ve selected your target environment, you must be aware that just running a TPL docker image is not enough to let you develop.
You’ll have to add extra tools.

The following example is for our ubuntu flavors.
You’ll notice the arguments IMG, VERSION, ORG.
While surely overkill for most cases, if you develop in GEOSX on a regular basis you’ll appreciate being able to switch containers easily.
For example, simply create the image remote-dev-ubuntu18.04-gcc8:156-642 by running

export VERSION=156-642
export IMG=ubuntu18.04-gcc8
export REMOTE_DEV_IMG=remote-dev-${IMG}
docker build --build-arg ORG=geosx --build-arg IMG=${IMG} --build-arg VERSION=${VERSION} -t ${REMOTE_DEV_IMG}:${VERSION} -f /path/to/Dockerfile .

And the Dockerfile is the following (comments are embedded)

Define you base image for build arguments
ARG IMG
ARG VERSION
ARG ORG
FROM ${ORG}/${IMG}:${VERSION}

Uninstall some packages, install others.
I use those for clion, but VS code would have different requirements.
Use yum's equivalent commands for centos/red-hat images.
Feel free to adapt.
RUN apt-get update
RUN apt-get remove --purge -y texlive graphviz
RUN apt-get install --no-install-recommends -y openssh-server gdb rsync gdbserver ninja-build ca-certificates

You will need cmake to build GEOSX.
ARG CMAKE_VERSION=3.16.8
RUN apt-get install -y --no-install-recommends curl ca-certificates && \
 curl -fsSL https://cmake.org/files/v${CMAKE_VERSION%.[0-9]*}/cmake-${CMAKE_VERSION}-Linux-x86_64.tar.gz | tar --directory=/usr/local --strip-components=1 -xzf - && \
 apt-get purge --auto-remove -y curl ca-certificates
RUN apt-get autoremove -y

You'll most likely need ssh/sshd too (e.g. CLion and VSCode allow remote dev through ssh).
This is the part where I configure sshd.

I'm developing in a version of docker that requires root.
So by default I use root. Feel free to adapt.
RUN echo "PermitRootLogin prohibit-password" >> /etc/ssh/sshd_config
RUN echo "PermitUserEnvironment yes" >> /etc/ssh/sshd_config
RUN mkdir -p -m 700 /root/.ssh
Put your own public key here!
RUN echo "ssh-rsa AAAAB3NzaC1yc2 ... 0zYY+1eKEinP5Q== somebody@somewhere.com" > /root/.ssh/authorized_keys

Some important variables are provided through the environment.
You need to explicitly tell sshd to forward them.
Using these variables and not paths will let you adapt to different installation locations in different containers.
Feel free to adapt to your own convenience.
RUN touch /root/.ssh/environment &&/
 echo "CC=${CC}" >> /root/.ssh/environment &&\
 echo "CXX=${CXX}" >> /root/.ssh/environment &&\
 echo "MPICC=${MPICC}" >> /root/.ssh/environment &&\
 echo "MPICXX=${MPICXX}" >> /root/.ssh/environment &&\
 echo "MPIEXEC=${MPIEXEC}" >> /root/.ssh/environment &&\
 echo "OMPI_CC=${CC}" >> /root/.ssh/environment &&\
 echo "OMPI_CXX=${CXX}" >> /root/.ssh/environment &&\
 echo "GEOSX_TPL_DIR=${GEOSX_TPL_DIR}" >> /root/.ssh/environment

This is the default ssh port that we do not need to modify.
EXPOSE 22
sshd's option -D prevents it from detaching and becoming a daemon.
Otherwise, sshd would not block the process and `docker run` would quit.
RUN mkdir -p /run/sshd
ENTRYPOINT ["/usr/sbin/sshd", "-D"]

Now that you’ve created the image, you must instantiate it as a container.
I like to do

docker run --cap-add=ALL -d --name ${REMOTE_DEV_IMG}-${VERSION} -p 64000:22 ${REMOTE_DEV_IMG}:${VERSION}

that creates the container remote-dev-ubuntu18.04-gcc8-156-642, running instance of remote-dev-ubuntu18.04-gcc8:156-642.

	Note that you’ll have to access your remote development instance though port 64000 (forwarded to standard port 22 by docker).

	Please be aware of how to retrieve your code back: you may want to bind mount volumes and store you code there (-v/--volume= options of docker run [https://docs.docker.com/engine/reference/run/]).

	Change docker to nvidia-docker and add the --gpus=... option for GPUs.

You can stop and restart your container with

docker stop ${REMOTE_DEV_IMG}-${VERSION}
docker start ${REMOTE_DEV_IMG}-${VERSION}

Now hack.

Code Components

The main code components are described here.

	Data Repository
	MappedVector

	Group

	Wrapper

	ObjectCatalog

	XML Input
	GEOSX data structure overview

	Example: adding a new relative permeability model

	Input Schema Generation

	Working with data in GEOSX
	Working with data on the Mesh objects

	Mesh Hierarchy
	DomainPartition

	MeshBody

	MeshLevel

	Topological Mesh Objects

	DoF Manager
	Brief description

	Methods

	Example

	Real mesh and patterns

	LvArray
	Use in GEOSX

	LvArray documentation

	Kernel interface
	Finite Element Method Kernel Interface

	Adding a new Physics Solver
	LaplaceFEM overview

	Start doing your own Physic solver

	Last steps

Data Repository

The GEOSX “Data Repository” is intended to provide the building blocks for the code structure within GEOSX.
The “Data Repository” provides a general capability to store arbitrary data and objects in a hierarchical
structure, similar to a standard file system.

The components/classes of the data structure that a developer will require some knowledge of are:

	MappedVector
	Description

	Element access

	API documentation

	Group
	Implementation Details

	Interface Functions

	Wrapper
	Description

	Attributes

	Default Values

	API documentation

	ObjectCatalog
	Implementation Details

	Usage

MappedVector

A superposition of a contiguous and an associative container.

Description

The container stores pointers to objects (which are themselves heap-allocated).
Each element may be optionally owned by the container, in which case it will be deleted upon removal or container destruction.
The pointers are stored in a contiguous memory allocation, and thus are accessible through an integral index lookup.
In addition, there is a map that provides a key lookup capability to the container if that is the preferred interface.

The container template has four type parameters:

	T is the object type pointed to by container entries

	T_PTR is a pointer-to-T type which must be either T * (default) or std::unique_ptr<T>

	KEY_TYPE is the type of key used in associative lookup

	INDEX_TYPE is the type used in index lookup

Element access

MappedVector provides three main types of data access using [] operator:

	Index lookup is the fastest way of element random access if the ordinal index is known.

	Key lookup is similar to key lookup of any associative container and incurs similar cost.

	KeyIndex lookup uses a special type, KeyIndex, that contains both a key and an index.
Initially the index is unknown and the key is used for the lookup.
The KeyIndex is modified during lookup, storing the index located.
If the user persists the KeyIndex object, they may reuse it in subsequent accesses and get the benefit of direct index access.

In addition to these, an STL-conformant iterator interface is available via begin() and end() methods.
The type iterated over is a key-pointer pair (provided as value_type alias).

API documentation

MappedVector

Group

dataRepository::Group serves as a base class for most objects in GEOSX.
In GEOSX, the Group may be thought of as an analogy to the file folder in a hierachical filesystem-like structure.
As such, a Group is used as a container class that holds a collection of other Groups, or sub-Groups,
a pointer to the parent of the Group, and a collection of Wrappers.
The Group also defines a general capability to create and traverse/access the objects in the hierarchy.
The Wrappers contained in a Group may be of arbitrary type, but in the case of an LvArray object, a Group
size and capacity may be translated down to array, thereby keeping a collection of wrapped Array objects
that will resize in unison with the Group.
Each group has a string “name” that defines its key in the parent Group.
This key string must be unique in the scope of the parent Group.

Implementation Details

Some noteworthy implementation details inside the declaration of dataRepository::Group are:

/// The default key type for entries in the hierarchy.
using keyType = string;

/// The default index type for entries the hierarchy.
using indexType = localIndex;

	In the GEOSX repository, the keyType is specified to be a string for all collection objects,
while the indexType is specified to be a localIndex.
The types are set in the common/DataTypes.hpp file, but are typically a string and a
std::ptrdiff_t respectively.

 /// The template specialization of MappedVector to use for the collection of sub-Group objects.
 using subGroupMap = MappedVector< Group, Group *, keyType, indexType >;

 /// The template specialization of MappedVector to use for the collection wrappers objects.
 using wrapperMap = MappedVector< WrapperBase, WrapperBase *, keyType, indexType >;

	The subGroupMap and wrapperMap aliases represent the type of container that the collection of
sub-Group s and Wrapper s are stored in for each Group.
These container types are template specializations of the MappedVector class, which store a pointer to
a type, and provides functionality for a key or index based lookup.
More details may be found in the documentation for MappedVector.

 /// The parent Group that contains "this" Group in its "sub-Group" collection.
 Group * m_parent = nullptr;

 /// Specification that this group will have the same m_size as m_parent.
 integer m_sizedFromParent;

 /// The container for the collection of all wrappers continued in "this" Group.
 wrapperMap m_wrappers;

 /// The container for the collection of all sub-groups contained in "this" Group.
 subGroupMap m_subGroups;

 /// The size/length of this Group...and all Wrapper<> that are are specified to have the same size as their
 /// owning group.
 indexType m_size;

 /// The capacity for wrappers in this group...and all Wrapper<> that are specified to have the same size as their
 /// owning group.
 indexType m_capacity;

 /// The name/key of this Group in its parent collection of sub-Groups.
 string m_name;

 /// Verbosity flag for group logs
 integer m_logLevel;

	The m_parent member is a pointer to the Group that contains the current Group as part of its
collection of sub-Group s.

Warning

The existence of the non-const m_parent gives the current Group access to alter the parent Group.
Special care should be taken to avoid using this access whenever possible.
Remember…with great power comes great responsibility.

	The m_wrappers member is the collection of Wrappers contained in the current Group.

	The m_subGroups member is the collection of Group s contained in the current Group.

	The m_size and m_capacity members are used to set the size and capacity of any objects contained
in the m_wrappers collection that have been specified to be set by their owning Group.
This is typically only useful for Array types and is implemented within the WrapperBase object.

	The m_name member is the key of this Group in the collection of m_parent->m_subGroups.
This key is unique in the scope of m_parent, so some is required when constructing the hierarchy.

Interface Functions

The public interface for dataRepository::Group provides functionality for constructing a hierarchy,
and traversing that hierarchy, as well as accessing the contents of objects stored in the Wrapper
containers stored within a Group.

Adding New Groups

To add new sub-Group s there are several registerGroup functions that add a new Group under
the calling Group scope.
A listing of these functions is provided:

 /**
 * @name Sub-group registration interface
 */
 ///@{

 /**
 * @brief Register a new Group as a sub-group of current Group.
 *
 * @tparam T The type of the Group to add/register. This should be a type that derives from Group.
 * @param[in] name The name of the group to use as a string key.
 * @param[in] newObject A unique_ptr to the object that is being registered.
 * @return A pointer to the newly registered Group.
 *
 * Registers a Group or class derived from Group as a subgroup of this Group and takes ownership.
 */
 template< typename T = Group >
 T & registerGroup(string const & name, std::unique_ptr< T > newObject)
 {
 newObject->m_parent = this;
 return dynamicCast< T & >(*m_subGroups.insert(name, newObject.release(), true));
 }

 /**
 * @brief @copybrief registerGroup(string const &,std::unique_ptr<T>)
 *
 * @tparam T The type of the Group to add/register. This should be a type that derives from Group.
 * @param[in] name The name of the group to use as a string key.
 * @param[in] newObject A unique_ptr to the object that is being registered.
 * @return A pointer to the newly registered Group.
 *
 * Registers a Group or class derived from Group as a subgroup of this Group but does not take ownership.
 */
 template< typename T = Group >
 T & registerGroup(string const & name, T * newObject)
 { return dynamicCast< T & >(*m_subGroups.insert(name, newObject, false)); }

 /**
 * @brief @copybrief registerGroup(string const &,std::unique_ptr<T>)
 *
 * @tparam T The type of the Group to add/register. This should be a type that derives from Group.
 * @param[in] name The name of the group to use as a string key.
 * @return A pointer to the newly registered Group.
 *
 * Creates and registers a Group or class derived from Group as a subgroup of this Group.
 */
 template< typename T = Group >
 T & registerGroup(string const & name)
 { return registerGroup< T >(name, std::move(std::make_unique< T >(name, this))); }

 /**
 * @brief @copybrief registerGroup(string const &,std::unique_ptr<T>)
 *
 * @tparam T The type of the Group to add/register. This should be a type that derives from Group.
 * @param keyIndex A KeyIndexT object that will be used to specify the name of
 * the new group. The index of the KeyIndex will also be set.
 * @return A pointer to the newly registered Group, or @c nullptr if no group was registered.
 *
 * Creates and registers a Group or class derived from Group as a subgroup of this Group.
 */
 template< typename T = Group >
 T & registerGroup(subGroupMap::KeyIndex const & keyIndex)
 {
 T & rval = registerGroup< T >(keyIndex.key(), std::move(std::make_unique< T >(keyIndex.key(), this)));
 keyIndex.setIndex(m_subGroups.getIndex(keyIndex.key()));
 return rval;
 }

 /**
 * @brief @copybrief registerGroup(string const &,std::unique_ptr<T>)
 *
 * @tparam T The type of the Group to add/register. This should be a type that derives from Group.
 * @tparam TBASE The type whose type catalog will be used to look up the new sub-group type
 * @param[in] name The name of the group to use as a string key.
 * @param[in] catalogName The catalog name of the new type.
 * @return A pointer to the newly registered Group.
 *
 * Creates and registers a Group or class derived from Group as a subgroup of this Group.
 */
 template< typename T = Group, typename TBASE = Group >
 T & registerGroup(string const & name, string const & catalogName)
 {
 std::unique_ptr< TBASE > newGroup = TBASE::CatalogInterface::Factory(catalogName, name, this);
 return registerGroup< T >(name, std::move(newGroup));
 }

 /**
 * @brief Removes a child group from this group.
 * @param name the name of the child group to remove from this group.
 */
 void deregisterGroup(string const & name);

 /**
 * @brief Creates a new sub-Group using the ObjectCatalog functionality.
 * @param[in] childKey The name of the new object type's key in the
 * ObjectCatalog.
 * @param[in] childName The name of the new object in the collection of
 * sub-Groups.
 * @return A pointer to the new Group created by this function.
 */
 virtual Group * createChild(string const & childKey, string const & childName);

 ///@}

These functions all take in a name for the new Group, which will be used as the key when trying to
access the Group in the future.
Some variants create a new Group, while some variants take in an existing Group .
The template argument is to specify the actaul type of the Group as it it is most likely a type that
derives from Group that is we would like to create in the repository.
Please see the doxygen documentation for a detailed description of each option.

Getting Groups

The collection of functions to retrieve a Group and their descriptions are taken from source and shown
here:

 /**
 * @name Sub-group retrieval methods.
 *
 * This collection of functions are used to get a sub-Group from the current group. Various methods
 * for performing the lookup are provided (localIndex, string, KeyIndex), and each have their
 * advantages and costs. The lowest cost lookup is the "localIndex" lookup. The KeyIndex lookup
 * will add a cost for checking to make sure the index stored in KeyIndex is valid (a string
 * compare, and a hash if it is incorrect). The string lookup is the full cost hash lookup every
 * time that it is called.
 *
 * The template parameter specifies the "type" that the caller expects to lookup, and thus attempts
 * to cast the pointer that is stored in m_subGroups to a pointer of the desired type. If this
 * cast fails, then a @p nullptr is returned. If no template parameter is specified then a default
 * type of Group is assumed.
 */
 ///@{

 /**
 * @brief Return a pointer to a sub-group of the current Group.
 * @tparam T The type of subgroup.
 * @tparam KEY The type of the lookup.
 * @param key The key used to perform the lookup.
 * @return A pointer to @p T that refers to the sub-group, if the Group does not exist or it
 * has an incompatible type a @c nullptr is returned.
 */
 template< typename T = Group, typename KEY = void >
 T * getGroupPointer(KEY const & key)
 { return dynamicCast< T * >(m_subGroups[key]); }

 /**
 * @copydoc getGroupPointer(KEY const &)
 */
 template< typename T = Group, typename KEY = void >
 T const * getGroupPointer(KEY const & key) const
 { return dynamicCast< T const * >(m_subGroups[key]); }

 /**
 * @brief Return a reference to a sub-group of the current Group.
 * @tparam T The type of subgroup.
 * @tparam KEY The type of the lookup.
 * @param key The key used to perform the lookup.
 * @return A reference to @p T that refers to the sub-group.
 * @throw std::domain_error If the Group does not exist is thrown.
 */
 template< typename T = Group, typename KEY = void >
 T & getGroup(KEY const & key)
 {
 Group * const child = m_subGroups[key];
 GEOSX_THROW_IF(child == nullptr, "Group " << getPath() << " doesn't have a child " << key, std::domain_error);
 return dynamicCast< T & >(*child);
 }

 /**
 * @copydoc getGroup(KEY const &)
 */
 template< typename T = Group, typename KEY = void >
 T const & getGroup(KEY const & key) const
 {
 Group const * const child = m_subGroups[key];
 GEOSX_THROW_IF(child == nullptr, "Group " << getPath() << " doesn't have a child " << key, std::domain_error);
 return dynamicCast< T const & >(*child);
 }

 /**
 * @brief Retrieve a group from the hierarchy using a path.
 * @tparam T type of subgroup
 * @param[in] path a unix-style string (absolute, relative paths valid)
 * to lookup the Group to return. Absolute paths search
 * from the tree root, while relative - from current group.
 * @return A reference to @p T that refers to the sub-group.
 * @throw std::domain_error If the Group doesn't exist.
 */
 template< typename T = Group >
 T & getGroupByPath(string const & path)
 { return dynamicCast< T & >(const_cast< Group & >(getBaseGroupByPath(path))); }

 /**
 * @copydoc getGroupByPath(string const &)
 */
 template< typename T = Group >
 T const & getGroupByPath(string const & path) const
 { return dynamicCast< T const & >(getBaseGroupByPath(path)); }

Register Wrappers

 /**
 * @name Wrapper registration interface
 */
 ///@{

 /**
 * @brief Create and register a Wrapper around a new object.
 * @tparam T The type of the object allocated.
 * @tparam TBASE The type of the object that the Wrapper holds.
 * @param[in] name the name of the wrapper to use as a string key
 * @param[out] rkey a pointer to a index type that will be filled with the new
 * Wrapper index in this Group
 * @return A reference to the newly registered/created Wrapper
 */
 template< typename T, typename TBASE=T >
 Wrapper< TBASE > & registerWrapper(string const & name,
 wrapperMap::KeyIndex::index_type * const rkey = nullptr);

 /**
 * @copybrief registerWrapper(string const &,wrapperMap::KeyIndex::index_type * const)
 * @tparam T the type of the wrapped object
 * @tparam TBASE the base type to cast the returned wrapper to
 * @param[in] viewKey The KeyIndex that contains the name of the new Wrapper.
 * @return A reference to the newly registered/created Wrapper
 */
 template< typename T, typename TBASE=T >
 Wrapper< TBASE > & registerWrapper(Group::wrapperMap::KeyIndex const & viewKey);

 /**
 * @brief Register a Wrapper around a given object and take ownership.
 * @tparam T the type of the wrapped object
 * @param[in] name the name of the wrapper to use as a string key
 * @param[in] newObject an owning pointer to the object that is being registered
 * @return A reference to the newly registered/created Wrapper
 */
 template< typename T >
 Wrapper< T > & registerWrapper(string const & name, std::unique_ptr< T > newObject);

 /**
 * @brief Register a Wrapper around an existing object, does not take ownership of the object.
 * @tparam T the type of the wrapped object
 * @param[in] name the name of the wrapper to use as a string key
 * @param[in] newObject a pointer to the object that is being registered
 * @return A reference to the newly registered/created Wrapper
 */
 template< typename T >
 Wrapper< T > & registerWrapper(string const & name,
 T * newObject);

 /**
 * @brief Register and take ownership of an existing Wrapper.
 * @param name The name of the wrapper to use as a string key
 * @param wrapper A pointer to the an existing wrapper.
 * @return An un-typed pointer to the newly registered/created wrapper
 */
 WrapperBase & registerWrapper(string const & name,
 std::unique_ptr< WrapperBase > wrapper);

 /**
 * @brief Removes a Wrapper from this group.
 * @param name the name of the Wrapper to remove from this group.
 */
 void deregisterWrapper(string const & name);

 ///@}

Getting Wrappers/Wrapped Objects

 /**
 * @name Untyped wrapper retrieval methods
 *
 * These functions query the collection of Wrapper objects for the given
 * index/name/KeyIndex and returns a WrapperBase pointer to the object if
 * it exists. If it is not found, nullptr is returned.
 */
 ///@{

 /**
 * @brief Return a reference to a WrapperBase stored in this group.
 * @tparam KEY The lookup type.
 * @param key The value used to lookup the wrapper.
 * @return A reference to the WrapperBase that resulted from the lookup.
 * @throw std::domain_error if the wrapper doesn't exist.
 */
 template< typename KEY >
 WrapperBase const & getWrapperBase(KEY const & key) const
 {
 WrapperBase const * const wrapper = m_wrappers[key];
 GEOSX_THROW_IF(wrapper == nullptr, "Group " << getPath() << " doesn't have a child " << key, std::domain_error);
 return *wrapper;
 }

 /**
 * @copydoc getWrapperBase(KEY const &) const
 */
 template< typename KEY >
 WrapperBase & getWrapperBase(KEY const & key)
 {
 WrapperBase * const wrapper = m_wrappers[key];
 GEOSX_THROW_IF(wrapper == nullptr, "Group " << getPath() << " doesn't have a child " << key, std::domain_error);
 return *wrapper;
 }

 /**
 * @brief
 * @param name
 * @return
 */
 indexType getWrapperIndex(string const & name) const
 { return m_wrappers.getIndex(name); }

 /**
 * @brief Get access to the internal wrapper storage.
 * @return a reference to wrapper map
 */
 wrapperMap const & wrappers() const
 { return m_wrappers; }

 /**
 * @copydoc wrappers() const
 */
 wrapperMap & wrappers()
 { return m_wrappers; }

 /**
 * @brief Return the number of wrappers.
 * @return The number of wrappers.
 */
 indexType numWrappers() const
 { return m_wrappers.size(); }

 ///@}

 /**
 * @name Typed wrapper retrieval methods
 *
 * These functions query the collection of Wrapper objects for the given
 * index/key and returns a Wrapper<T> pointer to the object if
 * it exists. The template parameter @p T is used to perform a cast
 * on the WrapperBase pointer that is returned by the lookup, into
 * a Wrapper<T> pointer. If the wrapper is not found, or the
 * WrapperBase pointer cannot be cast to a Wrapper<T> pointer, then nullptr
 * is returned.
 */
 ///@{

 /**
 * @brief Check if a wrapper exists
 * @tparam LOOKUP_TYPE the type of key used to perform the lookup.
 * @param[in] lookup a lookup value used to search the collection of wrappers
 * @return @p true if wrapper exists (regardless of type), @p false otherwise
 */
 template< typename LOOKUP_TYPE >
 bool hasWrapper(LOOKUP_TYPE const & lookup) const
 { return m_wrappers[lookup] != nullptr; }

 /**
 * @brief Retrieve a Wrapper stored in this group.
 * @tparam T the object type contained in the Wrapper
 * @tparam LOOKUP_TYPE the type of key used to perform the lookup
 * @param[in] index a lookup value used to search the collection of wrappers
 * @return A reference to the Wrapper<T> that resulted from the lookup.
 * @throw std::domain_error if the Wrapper doesn't exist.
 */
 template< typename T, typename LOOKUP_TYPE >
 Wrapper< T > const & getWrapper(LOOKUP_TYPE const & index) const
 {
 WrapperBase const & wrapper = getWrapperBase(index);
 return dynamicCast< Wrapper< T > const & >(wrapper);
 }

 /**
 * @copydoc getWrapper(LOOKUP_TYPE const &) const
 */
 template< typename T, typename LOOKUP_TYPE >
 Wrapper< T > & getWrapper(LOOKUP_TYPE const & index)
 {
 WrapperBase & wrapper = getWrapperBase(index);
 return dynamicCast< Wrapper< T > & >(wrapper);
 }

 /**
 * @brief Retrieve a Wrapper stored in this group.
 * @tparam T the object type contained in the Wrapper
 * @tparam LOOKUP_TYPE the type of key used to perform the lookup
 * @param[in] index a lookup value used to search the collection of wrappers
 * @return A pointer to the Wrapper<T> that resulted from the lookup, if the Wrapper
 * doesn't exist or has a different type a @c nullptr is returned.
 */
 template< typename T, typename LOOKUP_TYPE >
 Wrapper< T > const * getWrapperPointer(LOOKUP_TYPE const & index) const
 { return dynamicCast< Wrapper< T > const * >(m_wrappers[index]); }

 /**
 * @copydoc getWrapperPointer(LOOKUP_TYPE const &) const
 */
 template< typename T, typename LOOKUP_TYPE >
 Wrapper< T > * getWrapperPointer(LOOKUP_TYPE const & index)
 { return dynamicCast< Wrapper< T > * >(m_wrappers[index]); }

 ///@}

 /**
 * @name Wrapper data access methods.
 *
 * These functions can be used to get referece/pointer access to the data
 * stored by wrappers in this group. They are essentially just shortcuts for
 * @p Group::getWrapper() and @p Wrapper<T>::getReference().
 * An additional template parameter can be provided to cast the return pointer
 * or reference to a base class pointer or reference (e.g. Array to ArrayView).
 */
 ///@{

 /**
 * @brief Look up a wrapper and get reference to wrapped object.
 * @tparam T return value type
 * @tparam WRAPPEDTYPE wrapped value type (by default, same as return)
 * @tparam LOOKUP_TYPE type of value used for wrapper lookup
 * @param lookup value for wrapper lookup
 * @return reference to @p T
 * @throw A std::domain_error if the Wrapper does not exist.
 */
 template< typename T, typename LOOKUP_TYPE >
 GEOSX_DECLTYPE_AUTO_RETURN
 getReference(LOOKUP_TYPE const & lookup) const
 { return getWrapper< T >(lookup).reference(); }

 /**
 * @copydoc getReference(LOOKUP_TYPE const &) const
 */
 template< typename T, typename LOOKUP_TYPE >
 T & getReference(LOOKUP_TYPE const & lookup)
 { return getWrapper< T >(lookup).reference(); }

Looping Interface

 /**
 * @name Functor-based subgroup iteration
 *
 * These functions loop over sub-groups and executes a functor that uses the sub-group as an
 * argument. The functor is only executed if the group can be cast to a certain type specified
 * by the @p ROUPTYPE/S pack. The variadic list consisting of @p GROUPTYPE/S will be used recursively
 * to check if the group is able to be cast to the one of these types. The first type in the
 * @p GROUPTYPE/S list will be used to execute the functor, and the next sub-group will be processed.
 */
 ///@{

 /**
 * @brief Apply the given functor to subgroups that can be casted to one of specified types.
 * @tparam GROUPTYPE the first type that will be used in the attempted casting of group.
 * @tparam GROUPTYPES a variadic list of types that will be used in the attempted casting of group.
 * @tparam LAMBDA the type of functor to call
 * @param[in] lambda the functor to call on subgroups
 */
 template< typename GROUPTYPE = Group, typename ... GROUPTYPES, typename LAMBDA >
 void forSubGroups(LAMBDA && lambda)
 {
 for(auto & subGroupIter : m_subGroups)
 {
 applyLambdaToContainer< GROUPTYPE, GROUPTYPES... >(*subGroupIter.second, [&](auto & castedSubGroup)
 {
 lambda(castedSubGroup);
 });
 }
 }

 /**
 * @copydoc forSubGroups(LAMBDA &&)
 */
 template< typename GROUPTYPE = Group, typename ... GROUPTYPES, typename LAMBDA >
 void forSubGroups(LAMBDA && lambda) const
 {
 for(auto const & subGroupIter : m_subGroups)
 {
 applyLambdaToContainer< GROUPTYPE, GROUPTYPES... >(*subGroupIter.second, [&](auto const & castedSubGroup)
 {
 lambda(castedSubGroup);
 });
 }
 }

 /**
 * @copybrief forSubGroups(LAMBDA &&)
 * @tparam GROUPTYPE the first type that will be used in the attempted casting of group.
 * @tparam GROUPTYPES a variadic list of types that will be used in the attempted casting of group.
 * @tparam LOOKUP_CONTAINER type of container of subgroup lookup keys (names or indices), must support range-based for
 * loop
 * @tparam LAMBDA type of functor callable with an index in lookup container and a reference to casted
 * subgroup
 * @param[in] subGroupKeys container with subgroup lookup keys (e.g. names or indices) to apply the functor to
 * @param[in] lambda the functor to call
 */
 template< typename GROUPTYPE = Group, typename ... GROUPTYPES, typename LOOKUP_CONTAINER, typename LAMBDA >
 void forSubGroups(LOOKUP_CONTAINER const & subGroupKeys, LAMBDA && lambda)
 {
 localIndex counter = 0;
 for(auto const & subgroup : subGroupKeys)
 {
 applyLambdaToContainer< GROUPTYPE, GROUPTYPES... >(getGroup(subgroup), [&](auto & castedSubGroup)
 {
 lambda(counter, castedSubGroup);
 });
 ++counter;
 }
 }

 /**
 * @copybrief forSubGroups(LAMBDA &&)
 * @tparam GROUPTYPE the first type that will be used in the attempted casting of group.
 * @tparam GROUPTYPES a variadic list of types that will be used in the attempted casting of group.
 * @tparam LOOKUP_CONTAINER type of container of subgroup lookup keys (names or indices), must support range-based for
 * loop
 * @tparam LAMBDA type of functor callable with an index in lookup container and a reference to casted
 * subgroup
 * @param[in] subGroupKeys container with subgroup lookup keys (e.g. names or indices) to apply the functor to
 * @param[in] lambda the functor to call
 */
 template< typename GROUPTYPE = Group, typename ... GROUPTYPES, typename LOOKUP_CONTAINER, typename LAMBDA >
 void forSubGroups(LOOKUP_CONTAINER const & subGroupKeys, LAMBDA && lambda) const
 {
 localIndex counter = 0;
 for(auto const & subgroup : subGroupKeys)
 {
 applyLambdaToContainer< GROUPTYPE, GROUPTYPES... >(getGroup(subgroup), [&](auto const & castedSubGroup)
 {
 lambda(counter, castedSubGroup);
 });
 ++counter;
 }
 }
 ///@}

 /**
 * @name Functor-based wrapper iteration
 *
 * These functions loop over the wrappers contained in this group, and executes a functor that
 * uses the Wrapper as an argument. The functor is only executed if the Wrapper can be casted to
 * a certain type specified by the @p TYPE/S pack. The variadic list consisting of
 * @p TYPE/S will be used recursively to check if the Wrapper is able to be casted to the
 * one of these types. The first type in the @p WRAPPERTYPE/S list will be used to execute the
 * functor, and the next Wrapper will be processed.
 */
 ///@{

 /**
 * @brief Apply the given functor to wrappers.
 * @tparam LAMBDA the type of functor to call
 * @param[in] lambda the functor to call
 */
 template< typename LAMBDA >
 void forWrappers(LAMBDA && lambda)
 {
 for(auto & wrapperIter : m_wrappers)
 {
 lambda(*wrapperIter.second);
 }
 }

 /**
 * @copydoc forWrappers(LAMBDA &&)
 */
 template< typename LAMBDA >
 void forWrappers(LAMBDA && lambda) const
 {
 for(auto const & wrapperIter : m_wrappers)
 {
 lambda(*wrapperIter.second);
 }
 }

 /**
 * @brief Apply the given functor to wrappers that can be cast to one of specified types.
 * @tparam TYPE the first type that will be used in the attempted casting of Wrapper
 * @tparam TYPES a variadic list of types that will be used in the attempted casting of Wrapper
 * @tparam LAMBDA the type of functor to call
 * @param[in] lambda the functor to call
 */
 template< typename TYPE, typename ... TYPES, typename LAMBDA >
 void forWrappers(LAMBDA && lambda)
 {
 for(auto & wrapperIter : m_wrappers)
 {
 applyLambdaToContainer< Wrapper< TYPE >, Wrapper< TYPES >... >(*wrapperIter.second,
 std::forward< LAMBDA >(lambda));
 }
 }

 /**
 * @brief Apply the given functor to wrappers that can be cast to one of specified types.
 * @tparam TYPE the first type that will be used in the attempted casting of Wrapper
 * @tparam TYPES a variadic list of types that will be used in the attempted casting of Wrapper
 * @tparam LAMBDA the type of functor to call
 * @param[in] lambda the functor to call
 */
 template< typename TYPE, typename ... TYPES, typename LAMBDA >
 void forWrappers(LAMBDA && lambda) const
 {
 for(auto const & wrapperIter : m_wrappers)
 {
 applyLambdaToContainer< Wrapper< TYPE >, Wrapper< TYPES >... >(*wrapperIter.second,
 std::forward< LAMBDA >(lambda));
 }
 }

 ///@}

Wrapper

This class encapsulates an object for storage in a Group and provides an interface for performing some common operations on that object.

Description

In the filesystem analogy, a Wrapper may be thought of as a file that stores actual data.
Each Wrapper belong to a single Group much like a file belongs to a filesystem directory.
In general, more than one wrapper in the tree may refer to the same wrapped object, just like symlinks in the file system may refer to the same file.
However, only one wrapper should be owning the data (see below).

In the XML input file, Wrapper correspond to attribute of an XML element representing the containing Group.
See XML Input for the relationship between XML input files and Data Repository.

Wrapper<T> is templated on the type of object it encapsulates, thus providing strong type safety when retrieving the objects.
As each Wrapper class instantiation will be a distinct type, Wrapper derives from a non-templated WrapperBase class that defines a common interface.
WrapperBase is the type of pointer that is stored in the MappedVector container within a Group.

WrapperBase provides several interface functions that delegate the work to the wrapped object if it supports the corresponding method signature.
This allows a collection of heterogeneous wrappers (i.e. over different types) to be treated uniformly.
Examples include:

	size()

	resize(newSize)

	reserve(newCapacity)

	capacity()

	move(LvArray::MemorySpace)

A Wrapper may be owning or non-owning, depending on how it’s constructed.
An owning Wrapper will typically either take a previously allocated object via std::unique_ptr<T> or no pointer at all and itself allocate the object.
It will delete the wrapped object when destroyed.
A non-owning Wrapper may be used to register with the data repository objects that are not directly heap-allocated, for example data members of other objects.
It will take a raw pointer as input and not delete the wrapped object when destroyed.

Attributes

Each instance of Wrapper has a set of attributes that control its function in the data repository.
These attributes are:

	InputFlags

A strongly typed enum that defines the relationship between the Wrapper and the XML input.
Possible values are:

	Value

	Explanation

	FALSE

	Data is not read from XML input (default).

	OPTIONAL

	Data is read from XML if an attribute matching Wrapper’s name is found.

	REQUIRED

	Data is read from XML and an error is raised if the attribute is not found.

Other values of InputFlags enumeration are reserved for Group objects.

Note

A runtime error will occur when attempting to read from XML a wrapped type T that does not have operator>> defined.

	RestartFlags

Enumeration that describes how the Wrapper interacts with restart files.

	Value

	Explanation

	NO_WRITE

	Data is not written into restart files.

	WRITE

	Data is written into restart files but not read upon restart.

	WRITE_AND_READ

	Data is both written and read upon restart (default).

Note

A runtime error will occur when attempting to write a wrapped type T that does not support buffer packing.
Therefore, when registering custom types (i.e. not a basic C++ type or an LvArray container) we recommend setting the flag to NO_WRITE.
A future documentation topic will explain how to extend buffer packing capabilities to custom user-defined types.

	PlotLevel

Enumeration that describes how the Wrapper interacts with plot (visualization) files.

	Value

	Explanation

	LEVEL_0

	Data always written to plot files.

	LEVEL_1

	Data written to plot when plotLevel>=1 is specified in input.

	LEVEL_2

	Data written to plot when plotLevel>=2 is specified in input.

	LEVEL_3

	Data written to plot when plotLevel>=3 is specified in input.

	NOPLOT

	Data never written to plot files.

Note

Only data stored in LvArray’s Array<T> containers is currently written into plot files.

Default Values

Wrapper supports setting a default value for its wrapped object.
The default value is used if a wrapper with InputFlags::OPTIONAL attribute does not match an attribute in the input file.
For LvArray containers it is also used as a default value for new elements upon resizing the container.

Default value can be set via one of the following two methods:

	setDefaultValue sets the default value but does not affect the actual value stored in the wrapper.

	setApplyDefaultValue sets the default value and applies it to the stored value.

Note

A runtime error is raised if a default value is not set for a wrapper with InputFlags::OPTIONAL attribute.

The type DefaultValue<T> is used to store the default value for the wrapper.

Todo

DefaultValue is actually not a type but an alias for another internal struct.
As such, it cannot currently be specialized for a user’s custom type.

API documentation

Wrapper

ObjectCatalog

The “ObjectCatalog” is a collection of classes that acts as a statically initialized factory.
It functions in a similar manner to a classic
factory method [https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Abstract_Factory],
except that there is no maintained list of derived objects that is required to create new objects.
In other words, there is no case-switch/if-elseif block to maintain.
Instead, the ObjectCatalog creates a “catalog” of derived objects using a std::unordered_map.
The “catalog” is filled when new types are declared through the declaration of a helper class named
CatalogEntryConstructor.

The key functional features of the “ObjectCatalog” concept may be summarized as:

	Anonymous addition of new objects to the catalog.
Because we use a statically initialized singleton map object to store the catalog,
no knowledge of the contents of the catalog is required in the main code.
Therefore if a proprietary/sensitive catalog entry is desired, it is only required
that the object definition be outside of the main repository and tied into the build
system through some non-specific mechanism (i.e. a link in the src/externalComponents
directory) and the catalog entry will be registered in the catalog without sharing
any knowledge of its existence.
Then a proprietary input file may refer to the object to call for its creation.

	Zero maintenance catalog.
Again, because we use a singleton map to store the catalog, there is no updating of
code required to add new entries into the catalog.
The only modifications required are the actual source files of the catalog entry, as
described in the Usage section below.

Implementation Details

There are three key objects that are used to provide the ObjectCatalog functionality.

CatalogInterface

The CatalogInterface class provides the base definitions and interface for the
ObjectCatalog concept.
It is templated on the common base class of all derived objects that are
creatable by the “ObjectCatalog”.
In addition, CatalogInterface is templated on a variadic parameter pack that
allows for an arbitrary constructor argument list as shown in the declaration shown below:

template< typename BASETYPE, typename ... ARGS >
class CatalogInterface

The CatalogInterface also defines the actual catalog type using the template arguments:

 typedef std::unordered_map< std::string,
 std::unique_ptr< CatalogInterface< BASETYPE, ARGS... > > > CatalogType;

The CatalogInterface::CatalogType is a std::unordered_map with a string “key” and a value
type that is a pointer to the CatalogInterface that represents a specific combination of
BASETYPE and constructor arguments.

After from setting up and populating the catalog, which will be described in the “Usage” section,
the only interface with the catalog will typically be when the Factory() method is called.
The definition of the method is given as:

 static std::unique_ptr< BASETYPE > factory(std::string const & objectTypeName,
 ARGS... args)
 {
 // We stop the simulation if the product is not found
 if(!hasKeyName(objectTypeName))
 {
 std::list< typename CatalogType::key_type > keys = getKeys();
 string const tmp = stringutilities::join(keys.cbegin(), keys.cend(), ",\n");

 string errorMsg = "Could not find keyword \"" + objectTypeName + "\" in this context. ";
 errorMsg += "Please be sure that all your keywords are properly spelled or that input file parameters have not changed.\n";
 errorMsg += "All available keys are: [\n" + tmp + "\n]";
 GEOSX_ERROR(errorMsg);
 }

 // We also stop the simulation if the builder is not here.
 CatalogInterface< BASETYPE, ARGS... > const * builder = getCatalog().at(objectTypeName).get();
 if(builder == nullptr)
 {
 const string errorMsg = "\"" + objectTypeName + "\" could be found. But the builder is invalid.\n";
 GEOSX_ERROR(errorMsg);
 }

 return builder->allocate(args ...);
 }

It can be seen that the static Factory method is simply a wrapper that calls the virtual
Allocate method on a the catalog which is returned by getCatalog().
The usage of the Factory method will be further discussed in the Usage section.

Note

The method for organizing constructing new objects relies on a common constructor list between
the derived type and the BASETYPE.
This means that there is a single catalog for each combination of BASETYPE and the variadic
parameter pack representing the constructor arguments.
In the future, we can investigate removing this restriction and allowing for construction of
a hierarchy of objects with an arbitrary constructor parameter list.

CatalogEntry

The CatalogEntry class derives from CatalogInterface and adds the a TYPE template argument
to the arguments of the CatalogInterface.

template< typename BASETYPE, typename TYPE, typename ... ARGS >
class CatalogEntry final : public CatalogInterface< BASETYPE, ARGS... >

The TYPE template argument is the type of the object that you would like to be able to create
with the “ObjectCatalog”.
TYPE must be derived from BASETYPE and have a constructor that matches the variadic parameter
pack specified in the template parameter list.
The main purpose of the CatalogEntry is to override the CatalogInterface::Allocate() virtual
function s.t. when key is retrieved from the catalog, then it is possible to create a new TYPE.
The CatalogEntry::Allocate() function is a simple creation of the underlying TYPE as shown by
its definition:

 virtual std::unique_ptr< BASETYPE > allocate(ARGS... args) const override
 {
#if OBJECTCATALOGVERBOSE > 0
 GEOSX_LOG("Creating type " << LvArray::system::demangle(typeid(TYPE).name())
 << " from catalog of " << LvArray::system::demangle(typeid(BASETYPE).name()));
#endif
#if (__cplusplus >= 201402L)
 return std::make_unique< TYPE >(args ...);
#else
 return std::unique_ptr< BASETYPE >(new TYPE(args ...));
#endif
 }

CatalogEntryConstructor

The CatalogEntryConstructor is a helper class that has a sole purpose of creating a
new CatalogEntry and adding it to the catalog.
When a new CatalogEntryConstructor is created, a new CatalogEntry entry is created and
inserted into the catalog automatically.

Usage

Creating A New Catalog

When creating a new “ObjectCatalog”, it typically is done within the context of a specific
BASETYPE.
A simple example of a class hierarchy in which we would like to use the “ObjectCatalog”
to use to generate new objects is given in the unit test located in testObjectCatalog.cpp.

The base class for this example is defined as:

class Base
{
public:
 Base(int & junk, double const & junk2)
 {
 GEOSX_LOG("calling Base constructor with arguments ("<<junk<<" "<<junk2<<")");
 }

 virtual ~Base()
 {
 GEOSX_LOG("calling Base destructor");
 }

 using CatalogInterface = dataRepository::CatalogInterface< Base, int &, double const & >;
 static CatalogInterface::CatalogType & getCatalog()
 {
 static CatalogInterface::CatalogType catalog;
 return catalog;
 }

 virtual string getCatalogName() = 0;
};

There a couple of things to note in the definition of Base:

	Base has a convenience alias to use in place of the fully templated CatalogInterface name.

	Base defines a getCatalog() function that returns a static instantiation of a
CatalogInterface::CatalogType.
The CatalogInterface::getCatalog() function actually calls this function within the base
class.
This means that the base class actually owns the catalog, and the CatalogInterface is only
operating on that Base::getCatalog(), and that the definition of this function is required.

Adding A New Type To The Catalog

Once a Base class is defined with the required features, the next step is to add a new derived
type to the catalog defined in Base.
There are three requirements for the new type to be registered in the catalog:

	The derived type must have a constructor with the arguments specified by the
variadic parameter pack specified in the catalog.

	There must be a static function static string catalogName() that returns the
name of the type that will be used to as keyname when it is registered Base’s catalog.

	The new type must be registered with the catalog held in Base.
To accomplish this, a convenience macro REGISTER_CATALOG_ENTRY() is provided.
The arguments to this macro are the name type of Base, the type of the derived class,
and then the variadic pack of constructor arguments.

A pair of of simple derived class that have the required methods are used in the unit test.

class Derived1 : public Base
{
public:
 Derived1(int & junk, double const & junk2):
 Base(junk, junk2)
 {
 GEOSX_LOG("calling Derived1 constructor with arguments ("<<junk<<" "<<junk2<<")");
 }

 ~Derived1()
 {
 GEOSX_LOG("calling Derived1 destructor");
 }
 static string catalogName() { return "derived1"; }
 string getCatalogName() { return catalogName(); }

};
REGISTER_CATALOG_ENTRY(Base, Derived1, int &, double const &)

class Derived2 : public Base
{
public:
 Derived2(int & junk, double const & junk2):
 Base(junk, junk2)
 {
 GEOSX_LOG("calling Derived2 constructor with arguments ("<<junk<<" "<<junk2<<")");
 }

 ~Derived2()
 {
 GEOSX_LOG("calling Derived2 destructor");
 }
 static string catalogName() { return "derived2"; }
 string getCatalogName() { return catalogName(); }

};
REGISTER_CATALOG_ENTRY(Base, Derived2, int &, double const &)

Allocating A New Object From The Catalog

The test function in the unit test shows how to allocate a new object of one
of the derived types from Factory method.
Note the call to Factory is scoped by Base::CatalogInterface, which is
an alias to the full templated instantiation of CatalogInterface.
The arguments for Factory

TEST(testObjectCatalog, testRegistration)
{
 GEOSX_LOG("EXECUTING MAIN");
 int junk = 1;
 double junk2 = 3.14;

 // allocate a new Derived1 object
 std::unique_ptr< Base >
 derived1 = Base::CatalogInterface::factory("derived1", junk, junk2);

 // allocate a new Derived2 object
 std::unique_ptr< Base >
 derived2 = Base::CatalogInterface::factory("derived2", junk, junk2);

 EXPECT_STREQ(derived1->getCatalogName().c_str(),
 Derived1::catalogName().c_str());

 EXPECT_STREQ(derived2->getCatalogName().c_str(),
 Derived2::catalogName().c_str());
 GEOSX_LOG("EXITING MAIN");
}

The unit test creates two new objects of type Derived1 and Derived2 using the
catalogs Factory method.
Then the test checks to see that the objects that were created are of the correct type.
This unit test has some extra output to screen to help with understanding of the
sequence of events.
The result of running this test is:

$ tests/testObjectCatalog
Calling constructor for CatalogEntryConstructor< Derived1 , Base , ... >
Calling constructor for CatalogInterface< Base , ... >
Calling constructor for CatalogEntry< Derived1 , Base , ... >
Registered Base catalog component of derived type Derived1 where Derived1::catalogName() = derived1
Calling constructor for CatalogEntryConstructor< Derived2 , Base , ... >
Calling constructor for CatalogInterface< Base , ... >
Calling constructor for CatalogEntry< Derived2 , Base , ... >
Registered Base catalog component of derived type Derived2 where Derived2::catalogName() = derived2
Running main() from gtest_main.cc
[==========] Running 1 test from 1 test case.
[----------] Global test environment set-up.
[----------] 1 test from testObjectCatalog
[RUN] testObjectCatalog.testRegistration
EXECUTING MAIN
Creating type Derived1 from catalog of Base
calling Base constructor with arguments (1 3.14)
calling Derived1 constructor with arguments (1 3.14)
Creating type Derived2 from catalog of Base
calling Base constructor with arguments (1 3.14)
calling Derived2 constructor with arguments (1 3.14)
EXITING MAIN
calling Derived2 destructor
calling Base destructor
calling Derived1 destructor
calling Base destructor
[OK] testObjectCatalog.testRegistration (0 ms)
[----------] 1 test from testObjectCatalog (0 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test case ran. (0 ms total)
[PASSED] 1 test.
Calling destructor for CatalogEntryConstructor< Derived2 , Base , ... >
Calling destructor for CatalogEntryConstructor< Derived1 , Base , ... >
Calling destructor for CatalogEntry< Derived2 , Base , ... >
Calling destructor for CatalogInterface< Base , ... >
Calling destructor for CatalogEntry< Derived1 , Base , ... >
Calling destructor for CatalogInterface< Base , ... >

In the preceding output, it is clear that the static catalog in Base::getCatalog()
is initialized prior the execution of main, and destroyed after the completion of main.
In practice, there have been no indicators of problems due to the use of a statically
initialized/deinitialized catalog.

XML Input

In this document, you will learn how GEOSX classes interact with external information parsed from XML files, and how to add a new XML block that can be interpreted by GEOSX.
Flow solvers and relative permeability are used as examples.

GEOSX data structure overview

Group : the base class of GEOSX

All GEOSX classes derive from a base class called dataRepository::Group.
The Group class provides a way to organize all GEOSX objects in a filesystem-like structure.
One could think of Group s as file folders that can bear data (stored in Wrapper s), have a parent folder (another Group), and have possibly multiple subfolders (referred to as the subgroups).
Below, we briefly review the data members of the Group class that are essential to understand the correspondence between the GEOSX data structure and the XML input.
For more details, we refer the reader to the extensive documentation of the Data Repository, including the Group class documentation.

In the code listing below, we see that each Group object is at minimum equipped with the following member properties:

	A pointer to the parent Group called m_parent (member classes are prefixed by m_),

	The Group ‘s own data, stored for flexibility in an array of generic data Wrapper s called m_wrappers,

	A map of one or many children (also of type Group) called m_subGroups.

	The m_size and m_capacity members, that are used to set the size and capacity of any objects contained.

	The name of the Group, stored as a string in m_name. This name can be seen as the object unique ID.

 /// The parent Group that contains "this" Group in its "sub-Group" collection.
 Group * m_parent = nullptr;

 /// Specification that this group will have the same m_size as m_parent.
 integer m_sizedFromParent;

 /// The container for the collection of all wrappers continued in "this" Group.
 wrapperMap m_wrappers;

 /// The container for the collection of all sub-groups contained in "this" Group.
 subGroupMap m_subGroups;

 /// The size/length of this Group...and all Wrapper<> that are are specified to have the same size as their
 /// owning group.
 indexType m_size;

 /// The capacity for wrappers in this group...and all Wrapper<> that are specified to have the same size as their
 /// owning group.
 indexType m_capacity;

 /// The name/key of this Group in its parent collection of sub-Groups.
 string m_name;

 /// Verbosity flag for group logs
 integer m_logLevel;
 //END_SPHINX_INCLUDE_02

 /// Restart flag for this group... and subsequently all wrappers in this group.

[Source: src/coreComponents/dataRepository/Group.hpp]

A few words about the ObjectCatalog

What is an ObjectCatalog and why do we need it?

Some classes need external information (physical and/or algorithmic parameters for instance) provided by the user to be instantiated.
This is the case when the m_input_flags data member of one of the Group ‘s Wrapper s has an entry set to REQUIRED (we will illustrate this below).
In this situation, the required information must be supplied in the XML input file, and if it is absent, an error is raised by GEOSX.

To connect the external (XML) and internal (C++) data structures, GEOSX uses an ObjectCatalog that maps keys (of type string) to the corresponding classes (one unique key per mapped class).
These string keys, referred to as catalogName s, are essential to transfer the information from the XML file to the factory functions in charge of object instantiation (see below).

What is a CatalogName?

The catalogName of an object is a key (of type string) associated with this object’s class.
On the one hand, in the XML file, the key is employed by the user as an XML tag to specify the type of object (e.g., the type of solver, constitutive model, etc) to create and use during the simulation.
On the other hand, internally, the key provides a way to access the appropriate factory function to instantiate an object of the desired class.

Most of the time, the catalogName and the C++ class name are identical.
This helps make the code easier to debug and allows the XML/C++ correspondence to be evident.
But strictly speaking, the catalogName can be anything, as long as it refers uniquely to a specific class.
The catalogName must not be confused with the object’s name (m_name is a data member of the class that stores the object’s unique ID, not its class key).
You can have several objects of the same class and hence the same catalogName, but with different names (i.e. unique ID): several fluid models, several solvers, etc.

How can I add my new externally-accessible class to the ObjectCatalog?

Let us consider a flow solver class derived from FlowSolverBase, that itself is derived from SolverBase.
To instantiate and use this solver, the developer needs to make the derived flow solver class reachable from the XML file, via an XML tag.
Internally, this requires adding the derived class information to ObjectCatalog, which is achieved with two main ingredients: 1) a CatalogName() method in the class that lets GEOSX know what to search for in the internal ObjectCatalog to instantiate an object of this class, 2) a macro that specifies where to search in the ObjectCatalog.

	To let GEOSX know what to search for in the catalog to instantiate an object of the derived class, the developer must equip the class with a CatalogName() method that returns a string.
In this document, we have referred to this returned string as the object’s catalogName, but in fact, the method CatalogName() is what matters since the ObjectCatalog contains all the CatalogName() return values.
Below, we illustrate this with the CompositionalMultiphaseFlow solver.
The first code listing defines the class name, which in this case is the same as the catalogName shown in the second listing.

/**
 * @class CompositionalMultiphaseBase
 *
 * A compositional multiphase solver
 */
class CompositionalMultiphaseBase : public FlowSolverBase
{

[Source: src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseBase.hpp]

	To let GEOSX know where to search in the ObjectCatalog, a macro needs to be added at the end of the .cpp file implementing the class.
This macro (illustrated below) must contain the type of the base class (in this case, SolverBase), and the name of the derived class (continuing with the example used above, this is CompositionalMultiphaseFlow).
As a result of this construct, the ObjectCatalog is not a flat list of string s mapping the C++ classes.
Instead, the ObjectCatalog forms a tree that reproduces locally the structure of the class diagram, from the base class to the derived classes.

REGISTER_CATALOG_ENTRY(SolverBase, CompositionalMultiphaseFVM, string const &, Group * const)

[Source: src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseFVM.cpp]

Summary: All GEOSX objects form a filesystem-like structure. If an object needs to be accessible externally, it must be registered in the ObjectCatalog. This is done by adding CatalogName() method that returns a string key to the object’s class, and by adding the appropriate macro. The catalog has the same tree structure as the class diagram.

Registration: parsing XML input files to instantiate GEOSX objects

In this section, we describe with more details the connection between internal GEOSX objects and external XML tags parsed from parameter files.
We call this process Registration.
The registration process works in three steps:

	The XML document is parsed.
Each time a new XML tag is found, the current local scope of the ObjectCatalog is inspected.
The goal is to find a catalogName string that matches the XML tag.

	If it is the case (the current local scope of the ObjectCatalog contains a catalogName identical to the XML tag), then the code creates a new instance of the class that the catalogName refers to.
This new object is inserted in the Group tree structure at the appropriate location, as a subgroup.

	By parsing the XML attributes of the tag, the new object properties are populated.
Some checks are performed to ensure that the data supplied is conform, and that all the required information is present.

Let’s look at this process in more details.

Creating a new object and giving it a Catalog name

Consider again that we are registering a flow solver deriving from FlowSolverBase, and assume that this solver is called CppNameOfMySolver.
This choice of name is not recommended (we want names that reflect what the solver does!), but for this particular example, we just need to know that this name is the class name inside the C++ code.

To specify parameters of this new solver from an XML file, we need to be sure that the XML tag and the catalogName of the class are identical.
Therefore, we equip the CppNameOfMySolver class with a CatalogName() method that returns the solver catalogName (=XML name).
Here, this method returns the string “XmlNameOfMySolver”.

We have deliberately distinguished the class name from the catalog/XML name for the sake of clarity in this example.
It is nevertheless a best practice to use the same name for the class and for the catalogName.
This is the case below for the existing CompositionalMultiphaseFVM class.

class CompositionalMultiphaseFVM : public CompositionalMultiphaseBase
{

 /**
 * @brief name of the solver in the object catalog
 * @return string that contains the catalog name to generate a new object through the object catalog.
 */
 static string catalogName() { return "CompositionalMultiphaseFVM"; }

[Source: src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseFVM.hpp]

Parsing XML and searching the ObjectCatalog in scope

Now that we have implemented a CatalogName() method returning a specific key (of type string), we can have a block in our XML input file with a tag that corresponds to the catalogName “XmlNameOfMySolver”.
This is how the XML block would look like.

<Problem>
 <Solvers
 gravityVector="{ 0.0, 0.0, -9.81 }">
 <XmlNameOfMySolver name="nameOfThisSolverInstance"
 verboseLevel="1"
 gravityFlag="1"
 temperature="297.15" />
 <LinearSolverParameters newtonTol="1.0e-6"
 maxIterNewton="15"
 useDirectSolver="1"/>
 </XmlNameOfMySolver>
 </Solvers>
</Problem>

Here, we see that the XML structure defines a parent node “Problem”, that has (among many others) a child node “Solvers”.
In the “Solvers” block, we have placed the new solver block as a child node of the “Solvers” block with the XML tag corresponding to the catalogName of the new class.
We will see in details next how the GEOSX internal structure constructed from this block mirrors the XML file structure.

Instantiating the new solver

Above, we have specified an XML block with the tag “XmlNameOfMySolver”.
Now, when reading the XML file and encountering an “XmlNameOfMySolver” solver block, we add a new instance of the class CppNameOfMySolver in the filesystem structure as explained below.

We saw that in the XML file, the new solver block appeared as child node of the XML block “Solvers”.
The internal construction mirrors this XML structure.
Specifically, the new object of class CppNameOfMySolver is registered as a subgroup (to continue the analogy used so far, as a subfolder) of its parent Group, the class PhysicsSolverManager (that has a catalogName “Solvers”).
To do this, the method CreateChild of the PhysicsSolverManager class is used.

// Variable values in this example:
// --------------------------------
// childKey = "XmlNameOfMySolver" (string)
// childName = "nameOfThisSolverInstance" (string)
// SolverBase::CatalogInterface = the Catalog attached to the base Solver class
// hasKeyName = bool method to test if the childKey string is present in the Catalog
// registerGroup = method to create a new instance of the solver and add it to the group tree

Group * PhysicsSolverManager::createChild(string const & childKey, string const & childName)
{
 Group * rval = nullptr;
 if(SolverBase::CatalogInterface::hasKeyName(childKey))
 {
 GEOSX_LOG_RANK_0("Adding Solver of type " << childKey << ", named " << childName);
 rval = ®isterGroup(childName,
 SolverBase::CatalogInterface::factory(childKey, childName, this));
 }
 return rval;
}

[Source: src/coreComponents/physicsSolvers/PhysicsSolverManager.cpp]

In the code listing above, we see that in the PhysicsSolverManager class, the ObjectCatalog is searched to find the catalogName “CompositionalMultiphaseFlow” in the scope of the SolverBase class.
Then, the factory function of the base class SolverBase is called.
The catalogName (stored in childKey) is passed as an argument of the factory function to ensure that it instantiates an object of the desired derived class.

As explained above, this is working because 1) the XML tag matches the catalogName of the CompositionalMultiphaseFlow class and 2) a macro is placed at the end of the .cpp file implementing the CompositionalMultiphaseFlow class to let the ObjectCatalog know that CompositionalMultiphaseFlow is a derived class of SolverBase.

Note that several instances of the same type of solver can be created, as long as they each have a different name.

Filling the objects with data (wrappers)

After finding and placing the new solver Group in the filesystem hierarchy, properties are read and stored.
This is done by registering data wrappers.
We refer to the documentation of the Data Repository for additional details about the Wrapper s.
The method used to do that is called registerWrapper and is placed in the class constructor when the data is required in the XML file.
Note that some properties are registered at the current (derived) class level, and other properties can also be registered at a base class level.

Here, the only data (=wrapper) that is defined at the level of our CppNameOfMySolver class is temperature, and everything else is registered at the base class level.
We register a property of temperature, corresponding to the member class m_temperature of CppNameOfMySolver.
The registration also checks if a property is required or optional (here, it is required), and provides a brief description that will be used in the auto-generated code documentation.

 this->registerWrapper(viewKeyStruct::temperatureString(), &m_temperature).
 setInputFlag(InputFlags::REQUIRED).
 setDescription("Temperature");
//END_SPHINX_INCLUDE_00

[Source: src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseBase.cpp]

This operation is done recursively if XML tags are nested.

To summarize:

	Every class in GEOSX derive from a Group in a filesystem-like structure.
A Group must have a parent Group, can have data (in Wrapper s), and can have one or many children (the subgroups).
There is an ObjectCatalog in which the classes derived from Group are identified by a key called the catalogName.

	When parsing XML input files, GEOSX inspects each object’s scope in the ObjectCatalog to find classes with the same catalogName as the XML tag.
Once it finds an XML tag in the ObjectCatalog, it registers it inside the filesystem structure.

	In the registration process, properties from the XML file are parsed and used to allocate member data Wrapper s and fully instantiate the Group class.

	If XML tags are nested, subgroups are allocated and processed in a nested manner.

The correspondence between XML and class hierarchy is thus respected, and the internal object hierarchy mirrors the XML structure.

Example: adding a new relative permeability model

This example is taken from the class BrooksCoreyRelativePermeability, derived from RelativePermeabilityBase.

Implement a CatalogName function (.hpp):

As explained above we add the class to the ObjectCatalog in two steps. First we implement the CatalogName function:

 static string catalogName() { return "BrooksCoreyRelativePermeability"; }

[source: src/coreComponents/constitutive/relativePermeability/BrooksCoreyRelativePermeability.hpp]

Then in the .cpp file we add the macro to register the catalog entry:

REGISTER_CATALOG_ENTRY(ConstitutiveBase, BrooksCoreyRelativePermeability, string const &, Group * const)

[source: src/coreComponents/constitutive/relativePermeability/BrooksCoreyRelativePermeability.cpp]

Now every time a “BrooksCoreyRelativePermeability” string is encountered inside a Relative Permeability catalog, we will instantiate a class BrooksCoreyRelativePermeability.

Declare the Wrapper s keys (.hpp):

When attaching properties (i.e. data Wrapper s) to a class, a similar registration process must be done.
Every property is accessed through its ViewKey namespace.
In this namespace, we define string s that correspond to the tags of XML attributes of the “BrooksCoreyRelativePermeability” block.

 struct viewKeyStruct : RelativePermeabilityBase::viewKeyStruct
 {
 static constexpr char const * phaseMinVolumeFractionString() { return "phaseMinVolumeFraction"; }
 static constexpr char const * phaseRelPermExponentString() { return "phaseRelPermExponent"; }
 static constexpr char const * phaseRelPermMaxValueString() { return "phaseRelPermMaxValue"; }
 static constexpr char const * volFracScaleString() { return "volFracScale"; }
 } vieKeysBrooksCoreyRelativePermeability;

[source: src/coreComponents/constitutive/relativePermeability/BrooksCoreyRelativePermeability.hpp]

Declare data members (.hpp):

The data members are defined in the class.
They will ultimately contain the data read from the XML file (other data members not read from the XML file can also exist).

 array1d< real64 > m_phaseMinVolumeFraction;
 array1d< real64 > m_phaseRelPermExponent;
 array1d< real64 > m_phaseRelPermMaxValue;

 real64 m_volFracScale;

[source: src/coreComponents/constitutive/relativePermeability/BrooksCoreyRelativePermeability.hpp]

Implement the data registration process (registerWrapper):

The registration process done in the class constructor puts everything together.
It connects the attributes values in the XML file to class member data.
For instance, in the listing below, the first registerWrapper call means that we want to read in the XML file the attribute value corresponding to the attribute tag ‘’phaseMinVolumeFraction’’ defined in the .hpp file, and that we want to store the read values into the m_phaseMinVolumeFraction data members.
We see that this input is not required.
If it is absent from the XML file, the default value is used instead.
The short description that completes the registration will be added to the auto-generated documentation.

BrooksCoreyRelativePermeability::BrooksCoreyRelativePermeability(string const & name,
 Group * const parent)
 : RelativePermeabilityBase(name, parent)
{
 registerWrapper(viewKeyStruct::phaseMinVolumeFractionString(), &m_phaseMinVolumeFraction).
 setApplyDefaultValue(0.0).
 setInputFlag(InputFlags::OPTIONAL).
 setDescription("Minimum volume fraction value for each phase");

 registerWrapper(viewKeyStruct::phaseRelPermExponentString(), &m_phaseRelPermExponent).
 setApplyDefaultValue(1.0).
 setInputFlag(InputFlags::OPTIONAL).
 setDescription("Minimum relative permeability power law exponent for each phase");

 registerWrapper(viewKeyStruct::phaseRelPermMaxValueString(), &m_phaseRelPermMaxValue).
 setApplyDefaultValue(0.0).
 setInputFlag(InputFlags::OPTIONAL).
 setDescription("Maximum relative permeability value for each phase");

 registerWrapper(viewKeyStruct::volFracScaleString(), &m_volFracScale).
 setApplyDefaultValue(1.0).
 setDescription("Factor used to scale the phase relative permeability, defined as: one minus the sum of the phase minimum volume fractions.");

[source: src/coreComponents/constitutive/relativePermeability/BrooksCoreyRelativePermeability.cpp]

The XML block

We are ready to use the relative permeability model in GEOSX.
The corresponding XML block (child node of the “Constitutive” block) reads:

<Constitutive>
 <BrooksCoreyBakerRelativePermeability name="relperm"
 phaseNames="{oil, gas, water}"
 phaseMinVolumeFraction="{0.05, 0.05, 0.05}"
 waterOilRelPermExponent="{2.5, 1.5}"
 waterOilRelPermMaxValue="{0.8, 0.9}"
 gasOilRelPermExponent="{3, 3}"
 gasOilRelPermMaxValue="{0.4, 0.9}"/>
<Constitutive>

With this construct, we instruct the ConstitutiveManager class (whose catalogName is “Constitutive”) to instantiate a subgroup of type BrooksCoreyRelativePermeability.
We also fill the data members of the values that we want to use for the simulation.
For a simulation with multiple regions, we could define multiple relative permeability models in the “Constitutive” XML block (yielding multiple relperm subgroups in GEOSX), with a unique name attribute for each model.

For more examples on how to contribute to GEOSX, please read Adding a new Physics Solver

Input Schema Generation

A schema file is a useful tool for validating input .xml files and constructing user-interfaces. Rather than manually maintaining the schema during development, GEOSX is designed to automatically generate one by traversing the documentation structure.

To generate the schema, run GEOSX with the input, schema, and the (optional) schema_level arguments, i.e.: geosx -i input.xml -s schema.xsd. There are two ways to limit the scope of the schema:

	Setting the verbosity flag for an object in the documentation structure. If the schema-level argument is used, then only objects (and their children) and attributes with (verbosity < schema-level) will be output.

	By supplying a limited input xml file. When GEOSX builds its data structure, it will only include objects that are listed within the xml (or those that are explicitly appended when those objects are initialized). The code will add all available attributes for these objects to the schema.

To take advantage of this design it is necessary to use the automatic xml parsing approach that relies upon the documentation node. If values are read in manually, then the schema can not be used to validate xml those inputs.

Note: the lightweight xml parser that is used in GEOSX cannot be used to validate inputs with the schema directly. As such, it is necessary to use an external tool for validation, such as the geosx_tools python module.

Working with data in GEOSX

In GEOSX, data is typically registered in the Data Repository.
This allows for the writing/reading of data to/from restart and plot files.
Any object that derives from Group may have data registered on it
through the methods described in Group.
Simalarly, accessing data from outside the scope of an object is possible
through one of the various Group::get().
Of course, for temporary data that does not need to persist between cycles,
or across physics packages, you may simply define member or local variabls which
will not be registered with the Data Repository.

Working with data on the Mesh objects

the mesh objects in GEOSX such as the FaceManager or NodeManager,
are derived from ObjectManagerBase, which in turn derives from Group.
The important distinction is that ObjectManagerBase contains various members
that are useful when defining mesh object managers.
When considering data that is attached to a mesh object, we group the data into
two catagories:

	Intrinsic [https://www.merriam-webster.com/dictionary/intrinsic] data is
data that is required to descibe the object.
For instance, to define a Node, the NodeManager contains an array of
positions corrosponding to each Node it contains.
Thus the ReferencePosition is Intrinsic data.
Intrinsic data is almost always a member of the mesh object, and is
registered on the mesh object in the constructor of mesh object itself.

	Extrinsic [https://www.merriam-webster.com/dictionary/extrinsic] data is
data that is not required to define the object.
For instance, a phsyics package
may request that a Velocity value be stored on the nodes.
Appropriatly the data will be registered on the NodeManager.
However, this data is not required to define a Node, and is viewed as
Extrinsic.
Extrinsic data is never a member of the mesh object, and is typically
registered on the mesh object outside of the definition of the mesh object
(i.e. from a physics solver).

Registering Intrinsic data on a Mesh Object

As mentioned above, Intrinsic data is typically a member of the mesh object,
and is registered in the constructor of the mesh Object.
Taking the NodeManager and the referencePosition as an example, we
point out that the reference position is actually a member in the
NodeManager.

 /**
 * @brief Get the mutable reference position array. This table will contain all the node coordinates.
 * @return reference position array
 */
 array2d< real64, nodes::REFERENCE_POSITION_PERM > & referencePosition() { return m_referencePosition; }

 /**
 * @brief Provide an immutable arrayView of the reference position. This table will contain all the node coordinates.
 * @return an immutable arrayView of the reference position.
 */

 arrayView2d< real64 const, nodes::REFERENCE_POSITION_USD > referencePosition() const
 { return m_referencePosition; }

This member is registered in the constructor for the NodeManager.

NodeManager::NodeManager(string const & name,
 Group * const parent):
 ObjectManagerBase(name, parent),
 m_referencePosition(0, 3)
{
 registerWrapper(viewKeyStruct::referencePositionString(), &m_referencePosition);

Finally in order to access this data, the NodeManager provides explicit
accessors.

 /**
 * @brief Get the mutable reference position array. This table will contain all the node coordinates.
 * @return reference position array
 */
 array2d< real64, nodes::REFERENCE_POSITION_PERM > & referencePosition() { return m_referencePosition; }

 /**
 * @brief Provide an immutable arrayView of the reference position. This table will contain all the node coordinates.
 * @return an immutable arrayView of the reference position.
 */

 arrayView2d< real64 const, nodes::REFERENCE_POSITION_USD > referencePosition() const
 { return m_referencePosition; }

Thus the interface for Intrinsic data is set by the object that it is a part
of, and the developer may only access the data through the accesssors from
outside of the mesh object class scope.

Registering Extrinsic data on a Mesh Object

To register Extrinsic data, there are many ways a developer may proceed.
We will use the example of registering a TotalDisplacement on the NodeManager
from the SolidMechanics solver.
The most general approach is to define a string key and call one of the
Group::registerWrapper()
functions from SolverBase::RegisterMeshData().
Then when you want to use the data, you can call Group::getReference().
For example this would look something like:

void SolidMechanicsLagrangianFEM::RegisterDataOnMesh(Group * const MeshBodies)
{
 for(auto & mesh : MeshBodies->GetSubGroups())
 {
 NodeManager & nodes = mesh.second->groupCast< MeshBody * >()->getMeshLevel(0).getNodeManager();

 nodes.registerWrapper< array2d< real64, nodes::TOTAL_DISPLACEMENT_PERM > >(keys::TotalDisplacement).
 setPlotLevel(PlotLevel::LEVEL_0).
 setRegisteringObjects(this->getName()).
 setDescription("An array that holds the total displacements on the nodes.").
 reference().resizeDimension< 1 >(3);
 }
}

and

arrayView2d< real64, nodes::TOTAL_DISPLACEMENT_USD > const & u = nodes.getReference<array2d<real64, nodes::TOTAL_DISPLACEMENT_PERM >(keys::TotalDisplacement);
... do something with u

This approach is flexible and extendible, but is potentially error prone due to
its verbosity.
Therefore we also provide a more controlled/uniform method by which to register
and extract commonly used data on the mesh.
The trait approach requires the definition of a traits struct for each
data object that will be supported.
To apply the trait appraoch to the example use case shown above, there
should be the following definition somewhere in a header file:

namespace extrinsicMeshData
{
struct TotalDisplacement
{
 static constexpr auto key = "totalDisplacement";
 using DataType = real64;
 using Type = array2d< DataType, nodes::TOTAL_DISPLACEMENT_PERM >;
 static constexpr DataType defaultValue = 0;
 static constexpr auto plotLevel = dataRepository::PlotLevel::LEVEL_0;

 /// Description of the data associated with this trait.
 static constexpr auto description = "An array that holds the total displacements on the nodes.";
};
}

Then the registration is simplified as follows:

void SolidMechanicsLagrangianFEM::RegisterDataOnMesh(Group * const MeshBodies)
{
 for(auto & mesh : MeshBodies->GetSubGroups())
 {
 NodeManager & nodes = mesh.second->groupCast< MeshBody * >()->getMeshLevel(0).getNodeManager();
 nodes.registerExtrinsicData< extrinsicMeshData::TotalDisplacement >(this->getName()).resizeDimension< 1 >(3);
 }
}

And to extract the data, the call would be:

arrayView2d< real64, nodes::TOTAL_DISPLACEMENT_USD > const & u = nodes.getExtrinsicData< extrinsicMeshData::TotalDisplacement >();
... do something with u

The end result of the trait approach to this example is that the developer
has defined a standard specification for TotalDisplacement, which may be
used uniformly across the code.

Mesh Hierarchy

In GEOSX, the mesh structure consists of a hierarchy of classes intended to encapsulate data and
functionality for each topological type.
Each class in the mesh hierarchy represents a distinct topological object, such as a nodes, edges,
faces, elements, etc.
The mesh data structure is illustrated in an object instantiation hierarchy.
The object instantiation hierarchy differs from a “class hierarchy” in that it shows
how instantiations of each class relate to each other in the data hierarchy rather than how each class
type relates to each other in an inheritance diagram.

[image: ../../../../_images/MeshObjectInstantiationHierarchy.png]

Fig. 31 Object Instantiation Hierarchy for the Mesh Objects.

To illustrate the mesh hierarchy, we propose to present it along with a model with two
regions (Top and Bottom) (Fig. 32).

[image: ../../../../_images/model.png]

Fig. 32 Example of a model with two regions

DomainPartition

In Fig. 31 the top level object DomainPartition represents
a partition of the decomposed physical domain.
At this time there is a unique DomainPartition for every MPI rank.

Note

Hypothetically,
there may be more than one DomainPartition in cases where the ranks are overloaded.
Currently GEOSX does not support overloading multiple DomainPartition’s onto a rank, although
this may be a future option if its use is properly motivated.

For instance, the model presented as example can be split into two different domains
(Fig. 33).

[image: ../../../../_images/mesh_domain.png]

Fig. 33 Mesh partioned in two DomainPartition

MeshBody

The MeshBody represents a topologically distinct mesh body.
For instance if a simulation of two separate spheres was required, then one option would be to have
both spheres as part of a single mesh body, while another option would be to have each sphere be
a individual body.

Note

While not currently utilized in GEOSX, the intent is to have the ability to handle the bodies
in a multi-body mesh on an individual basis.
For instance, when conducting high resolution crush simulations of granular materials (i.e. sand),
it may be advantagous to represent each particle as a MeshBody.

MeshLevel

The MeshLevel is intended to facilitate the representation of a multi-level discretization of a MeshBody.

Note

In current practice, the code utilizes a single MeshLevel until such time as we
implement a proper multi-level mesh capability.
The MeshLevel contains the main components that compose a discretized mesh in GEOSX.

Topological Mesh Objects

Each of the “Manager” objects are responsible for holding child objects, data, and providing functionality
specific to a single topological object.
Each topological object that is used to define a discretized mesh has a “Manager” to allow for simple
traversal over the hierarchy, and to provide modular access to data.
As such, the NodeManager manages data for the “nodes”, the EdgeManager manages data for the edges, the FaceManager holds data for the faces and the ElementRegionManager manages
the physical groups within the MeshLevel (regions, fractures, wells etc…).
Additionally each manager contains index maps to the other types objects that are connected to the
objects in that manager.
For instance, the FaceManager contains a downward pointing map that gives the nodes that comprise each
face in the mesh.
Similarly the FaceManager contains an upward pointing map that gives the elements that are connected
to a face.

ElementRegionManager

The element data structure is significantly more complicated than the other Managers.
While the other managers are “flat” across the MeshLevel, the element data structure seeks to provide
a hierarchy in order to define groupings of the physical problem, as well as collecting discretization of
similar topology.
At the top of the element branch of the hierarchy is the ElementRegionManager.
The ElementRegionManager holds a collection of instantiations of ElementRegionBase derived
classes.

ElementRegion

Conceptually the ElementRegion are used to defined regions of the problem domain where a
PhysicsSolver will be applied.

	The CellElementRegion is related to all the polyhedra

	The FaceElementRegion is related to all the faces that have physical meaning in the
domain, such as fractures and faults. This object should not be mistaken with the
FaceManager. The FaceManager handles all the faces of the mesh, not only the
faces of interest.

	The WellElementRegion is related to the well geometry.

An ElementRegion also has a list of materials allocated at each quadrature point across the entire
region.
One example of the utility of the ElementRegion is the case of the simulation of the mechanics
and flow within subsurface reservoir with an overburden.
We could choose to have two ElementRegion, one being the reservoir, and one for the
overburden.
The mechanics solver would be applied to the entire problem, while the flow problem would be applied only
to the reservoir region.

Each ElementRegion holds some number of ElementSubRegion.
The ElementSubRegion is meant to hold all the element topologies present in an ElementSubRegion
in their own groups.
For instance, for a CellElementRegion, there may be one CellElementSubRegion for all
tetrahedra, one for all hexahedra, one for all wedges and one for all the pyramids (Fig. 34).

[image: ../../../../_images/mesh_multi.png]

Fig. 34 Model meshed with different cell types

Now that all the classes of the mesh hierarchy has been described, we propose to adapt the diagram
presented in Fig. 31 to match with the example presented in Fig. 32.

DoF Manager

This will contains a description of the DoF manager in GEOSX.

Brief description

The main aim of the Degrees-of-Freedom (DoF) Manager class is to handle all
degrees of freedom associated with fields that exist on mesh elements, faces, edges and nodes.
It creates a map between local mesh objects and global DoF indices.
Additionally, DofManager simplifies construction of system matrix sparsity patterns.

Key concepts are locations and connectors.
Locations, that can be elements, faces, edges or nodes, represent where the DoF is assigned.
For example, a DoF for pressure in a two-point flux approximation will be on a cell (i.e. element), while a displacement DoF for structural equations will be on a node.
The counterparts of locations are connectors, that are the geometrical entities
that link together different DoFs are create the sparsity pattern.
Connectors can be elements, faces, edges, nodes or none.
Using the same example as before, connectors will be faces and cells, respectively.
The case of a mass matrix, where every element is linked only to itself, is an example when there are no connectors, i.e. these have to be set to none.

DoFs located on a mesh object are owned by the same rank that owns the object in parallel mesh partitioning.
Two types of DoF numbering are supported, with the difference only showing in parallel runs of multi-field problems.

	Initially, each field is assigned an independent DoF numbering that starts at 0 and is contiguous across all MPI ranks.
Within each rank, locally owned DoFs are numbered sequentially across mesh locations, and within each mesh location (e.g. node) - sequentially according to component number.
With this numbering, sparsity patterns can be constructed for individual sub-matrices that represent diagonal/off-diagonal blocks of the global coupled system matrix.

	After all fields have been declared, the user can call DofManager::reorderByRank(), which constructs a globally contiguous DoF numbering across all fields.
Specifically, all DoFs owned by rank 0 are numbered field-by-field starting from 0, then those on rank 1, etc.
This makes global system sparsity pattern compatible with linear algebra packages that only support contiguous matrix rows on each rank.
At this point, coupled system matrix sparsity pattern can be constructed.

Thus, each instance of DofManager only supports one type of numbering.
If both types are required, the user is advised to maintain two separate instances of DofManager.

DofManager allocates a separate “DOF index” array for each field on the mesh.
It is an array of global indices, where each value represents the first DoF index for that field and location (or equivalently, the row and column offset of that location’s equations and variables for the field in the matrix).
For example, if index array for a field with 3 components contains the value N, global DoF numbers for that location will be N, N+1, N+2.
DoF on ghosted locations have the same indices as on the owning rank.
The array is stored under a generated key, which can be queried from the DoF manager, and is typically used in system assembly.

Methods

The main methods of DoF Manager are:

	setMesh: sets which portion of the mesh the DoF manager instance is
referring to.
domain identifies the global mesh, while meshLevelIndex and
meshBodyIndex determine the specific level and body, respectively.

void setMesh(DomainPartition * const domain,
 localIndex const meshLevelIndex = 0,
 localIndex const meshBodyIndex = 0);

	addField: creates a new set of DoF, labeled field, with specific
location.
Default number of components is 1, like for pressure in flux.
Default regions is the empty string, meaning all domain.

void addField(string const & fieldName,
 Location const location,
 localIndex const components,
 arrayView1d< string const > const & regions);

	addCoupling: creates a coupling between two fields (rowField and
colField) according to a given connectivity in the regions defined by regions.
Both fields (row and column) must have already been defined on the regions where is required the coupling among them.
Default value for regions is the whole intersection between the regions where the first and the second fields are defined.
This method also creates the coupling between colField and rowField, i.e. the transpose of the rectangular sparsity pattern.
This default behaviour can be disabled by passing symmetric = false.

void addCoupling(string const & rowField,
 string const & colField,
 Connectivity const connectivity,
 arrayView1d< string const > const & regions,
 bool const symmetric);

	reorderByRank: finish populating field and coupling information and apply DoF
re-numbering

void reorderByRank();

	getKey: returns the “key” associated with the field, that can be used to access the index array on the mesh object manager corresponding to field’s location.

string const & getKey(string const & fieldName);

	clear: removes all fields, releases memory and re-opens the DofManager

void clear();

	setSparsityPattern: populates the sparsity for the given
rowField and colField into matrix.
Closes the matrix if closePattern is true.

void setSparsityPattern(MATRIX & matrix,
 string const & rowField,
 string const & colField,
 bool closePattern = true) const;

	setSparsityPattern: populates the sparsity for the full system matrix into matrix.
Closes the matrix if closePattern is true.

void setSparsityPattern(MATRIX & matrix,
 bool closePattern = true) const;

	numGlobalDofs: returns the total number of DoFs across all processors for
the specified name field (if given) or all fields (if empty).

globalIndex numGlobalDofs(string const & field = "") const;

	numLocalDofs: returns the number of DoFs on this process for the
specified name field (if given) or all fields (if empty).

localIndex numLocalDofs(string const & field = "") const;

	printFieldInfo: prints a short summary of declared fields and coupling to the output stream os.

void printFieldInfo(std::ostream & os = std::cout) const;

Example

Here we show how the sparsity pattern is computed for a simple 2D quadrilateral mesh with 6 elements.
Unknowns are pressure, located on the element center, and displacements (x and y components), located on the nodes.
For fluxes, a two-point flux approximation (TPFA) is used.
The representation of the sparsity pattern of the [image: \mathsf{C_L}] matrix (connectors/locations) for the simple mesh, shown in Fig. 35, is
reported in Fig. 36.
It can be notices that the two unknowns for the displacements x and y are grouped together.
Elements are the connectivity for DoF on nodes (Finite Element Method for displacements) and on elements (pressures).
Faces are the connectivity for DoF on elements (Finite Volume Method for pressure), being the flux computation based on the pressure on the two adjacent elements.

[image: ../../../../_images/mesh2D.svg]
Fig. 35 Small 2D quadrilateral mesh used for this examples.
Nodes are label with black numbers, elements with light gray numbers and
faces with italic dark gray numbers.

[image: ../../../../_images/CL.svg]
Fig. 36 Sparsity pattern of the binary matrix connections/locations.

The global sparsity pattern, shown in Fig. 37, is obtained through the symbolic multiplication of the transpose of the matrix [image: \mathsf{C_L}] and the matrix itself, i.e. [image: \mathsf{P = C_L^T C_L}].

[image: ../../../../_images/pattern.svg]
Fig. 37 Sparsity pattern of the global matrix, where red and green entries are related to the displacement field and to the pressure field, respectively.
Blue entries represent coupling blocks.

Real mesh and patterns

Now we build the pattern of the Jacobian matrix for a simple 3D mesh, shown in
Fig. 38. Fields are:

	displacement (location: node, connectivity: element) defined on the blue, orange and red regions;

	pressure (location: element, connectivity: face) defined on the green, orange and red regions;

	mass matrix (location: element, connectivity: element) defined on the green region only.

Moreover, following coupling are imposed:

	displacement-pressure (connectivity: element) on the orange region only;

	pressure-mass matrix and transpose (connectivity: element) everywhere it is
possibile.

[image: ../../../../_images/meshCube3D.svg]
Fig. 38 Real mesh used to compute the Jacobian pattern.

Fig. 39 shows the global pattern with the field-based ordering of unknowns.
Different colors mean different fields.
Red unkwnons are associated with displacement, yellow ones with pressure and blue ones with mass matrix.
Orange means the coupling among displacement and pressure, while green is the symmetric coupling among pressure and mass matrix.

[image: ../../../../_images/global.svg]
Fig. 39 Global pattern with field-based ordering.
Red is associated with displacement unknowns, yellow with pressure ones and blue with those of mass matrix field.
Orange means the coupling among displacement and pressure, while green is the symmetric coupling among pressure and mass matrix.

Fig. 40 shows the global pattern with the MPI rank-based ordering of unknowns.
In this case, just two processes are used.
Again, different colors indicate different ranks.

[image: ../../../../_images/permutedGlobal.svg]
Fig. 40 Global pattern with MPI rank-based ordering.
Red unkwnons are owned by rank 0 and green ones by rank 1.
Blue indicates the coupling among the two processes.

LvArray

Use in GEOSX

LvArray containers are used in GEOSX as primary storage mechanism for mesh topology, field data and any other type of “large” data sets (i.e. ones that scale with the size of the problem).
When allocating a new field, using one of LvArray containers is mandatory if the data is meant to be used in any computational kernel.
The file common/DataTypes.hpp provides shorthand aliases for commonly used containers:

/**
 * @name Aliases for LvArray::Array class family.
 */
///@{

/// Multidimensional array type. See LvArray:Array for details.
template< typename T,
 int NDIM,
 typename PERMUTATION=camp::make_idx_seq_t< NDIM > >
using Array = LvArray::Array< T, NDIM, PERMUTATION, localIndex, LvArray::ChaiBuffer >;

/// Multidimensional array view type. See LvArray:ArrayView for details.
template< typename T,
 int NDIM,
 int USD = NDIM - 1 >
using ArrayView = LvArray::ArrayView< T, NDIM, USD, localIndex, LvArray::ChaiBuffer >;

/// Multidimensional array slice type. See LvArray:ArraySlice for details.
template< typename T, int NDIM, int USD = NDIM - 1 >
using ArraySlice = LvArray::ArraySlice< T, NDIM, USD, localIndex >;

/// Multidimensional stack-based array type. See LvArray:StackArray for details.
template< typename T, int NDIM, int MAXSIZE, typename PERMUTATION=camp::make_idx_seq_t< NDIM > >
using StackArray = LvArray::StackArray< T, NDIM, PERMUTATION, localIndex, MAXSIZE >;

///@}

/**
 * @name Short-hand aliases for commonly used array types.
 */
///@{

/// Alias for a local (stack-based) rank-1 tensor type
using R1Tensor = Tensor< real64, 3 >;

/// Alias for a local (stack-based) rank-2 Voigt tensor type
using R2SymTensor = Tensor< real64, 6 >;

/// Alias for 1D array.
template< typename T >
using array1d = Array< T, 1 >;

/// Alias for 1D array view.
template< typename T >
using arrayView1d = ArrayView< T, 1 >;

/// Alias for 1D array slice.
template< typename T, int USD = 0 >
using arraySlice1d = ArraySlice< T, 1, USD >;

/// Alias for 1D stack array.
template< typename T, int MAXSIZE >
using stackArray1d = StackArray< T, 1, MAXSIZE >;

/// Alias for 2D array.
template< typename T, typename PERMUTATION=camp::make_idx_seq_t< 2 > >
using array2d = Array< T, 2, PERMUTATION >;

/// Alias for 2D array view.
template< typename T, int USD = 1 >
using arrayView2d = ArrayView< T, 2, USD >;

/// Alias for 2D array slice.
template< typename T, int USD = 1 >
using arraySlice2d = ArraySlice< T, 2, USD >;

/// Alias for 2D stack array.
template< typename T, int MAXSIZE >
using stackArray2d = StackArray< T, 2, MAXSIZE >;

/// Alias for 3D array.
template< typename T, typename PERMUTATION=camp::make_idx_seq_t< 3 > >
using array3d = Array< T, 3, PERMUTATION >;

/// Alias for 3D array view.
template< typename T, int USD=2 >
using arrayView3d = ArrayView< T, 3, USD >;

/// Alias for 3D array slice.
template< typename T, int USD=2 >
using arraySlice3d = ArraySlice< T, 3, USD >;

/// Alias for 3D stack array.
template< typename T, int MAXSIZE >
using stackArray3d = StackArray< T, 3, MAXSIZE >;

/// Alias for 4D array.
template< typename T, typename PERMUTATION=camp::make_idx_seq_t< 4 > >
using array4d = Array< T, 4, PERMUTATION >;

/// Alias for 4D array view.
template< typename T, int USD=3 >
using arrayView4d = ArrayView< T, 4, USD >;

/// Alias for 4D array slice.
template< typename T, int USD=3 >
using arraySlice4d = ArraySlice< T, 4, USD >;

/// Alias for 4D stack array.
template< typename T, int MAXSIZE >
using stackArray4d = StackArray< T, 4, MAXSIZE >;

/// Alias for 5D array.
template< typename T, typename PERMUTATION=camp::make_idx_seq_t< 5 > >
using array5d = Array< T, 5, PERMUTATION >;

/// Alias for 5D array view.
template< typename T, int USD=4 >
using arrayView5d = ArrayView< T, 5, USD >;

/// Alias for 5D array slice.
template< typename T, int USD=4 >
using arraySlice5d = ArraySlice< T, 5, 4 >;

/// Alias for 5D stack array.
template< typename T, int MAXSIZE >
using stackArray5d = StackArray< T, 5, MAXSIZE >;

///@}

/**
 * @name Aliases for sorted arrays and set types.
 */
///@{

/// A set of local indices.
template< typename T >
using set = std::set< T >;

/// A sorted array of local indices.
template< typename T >
using SortedArray = LvArray::SortedArray< T, localIndex, LvArray::ChaiBuffer >;

/// A sorted array view of local indices.
template< typename T >
using SortedArrayView = LvArray::SortedArrayView< T, localIndex, LvArray::ChaiBuffer >;

///@}

/**
 * @name Aliases for LvArray::ArrayOfArrays class family.
 */
///@{

/// Array of variable-sized arrays. See LvArray::ArrayOfArrays for details.
template< typename T >
using ArrayOfArrays = LvArray::ArrayOfArrays< T, localIndex, LvArray::ChaiBuffer >;

/// View of array of variable-sized arrays. See LvArray::ArrayOfArraysView for details.
template< typename T, bool CONST_SIZES=std::is_const< T >::value >
using ArrayOfArraysView = LvArray::ArrayOfArraysView< T, localIndex const, CONST_SIZES, LvArray::ChaiBuffer >;

/// Array of variable-sized sets. See LvArray::ArrayOfSets for details.
template< typename T >
using ArrayOfSets = LvArray::ArrayOfSets< T, localIndex, LvArray::ChaiBuffer >;

/// View of array of variable-sized sets. See LvArray::ArrayOfSetsView for details.
template< typename T >
using ArrayOfSetsView = LvArray::ArrayOfSetsView< T, localIndex const, LvArray::ChaiBuffer >;

/// Alias for Sparsity pattern class.
template< typename COL_INDEX, typename INDEX_TYPE=localIndex >
using SparsityPattern = LvArray::SparsityPattern< COL_INDEX, INDEX_TYPE, LvArray::ChaiBuffer >;

/// Alias for Sparsity pattern View.
template< typename COL_INDEX, typename INDEX_TYPE=localIndex >
using SparsityPatternView = LvArray::SparsityPatternView< COL_INDEX, INDEX_TYPE const, LvArray::ChaiBuffer >;

/// Alias for CRS Matrix class.
template< typename T, typename COL_INDEX=globalIndex >
using CRSMatrix = LvArray::CRSMatrix< T, COL_INDEX, localIndex, LvArray::ChaiBuffer >;

/// Alias for CRS Matrix View.
template< typename T, typename COL_INDEX=globalIndex >
using CRSMatrixView = LvArray::CRSMatrixView< T, COL_INDEX, localIndex const, LvArray::ChaiBuffer >;

///@}

LvArray documentation

Please refer to the full LvArray documentation [https://lvarray.readthedocs.io/en/latest/] for details on each of the classes.

Kernel interface

Finite Element Method Kernel Interface

The finite element method kernel interface (FEMKI) specifies an API for the
launching of computational kernels for solving physics discretized using the
finite element method.
Using this approach, a set of generic element looping pattens and kernel
launching functions may be implemented, and reused by various physics solvers
that contain kernels conforming to the FEMKI.

There are several main components of the FEMKI:

	A collection of element looping functions that provide various looping
patterns, and call the launch function.

	The kernel interface, which is specified by the
finiteElement::KernelBase class.
Each physics solver will define a class that contains its kernels functions,
most likely deriving, or conforming to the API specified by the KernelBase
class. Also part of this class will typically be a nested StackVariables
class that defines a collection of stack variables for use in the various
kernel interface functions.

	A launch function, which launches the kernel, and calls the kernel
interface functions conforming to the interface defined by KernelBase.
This function is actaully a member function of the Kernel class, so it
may be overridden by a specific physics kernel, allowing complete
customizationAn of the interface, while maintaining the usage of the
looping patterns.

A Generic Element Looping Pattern

One example of a looping pattern is the
regionBasedKernelApplication
function.

The contents of the looping function are displayed here:

/**
 * @brief Performs a loop over specific regions (by type and name) and calls a kernel launch on the subregions
 * with compile time knowledge of sub-loop bounds such as number of nodes and quadrature points per element.
 * @tparam POLICY The RAJA launch policy to pass to the kernel launch.
 * @tparam CONSTITUTIVE_BASE The common base class for constitutive pass-thru/dispatch which gives the kernel
 * launch compile time knowledge of the constitutive model. This is achieved through a call to the
 * ConstitutivePassThru function which should have a specialization for CONSTITUTIVE_BASE implemented in
 * order to perform the compile time dispatch.
 * @tparam SUBREGION_TYPE The type of subregion to loop over. TODO make this a parameter pack?
 * @tparam KERNEL_FACTORY The type of @p kernelFactory, typically an instantiation of @c KernelFactory, and
 * must adhere to that interface.
 * @param mesh The MeshLevel object.
 * @param targetRegions The names of the target regions(of type @p SUBREGION_TYPE) to apply the @p KERNEL_TEMPLATE.
 * @param finiteElementName The name of the finite element.
 * @param constitutiveNames The names of the constitutive models present in the region.
 * @param kernelFactory The object used to construct the kernel.
 * @return The maximum contribution to the residual, which may be used to scale the residual.
 *
 * @details Loops over all regions Applies/Launches a kernel specified by the @p KERNEL_TEMPLATE through
 * #::geosx::finiteElement::KernelBase::kernelLaunch().
 */
template< typename POLICY,
 typename CONSTITUTIVE_BASE,
 typename SUBREGION_TYPE,
 typename KERNEL_FACTORY >
static
real64 regionBasedKernelApplication(MeshLevel & mesh,
 arrayView1d< string const > const & targetRegions,
 string const & finiteElementName,
 arrayView1d< string const > const & constitutiveNames,
 KERNEL_FACTORY & kernelFactory)
{
 GEOSX_MARK_FUNCTION;
 // save the maximum residual contribution for scaling residuals for convergence criteria.
 real64 maxResidualContribution = 0;

 NodeManager & nodeManager = mesh.getNodeManager();
 EdgeManager & edgeManager = mesh.getEdgeManager();
 FaceManager & faceManager = mesh.getFaceManager();
 ElementRegionManager & elementRegionManager = mesh.getElemManager();

 // Loop over all sub-regions in regions of type SUBREGION_TYPE, that are listed in the targetRegions array.
 elementRegionManager.forElementSubRegions< SUBREGION_TYPE >(targetRegions,
 [&constitutiveNames,
 &maxResidualContribution,
 &nodeManager,
 &edgeManager,
 &faceManager,
 &kernelFactory,
 &finiteElementName]
 (localIndex const targetRegionIndex, auto & elementSubRegion)
 {
 localIndex const numElems = elementSubRegion.size();

 // Get the constitutive model...and allocate a null constitutive model if required.
 constitutive::ConstitutiveBase * constitutiveRelation = nullptr;
 constitutive::NullModel * nullConstitutiveModel = nullptr;
 if(targetRegionIndex <= constitutiveNames.size()-1)
 {
 constitutiveRelation = &elementSubRegion.template getConstitutiveModel(constitutiveNames[targetRegionIndex]);
 }
 else
 {
 nullConstitutiveModel = &elementSubRegion.template registerGroup< constitutive::NullModel >("nullModelGroup");
 constitutiveRelation = nullConstitutiveModel;
 }

 // Call the constitutive dispatch which converts the type of constitutive model into a compile time constant.
 constitutive::ConstitutivePassThru< CONSTITUTIVE_BASE >::execute(*constitutiveRelation,
 [&maxResidualContribution,
 &nodeManager,
 &edgeManager,
 &faceManager,
 targetRegionIndex,
 &kernelFactory,
 &elementSubRegion,
 &finiteElementName,
 numElems]
 (auto & castedConstitutiveRelation)
 {
 FiniteElementBase &
 subRegionFE = elementSubRegion.template getReference< FiniteElementBase >(finiteElementName);

 finiteElement::dispatch3D(subRegionFE,
 [&maxResidualContribution,
 &nodeManager,
 &edgeManager,
 &faceManager,
 targetRegionIndex,
 &kernelFactory,
 &elementSubRegion,
 numElems,
 &castedConstitutiveRelation] (auto const finiteElement)
 {
 auto kernel = kernelFactory.createKernel(nodeManager,
 edgeManager,
 faceManager,
 targetRegionIndex,
 elementSubRegion,
 finiteElement,
 castedConstitutiveRelation);

 using KERNEL_TYPE = decltype(kernel);

 // Call the kernelLaunch function, and store the maximum contribution to the residual.
 maxResidualContribution =
 std::max(maxResidualContribution,
 KERNEL_TYPE::template kernelLaunch< POLICY, KERNEL_TYPE >(numElems, kernel));
 });
 });

 // Remove the null constitutive model (not required, but cleaner)
 if(nullConstitutiveModel)
 {
 elementSubRegion.deregisterGroup("nullModelGroup");
 }

 });

 return maxResidualContribution;
}

This pattern may be used with any kernel class that either:

	Conforms to the KernelBase interface by defining each of the kernel
functions in KernelBase.

	Defines its own kernelLaunch function that conforms the the signature
of KernelBase::kernelLaunch.
This option essentially allows for a custom kernel that does not conform to
the interface defined by KernelBase and KernelBase::kernelLaunch.

The KernelBase::kernelLaunch Interface

The kernelLaunch function is a member of the kernel class itself.
As mentioned above, a physics implementation may use the existing KernelBase
interface, or define its own.
The KernelBase::kernelLaunch function defines a launching policy, and an
internal looping pattern over the quadrautre points, and calls the functions
defined by the KernelBase as shown here:

 template< typename POLICY,
 typename KERNEL_TYPE >
 static
 real64
 kernelLaunch(localIndex const numElems,
 KERNEL_TYPE const & kernelComponent)
 {
 GEOSX_MARK_FUNCTION;

 // Define a RAJA reduction variable to get the maximum residual contribution.
 RAJA::ReduceMax< ReducePolicy< POLICY >, real64 > maxResidual(0);

 forAll< POLICY >(numElems,
 [=] GEOSX_HOST_DEVICE (localIndex const k)
 {
 typename KERNEL_TYPE::StackVariables stack;

 kernelComponent.setup(k, stack);
 for(integer q=0; q<numQuadraturePointsPerElem; ++q)
 {
 kernelComponent.quadraturePointKernel(k, q, stack);
 }
 maxResidual.max(kernelComponent.complete(k, stack));
 });
 return maxResidual.get();
 }

Each of the KernelBase functions called in the KernelBase::kernelLaunch
function are intended to provide a certain amount of modularity and flexibility
for the physics implementations.
The general purpose of each function is described by the function name, but may
be further descibed by the function documentation found
here.

Adding a new Physics Solver

In this tutorial, you will learn how to construct a new GEOSX Physics Solver class.
We will use LaplaceFEM solver, computing the solution of the Laplace problem in
a specified material, as a starting point.

[image: \begin{eqnarray*} D^* \Delta X = f \quad \mbox{in\;} \Omega \\ X = X^g \quad \mbox{on\;} \Gamma_g \end{eqnarray*}]

It is advised to read XML Input preliminary to this tutorial.
The goal of this document is to explain how to develop a new solver that solves
Laplace’s equation with a constant diffusion coefficient that is specified by users in the XML input.

For readability, member functions in the text will be referenced by their names but their
arguments will be omitted.

LaplaceFEM overview

The LaplaceFEM solver can be found in ./src/coreComponents/physicsSolvers/simplePDE/.
Let us inspect declarations in LaplaceFEM.hpp and implementations in LaplaceFEM.cpp
before diving into specifying a new solver class that meets our needs.

Declaration file (reference)

The included header is physicsSolvers/simplePDE/LaplaceBaseH1.hpp which declares the base class LaplaceBaseH1, shared by all Laplace solvers. Moreover, physicsSolver/simplePDE/LaplaceBaseH1.hpp includes the following headers:

	common/EnumStrings.hpp which includes facilities for enum-string conversion (useful for reading enum values from input);

	physicsSolver/SolverBase.hpp which declares the abstraction class shared by all physics solvers.

	managers/FieldSpecification/FieldSpecificationManager.hpp which declares a manager used to access and to set field on the discretized domain.

Let us jump forward to the class enum and variable as they contain the data used
specifically in the implementation of LaplaceFEM.

class enums and variables (reference)

The class exhibits two member variables:

	m_fieldName which stores the name of the diffused variable (e.g. the temperature) as a string;

	m_timeIntegrationOption an enum value allowing to dispatch with respect to the transient treatment.

TimeIntegrationOption is an enum specifying the transient treatment which can be chosen
respectively between SteadyState and ImplicitTransient depending on whether we are interested in
the transient state.

 enum class TimeIntegrationOption : integer
 {
 SteadyState,
 ImplicitTransient
 };

In order to register an enumeration type with the Data Repository and have its value read from input,
we must define stream insertion/extraction operators. This is a common task, so GEOSX provides
a facility for automating it. Upon including common/EnumStrings.hpp, we can call the following macro
at the namespace scope (in this case, right after the LaplaceBaseH1 class definition is complete):

ENUM_STRINGS(LaplaceBaseH1::TimeIntegrationOption,
 "SteadyState",
 "ImplicitTransient");

Once explained the main variables and enum, let us start reading through the different member functions:

class LaplaceFEM : public LaplaceBaseH1
{
public:
 /// The default nullary constructor is disabled to avoid compiler auto-generation:
 LaplaceFEM() = delete;

 /// The constructor needs a user-defined "name" and a parent Group (to place this instance in the
 /// tree structure of classes)
 LaplaceFEM(const string & name,
 Group * const parent);

 /// Destructor
 virtual ~LaplaceFEM() override;

 /// "CatalogName()" return the string used as XML tag in the input file. It ties the XML tag with
 /// this C++ classes. This is important.
 static string catalogName() { return "LaplaceFEM"; }

Start looking at the class LaplaceFEM constructor and destructor declarations
shows the usual string name and Group* pointer to parent that are required
to build the global file-system like structure of GEOSX (see Group : the base class of GEOSX for details).
It can also be noted that the nullary constructor is deleted on purpose to avoid compiler
automatic generation and user misuse.

The next method catalogName() is static and returns the key to be added to the Catalog for this type of solver
(see A few words about the ObjectCatalog for details). It has to be paired with the following macro in the implementation file.

REGISTER_CATALOG_ENTRY(SolverBase, LaplaceFEM, string const &, Group * const)

Finally, the member function registerDataOnMesh() is declared in the LaplaceBaseH1 class as

 /// This method ties properties with their supporting mesh
 virtual void registerDataOnMesh(Group & meshBodies) override final;

It is used to assign fields onto the discretized mesh object and
will be further discussed in the Implementation File (reference) section.

The next block consists in solver interface functions. These member functions set up
and specialize every time step from the system matrix assembly to the solver stage.

 virtual void
 setupSystem(DomainPartition & domain,
 DofManager & dofManager,
 CRSMatrix< real64, globalIndex > & localMatrix,
 array1d< real64 > & localRhs,
 array1d< real64 > & localSolution,
 bool const setSparsity = false) override;

 virtual void
 assembleSystem(real64 const time,
 real64 const dt,
 DomainPartition & domain,
 DofManager const & dofManager,
 CRSMatrixView< real64, globalIndex const > const & localMatrix,
 arrayView1d< real64 > const & localRhs) override;

Furthermore, the following functions are inherited from the base class.

 virtual real64 solverStep(real64 const & time_n,
 real64 const & dt,
 integer const cycleNumber,
 DomainPartition & domain) override;

 virtual void
 implicitStepSetup(real64 const & time_n,
 real64 const & dt,
 DomainPartition & domain) override;

 virtual void
 setupDofs(DomainPartition const & domain,
 DofManager & dofManager) const override;

 virtual void
 applyBoundaryConditions(real64 const time,
 real64 const dt,
 DomainPartition & domain,
 DofManager const & dofManager,
 CRSMatrixView< real64, globalIndex const > const & localMatrix,
 arrayView1d< real64 > const & localRhs) override;

 virtual void
 solveSystem(DofManager const & dofManager,
 ParallelMatrix & matrix,
 ParallelVector & rhs,
 ParallelVector & solution) override;

 virtual void
 applySystemSolution(DofManager const & dofManager,
 arrayView1d< real64 const > const & localSolution,
 real64 const scalingFactor,
 DomainPartition & domain) override;

 virtual void updateState(DomainPartition & domain) override final;

 virtual void
 resetStateToBeginningOfStep(DomainPartition & GEOSX_UNUSED_PARAM(domain)) override;

 virtual void
 implicitStepComplete(real64 const & time,
 real64 const & dt,
 DomainPartition & domain) override;

 /// This method is specific to this Laplace solver.
 /// It is used to apply Dirichlet boundary condition
 /// and called when the base class applyBoundaryConditions() is called.
 virtual void applyDirichletBCImplicit(real64 const time,
 DofManager const & dofManager,
 DomainPartition & domain,
 CRSMatrixView< real64, globalIndex const > const & localMatrix,
 arrayView1d< real64 > const & localRhs);

Eventually, applyDirichletBCImplicit() is the working specialized member functions called
when applyBoundaryConditions() is called in this particular class override.

Browsing the base class SolverBase, it can be noted that most of the solver interface functions are called during
either SolverBase::linearImplicitStep() or SolverBase::nonlinearImplicitStep() depending on the solver strategy chosen.

Switching to protected members, postProcessInput() is a central member function and
will be called by Group object after input is read from XML entry file.
It will set and dispatch solver variables from the base class SolverBase to the most derived class.
For LaplaceFEM, it will allow us to set the right time integration scheme based on the XML value
as will be further explored in the next Implementation File (reference) section.

Let us focus on a struct that plays an important role: the viewKeyStruct structure.

viewKeyStruct structure (reference)

This embedded instantiated structure is a common pattern shared by all solvers.
It stores dataRepository::ViewKey type objects that are used as binding data
between the input XML file and the source code.

 struct viewKeyStruct : public SolverBase::viewKeyStruct
 {
 static constexpr char const * timeIntegrationOption() { return "timeIntegrationOption"; }
 static constexpr char const * fieldVarName() { return "fieldName"; }
 };

We can check that in the LaplaceFEM companion integratedTest

 <LaplaceFEM
 name="laplace"
 discretization="FE1"
 timeIntegrationOption="SteadyState"
 fieldName="Temperature"
 targetRegions="{ Region1 }">
 <LinearSolverParameters
 directParallel="0"/>
 </LaplaceFEM>

In the following section, we will see where this binding takes place.

Implementation File (reference)

Switching to implementation, we will focus on few implementations, leaving details
to other tutorials. The LaplaceFEM constructor is implemented as follows.

LaplaceFEM::LaplaceFEM(const string & name,
 Group * const parent):
 LaplaceBaseH1(name, parent)
{}

As we see, it calls the LaplaceBaseH1 constructor, that is implemented as follows.

LaplaceBaseH1::LaplaceBaseH1(const string & name,
 Group * const parent):
 SolverBase(name, parent),
 m_fieldName("primaryField"),
 m_timeIntegrationOption(TimeIntegrationOption::ImplicitTransient)
{
 this->registerWrapper(viewKeyStruct::timeIntegrationOption(), &m_timeIntegrationOption).
 setInputFlag(InputFlags::REQUIRED).
 setDescription("Time integration method. Options are:\n* " + EnumStrings< TimeIntegrationOption >::concat("\n* "));

 this->registerWrapper(viewKeyStruct::fieldVarName(), &m_fieldName).
 setInputFlag(InputFlags::REQUIRED).
 setDescription("Name of field variable");

}

Checking out the constructor, we can see that the use of a registerWrapper<T>(...)
allows us to register the key value from the enum viewKeyStruct defining them as:

	InputFlags::OPTIONAL if they are optional and can be provided;

	InputFlags::REQUIRED if they are required and will throw error if not;

and their associated descriptions for auto-generated docs.

void LaplaceBaseH1::registerDataOnMesh(Group & meshBodies)
{
 meshBodies.forSubGroups< MeshBody >([&] (MeshBody & meshBody)
 {
 NodeManager & nodes = meshBody.getMeshLevel(0).getNodeManager();

 nodes.registerWrapper< real64_array >(m_fieldName).
 setApplyDefaultValue(0.0).
 setPlotLevel(PlotLevel::LEVEL_0).
 setDescription("Primary field variable");
 });
}

registerDataOnMesh() is browsing all subgroups in the mesh Group object and
for all nodes in the sub group:

	register the observed field under the chosen m_fieldName key;

	apply a default value;

	set the output verbosity level (here PlotLevel::LEVEL_0);

	set the field associated description for auto generated docs.

void LaplaceFEM::assembleSystem(real64 const GEOSX_UNUSED_PARAM(time_n),
 real64 const GEOSX_UNUSED_PARAM(dt),
 DomainPartition & domain,
 DofManager const & dofManager,
 CRSMatrixView< real64, globalIndex const > const & localMatrix,
 arrayView1d< real64 > const & localRhs)
{
 MeshLevel & mesh = domain.getMeshBody(0).getMeshLevel(0);

 NodeManager & nodeManager = mesh.getNodeManager();
 string const dofKey = dofManager.getKey(m_fieldName);
 arrayView1d< globalIndex const > const &
 dofIndex = nodeManager.getReference< array1d< globalIndex > >(dofKey);

 LaplaceFEMKernelFactory kernelFactory(dofIndex, dofManager.rankOffset(), localMatrix, localRhs, m_fieldName);

 finiteElement::
 regionBasedKernelApplication< parallelDevicePolicy< 32 >,
 constitutive::NullModel,
 CellElementSubRegion >(mesh,
 targetRegionNames(),
 this->getDiscretizationName(),
 arrayView1d< string const >(),
 kernelFactory);

}

assembleSystem() will be our core focus as we want to change the diffusion coefficient from its
hard coded value to a XML read user-defined value. One can see that this method is in charge of constructing
in a parallel fashion the FEM system matrix. Bringing nodeManager and ElementRegionManager from domain local
MeshLevel object together with FiniteElementDiscretizationManager from the NumericalMethodManager, it uses
nodes embedded loops on degrees of freedom in a local index embedded loops to fill a matrix and a rhs container.

As we spotted the place to change in a code to get a user-defined diffusion coefficient into the game, let us jump
to writing our new LaplaceDiffFEM solver.

Note

We might want to remove final keyword from postProcessInput() as it will prevent you from overriding it.

Start doing your own Physic solver

As we will extend LaplaceFEM capabilities, we will derive publicly from it.

Declaration File

As there is only few places where we have to change, the whole declaration file is reported below and
commented afterwards.

#include "physicsSolvers/simplePDE/LaplaceFEM.hpp"

namespace geosx
{

class LaplaceDiffFEM : public LaplaceFEM
{
public:

 LaplaceDiffFEM() = delete;

 LaplaceDiffFEM(const string& name,
 Group * const parent);

 virtual ~LaplaceDiffFEM() override;

 static string catalogName() { return "LaplaceDiffFEM"; }

 virtual void
 assembleSystem(real64 const time,
 real64 const dt,
 DomainPartition * const domain,
 DofManager const & dofManager,
 ParallelMatrix & matrix,
 ParallelVector & rhs) override;

 struct viewKeyStruct : public LaplaceFEM::viewKeyStruct
 {
 dataRepository::ViewKey diffusionCoeff = { "diffusionCoeff" };
 } laplaceDiffFEMViewKeys;

 protected:
 virtual void postProcessInput() override final;

private:
 real64 m_diffusion;

};

We intend to have a user-defined diffusion coefficient, we then need a real64 class variable m_diffusion
to store it.

Consistently with LaplaceFEM, we will also delete the nullary constructor and declare a constructor with the same arguments for
forwarding to Group master class. Another mandatory step is to override the static CatalogName() method to properly
register any data from the new solver class.

Then as mentioned in Implementation File (reference), the diffusion coefficient is used when assembling the matrix coefficient. Hence
we will have to override the assembleSystem() function as detailed below.

Moreover, if we want to introduce a new binding between the input XML and the code we will have to work on the three
struct viewKeyStruct , postProcessInput() and the constructor.

Our new solver viewKeyStruct will have its own structure inheriting from the LaplaceFEM one to have the timeIntegrationOption
and fieldName field. It will also create a diffusionCoeff field to be bound to the user defined homogeneous coefficient on one hand
and to our m_diffusion class variable on the other.

Implementation File

As we have seen in Implementation File (reference), the first place where to implement a new register from XML input is
in the constructor. The diffusionCoeff entry we have defined in the laplaceDiffFEMViewKeys
will then be asked as a required input. If not provided, the error thrown will ask for it described asked
an “input uniform diffusion coefficient for the Laplace equation”.

LaplaceDiffFEM::LaplaceDiffFEM(const string& name,
 Group * const parent):
LaplaceFEM(name, parent), m_diffusion(0.0)
{
 registerWrapper<string>(laplaceDiffFEMViewKeys.diffusionCoeff.Key()).
 setInputFlag(InputFlags::REQUIRED).
 setDescription("input uniform diffusion coeff for the laplace equation");
}

Another important spot for binding the value of the XML read parameter to our m_diffusion is in postProcessInput().

void LaplaceDiffFEM::postProcessInput()
{
 LaplaceFEM::postProcessInput();

 string sDiffCoeff = this->getReference<string>(laplaceDiffFEMViewKeys.diffusionCoeff);
 this->m_diffusion = std::stof(sDiffCoeff);
}

Now that we have required, read and bind the user-defined diffusion value to a variable, we can use it in the construction of our
matrix into the overridden assembleSystem().

// begin element loop, skipping ghost elements
for(localIndex k=0 ; k<elementSubRegion->size() ; ++k)
{
 if(elemGhostRank[k] < 0)
 {
 element_rhs = 0.0;
 element_matrix = 0.0;
 for(localIndex q=0 ; q<n_q_points ; ++q)
 {
 for(localIndex a=0 ; a<numNodesPerElement ; ++a)
 {
 elemDofIndex[a] = dofIndex[elemNodes(k, a)];

 for(localIndex b=0 ; b<numNodesPerElement ; ++b)
 {
 element_matrix(a,b) += detJ[k][q] *
 m_diffusion *
 + Dot(dNdX[k][q][a], dNdX[k][q][b]);
 }

 }
 }
 matrix.add(elemDofIndex, elemDofIndex, element_matrix);
 rhs.add(elemDofIndex, element_rhs);
 }
}

This completes the implementation of our new solver LaplaceDiffFEM.

Nonetheless, the compiler should complain that m_fieldName is privately as inherited from LaplaceFEM. One should then either promote m_fieldName to protected
or add a getter in LaplaceFEM class to correct the error. The getter option has been chosen and the fix in our solver is then:

array1d<globalIndex> const & dofIndex =
 nodeManager->getReference< array1d<globalIndex> >(dofManager.getKey(getFieldName()));

Note: For consistency do not forget to change LaplaceFEM to LaplaceDiffFEM in the guards comments

Last steps

After assembling both declarations and implementations for our new solver, the final steps go as:

	add declarations to parent CMakeLists.txt (here add to physicsSolvers_headers);

	add implementations to parent CMakeLists.txt (here add to physicsSolvers_sources);

	check that Doxygen comments are properly set in our solver class;

	uncrustify it to match the code style;

	write unit tests for each new features in the solver class;

	write an integratedTests for the solver class.

Doxygen

The c++ source in GEOSX is annotated using doxygen. Our doxygen pages are
linked below.

GEOSX Doxygen PagesDevelopers may find it helpful to review the key code components described in the Developer Guide before diving into the doxygen.

Build Guide

Welcome to the GEOSX build guide.

	System prerequisites

	Third-party dependencies

	Building GEOSX

	Spack and Uberenv

	Continuous Integration process

System prerequisites

To configure and build GEOSX you will need the following tools available on your system.

List of prerequisites

Minimal requirements:

	CMake [https://cmake.org/] build system generator (3.13+).

	build tools (GNU make [https://www.gnu.org/software/make/] or ninja [https://ninja-build.org/] on Linux, XCode on MacOS).

	a C++ compiler with full c++14 standard support (gcc [https://gcc.gnu.org/] 8.3+ or clang [https://clang.llvm.org/] 8.0+ are recommended).

	python [https://www.python.org/] (2.7+ or 3.6+).

	zlib, blas and lapack libraries

	any compatible MPI runtime and compilers (if building with MPI)

If you want to build from a repository check out (instead of a release tarball):

	git [https://git-scm.com/] (2.20+ is tested, but most versions should work fine)

If you plan on building bundled third-party library (TPLs) dependencies yourself:

	Compatible C and Fortran compilers

If you will be checking out and running integrated tests (a submodule of GEOSX, currently not publicly available):

	git-lfs [https://git-lfs.github.com/] (Git Large File Storage extension)

	h5py [https://www.h5py.org/] and mpi4py [https://pypi.org/project/mpi4py/] python modules

If you are interested in building Doxygen documentation:

	GNU bison [https://www.gnu.org/software/bison/]

	LaTeX [https://www.latex-project.org/]

	ghostscript [https://www.ghostscript.com/]

	Graphviz [https://graphviz.org/]

In order for XML validation to work (executed as an optional build step):

	xmllint [http://xmlsoft.org/xmllint.html]

Installing prerequisites

On a local development machine with sudo/root privileges, most of these dependencies can be installed with a system package manager.
For example, on a Debian-based system (check your package manager for specific package names):

sudo apt install build-essential git git-lfs gcc g++ gfortran cmake libopenmpi-dev libblas-dev liblapack-dev zlib1g-dev python3 python3-h5py python3-mpi4py libxml2-utils

On HPC systems it is typical for these tools to be installed by system administrators and provided via modules [http://modules.sourceforge.net/].
To list available modules, type:

module avail

Then load the appropriate modules using module load command.
Please contact your system administrator if you need help choosing or installing appropriate modules.

Third-party dependencies

GEOSX makes use of multiple third-party libraries (TPLs) and tools, some of which are mandatory and some optional.
We only test against specific versions, and sometimes even require development snapshots (specific git commits).
Not all of these guarantee backwards compatibility, so we strongly recommend building with these specific versions.

List of third-party libraries and tools

The two tables below lists the dependencies with their specific versions and relevant CMake variables.
Some of these libraries may have their own system prerequisites.

Libraries

The following libraries are linked to by GEOSX:

	Name

	Version

	Enable option

	Path variable

	Description

	Adiak [https://github.com/LLNL/Adiak]

	0.2.0

	ENABLE_CALIPER

	ADIAK_DIR

	Library for collecting metadata from HPC application runs, and distributing that metadata to subscriber tools.

	Caliper [https://github.com/LLNL/Caliper]

	2.4.0

	ENABLE_CALIPER

	CALIPER_DIR

	Instrumentation and performance profiling library.

	conduit [https://github.com/LLNL/conduit]

	0.5.0

	mandatory

	CONDUIT_DIR

	Simplified Data Exchange for HPC Simulations.

	CHAI [https://github.com/LLNL/CHAI]

	2.2.2

	mandatory

	CHAI_DIR

	Copy-hiding array abstraction to automatically migrate data between memory spaces.

	RAJA [https://github.com/LLNL/RAJA]

	0.12.1

	mandatory

	RAJA_DIR

	Collection of C++ software abstractions that enable architecture portability for HPC applications.

	hdf5 [https://portal.hdfgroup.org/display/HDF5/HDF5]

	1.10.5

	mandatory

	HDF5_DIR

	High-performance data management and storage suite.

	mathpresso [https://github.com/kobalicek/mathpresso]

	2015-12-15

	ENABLE_MATHPRESSO

	MATHPRESSO_DIR

	Mathematical Expression Parser and JIT Compiler.

	pugixml [https://pugixml.org]

	1.8.0

	mandatory

	PUGIXML_DIR

	Light-weight, simple and fast XML parser for C++ with XPath support.

	parmetis [http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview]

	4.0.3

	mandatory (with MPI)

	PARMETIS_DIR

	Parallel Graph Partitioning library. Should be built with 64-bit idx_t type.

	suitesparse [https://people.engr.tamu.edu/davis/suitesparse.html]

	5.8.1

	ENABLE_SUITESPARSE

	SUITESPARSE_DIR

	A suite of sparse matrix software.

	superlu_dist [https://portal.nersc.gov/project/sparse/superlu]

	0f6efc3

	ENABLE_SUPERLU_DIST

	SUPERLU_DIST_DIR

	General purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations.

	hypre [https://github.com/hypre-space/hypre]

	2186a8f

	ENABLE_HYPRE

	HYPRE_DIR

	Library of high performance preconditioners and solvers for large sparse linear systems on massively parallel computers.

	PETSc [https://www.mcs.anl.gov/petsc]

	3.13.0

	ENABLE_PETSC

	PETSC_DIR

	Suite of data structures and routines for the scalable (parallel) solution of scientific applications.

	Trilinos [https://trilinos.github.io]

	12.18.1

	ENABLE_TRILINOS

	TRILINOS_DIR

	Collection of reusable scientific software libraries, known in particular for linear solvers.

	silo [https://wci.llnl.gov/simulation/computer-codes/silo]

	4.10.3

	mandatory

	SILO_DIR

	A Mesh and Field I/O Library and Scientific Database.

	VTK [https://vtk.org/]

	9.0.0-rc3

	ENABLE_VTK

	VTK_DIR

	Open source software for manipulating and displaying scientific data.

Tools

The following tools are used as part of the build process to support GEOSX development:

	Name

	Version

	Enable option

	Path variable

	Description

	doxygen [https://www.doxygen.nl/index.html]

	1.8.20

	ENABLE_DOXYGEN

	DOXYGEN_EXECUTABLE

	De facto standard tool for generating documentation from annotated C++ sources.

	sphinx [https://www.sphinx-doc.org/en/master/]

	1.8.5

	ENABLE_SPHINX

	SPHINX_EXECUTABLE

	A tool that makes it easy to create intelligent and beautiful documentation.

	uncrustify [http://uncrustify.sourceforge.net]

	401a409

	ENABLE_UNCRUSTIFY

	UNCRUSTIFY_EXECUTABLE

	A source code beautifier for C, C++, C#, ObjectiveC, D, Java, Pawn and VALA.

Some other dependencies (GoogleTest [https://github.com/google/googletest], GoogleBenchmark [https://github.com/google/benchmark]) are provided through BLT [https://github.com/LLNL/blt] build system which is embedded in GEOSX source.
No actions are needed to build them.

If you would like to create a Docker image with all dependencies, take a look at
Dockerfiles [https://github.com/GEOSX/thirdPartyLibs/tree/master/docker]
that are used in our CI process.

Building bundled dependencies

To simplify the process of building TPLs, we provide a git repository thirdPartyLibs [https://github.com/GEOSX/thirdPartyLibs].
It contains source copies of exact TPL versions required and is updated periodically.
It also contains a CMake script for building all TPLs in a single command.

The recommended steps to build TPLs are:

	Create a host-config file that sets all system-specific CMake variables (compiler and library paths, configuration flags, etc.)
Take a look at host-config examples [https://github.com/GEOSX/GEOSX/blob/develop/host-configs].

	Configure via config-build.py script:

cd thirdPartyLibs
python scripts/config-build.py --hostconfig=/path/to/host-config.cmake --buildtype=Release --installpath=/path/to/install/dir -DNUM_PROC=8

where

	--buildpath or -bp is the build directory (by default, created under current).

	--installpath or -ip is the installation directory(wraps CMAKE_INSTALL_PREFIX).

	--buildtype or -bt is a wrapper to the CMAKE_BUILD_TYPE option.

	--hostconfig or -hc is a path to host-config file.

	all other command-line options are passed to CMake.

	Run the build:

cd <buildpath>
make

Warning

Do not provide -j argument to make here, since the top-level make only launches sub-project builds.
Instead use -DNUM_PROC option above, which is passed to each sub-project’s make command.

You may also run the CMake configure step manually instead of relying on config-build.py.
The full TPL build may take anywhere between 15 minutes and 2 hours, depending on your machine, number of threads and libraries enabled.

Note

An exception from the above pattern, sphinx is currently not a part of the TPL bundle and must be installed with your Python or package manager.

Note

PETSc build currently downloads pt-scotch [https://www.labri.fr/perso/pelegrin/scotch/scotch_en.html] from the internet.
If you do not have access to internet, modify the ./configure step of petsc in CMakeLists.txt and change the --download-ptscotch option accordingly.
pt-scotch also relies on bison and flex.

Installing dependencies individually

You may also install each individual TPL separately, either manually or through a package manager.
This is a more difficult route, since you are responsible for configuring dependencies in a compatible manner.
Again, we strongly recommend using the exact versions listed above, to avoid possible build problems.

You may look at our TPL CMake script [https://github.com/GEOSX/thirdPartyLibs/blob/master/CMakeLists.txt] to see how we configure TPL builds.

Building GEOSX

Build steps

	Create a host-config file that sets all system-specific CMake variables.
Take a look at host-config examples [https://github.com/GEOSX/GEOSX/blob/develop/host-configs].
We recommend the same host-config is used for both TPL and GEOSX builds.
In particular, certain options (such as ENABLE_MPI or ENABLE_CUDA) need to match between the two.

	Provide paths to all enabled TPLs.
This can be done in one of two ways:

	Provide each path via a separate CMake variable (see Third-party dependencies for path variable names).

	If you built TPLs from the tplMirror repository, you can set GEOSX_TPL_DIR variable in your host-config to point to the TPL installation path, and

include("/path/to/GEOSX/host-configs/tpls.cmake")

which will set all the individual TPL paths for you.

	Configure via config-build.py script:

cd GEOSX
python scripts/config-build.py --hostconfig=/path/to/host-config.cmake --buildtype=Release --installpath=/path/to/install/dir

where

	--buildpath or -bp is the build directory (by default, created under current working dir).

	--installpath or -ip is the installation directory(wraps CMAKE_INSTALL_PREFIX).

	--buildtype or -bt is a wrapper to the CMAKE_BUILD_TYPE option.

	--hostconfig or -hc is a path to host-config file.

	all unrecognized options are passed to CMake.

	Run the build:

cd <buildpath>
make -j

You may also run the CMake configure step manually instead of relying on config-build.py.
A full build typically takes between 10 and 30 minutes, depending on chosen compilers, options and number of cores.

Configuration options

Below is a list of CMake configuration options, in addition to TPL options above.
Some options, when enabled, require additional settings (e.g. ENABLE_CUDA).
Please see host-config examples [https://github.com/GEOSX/GEOSX/blob/develop/host-configs].

	Option

	Default

	Explanation

	ENABLE_MPI

	ON

	Build with MPI (also applies to TPLs)

	ENABLE_OPENMP

	OFF

	Build with OpenMP (also applies to TPLs)

	ENABLE_CUDA

	OFF

	Build with CUDA (also applies to TPLs)

	ENABLE_DOCS

	ON

	Build documentation (Sphinx and Doxygen)

	ENABLE_WARNINGS_AS_ERRORS

	ON

	Treat all warnings as errors

	ENABLE_PAMELA

	ON

	Enable PAMELA library (required for external mesh import)

	ENABLE_PVTPackage

	ON

	Enable PVTPackage library (required for compositional flow runs)

	ENABLE_TOTALVIEW_OUTPUT

	OFF

	Enables TotalView debugger custom view of GEOSX data structures

	GEOSX_ENABLE_FPE

	ON

	Enable floating point exception trapping

	GEOSX_LA_INTERFACE

	Hypre

	Choiсe of Linear Algebra backend (Hypre/Petsc/Trilinos)

	GEOSX_BUILD_OBJ_LIBS

	ON

	Use CMake Object Libraries build

	GEOSX_BUILD_SHARED_LIBS

	OFF

	Build geosx_core as a shared library instead of static

	GEOSX_PARALLEL_COMPILE_JOBS

	
	Max. number of compile jobs (when using Ninja), in addition to -j flag

	GEOSX_PARALLEL_LINK_JOBS

	
	Max. number of link jobs (when using Ninja), in addition to -j flag

Spack and Uberenv

GEOSX is transitioning to a new Spack [https://github.com/spack/spack/] and Uberenv [https://github.com/LLNL/uberenv] system for building our dependencies. We refer the reader to the Spack documentation [https://spack.readthedocs.io/en/latest/index.html] and Uberenv documentation [https://uberenv.readthedocs.io/en/latest/], in particular the Spack documentation for specs and dependencies [https://spack.readthedocs.io/en/latest/basic_usage.html#specs-dependencies], manual compiler configuration [https://spack.readthedocs.io/en/latest/getting_started.html?highlight=compilers.yaml#manual-compiler-configuration] and external packages [https://spack.readthedocs.io/en/latest/build_settings.html#external-packages] are worth reading.

Building the dependencies can be as simple as running

./scripts/uberenv/uberenv.py

This will create a directory uberenv_libs in the current working directory, clone Spack into uberenv_libs/spack and install the dependencies into uberenv_libs/system_dependent_path. It will then spit out a host-config file in the current directory which you can use to build GEOSX. While the above command should work on every system, it should never be used. Invoked as such, Spack will ignore any system libraries you have installed and will go down a rabbit hole building dependencies. Furthermore this does not allow you to choose the compiler to build. Both of these are easily solved by creating a directory with a packages.yaml and a compilers.yaml.

To prevent this from happening you’ll need to create a directory with a packages.yaml file and a compilers.yaml file. You can find working examples for commonly used systems in scripts/uberenv/spack_configs [https://github.com/GEOSX/GEOSX/tree/develop/scripts/uberenv/spack_configs]. It is worth noting that each LC system type has two such directories, for example there is a toss_3_x85_54_ib and toss_3_x85_54_ib_python directory. This is because when building pygeosx Python needs to be built from scratch, and as such cannot be listed in packages.yaml. However, when not building pygeosx other dependencies depend on python, but an existing system version works just fine, so it can be put in packages.yaml to prevent Spack from building it.

Once you have these files setup you can run Uberenv again and instruct it to use them with. If for instance you added Clang 10.0.1 to the compilers.yaml file the your command would look something like this:

./scripts/uberenv/uberenv.py --spack-config-dir=/path/to/your/config/directory/ --spec="%clang@10.0.1"

Note

When building pygeosx, Spack will build various python packages, however by default they are not installed in python. There are various ways of accomplishing this [https://spack.readthedocs.io/en/latest/basic_usage.html#extensions-python-support], but the recommended approach is to use spack activate. The command would look something like this ./uberenv_libs/spack/bin/spack activate py-numpy py-scipy py-pip py-mpi4py

Build Configuration

The GEOSX Spack package has a lot of options for controlling which dependencies you would like to build and how you’d like them built. The GEOSX Spack package file is at `scripts/uberenv/packages/geosx/package.py <https://github.com/GEOSX/GEOSX/tree/develop/scripts/uberenv/packages/geosx/package.py>`_. The variants for the package are as follows

 variant('shared', default=True, description='Build Shared Libs.')
 variant('caliper', default=True, description='Build Caliper support.')
 variant('mkl', default=False, description='Use the Intel MKL library.')
 variant('essl', default=False, description='Use the IBM ESSL library.')
 variant('suite-sparse', default=True, description='Build SuiteSparse support.')
 variant('trilinos', default=True, description='Build Trilinos support.')
 variant('hypre', default=True, description='Build HYPRE support.')
 variant('hypre-cuda', default=False, description='Build HYPRE with CUDA support.')
 variant('petsc', default=True, description='Build PETSc support.')
 variant('lai', default='trilinos', description='Linear algebra interface.',
 values=('trilinos', 'hypre', 'petsc'), multi=False)
 variant('pygeosx', default=False, description='Build the GEOSX python interface.')

For example if you wanted to build with GCC 8.3.1, without Caliper and with PETSC as the Linear Algebra Interface, your spec would be %gcc@8.3.1 ~caliper lai=petsc.

The GEOSX Spack package lists out the libraries that GEOSX depends ons. Currently these dependencies are

 depends_on('cmake@3.8:', type='build')
 depends_on('cmake@3.9:', when='+cuda', type='build')

 #
 # Virtual packages
 #
 depends_on('mpi')
 depends_on('blas')
 depends_on('lapack')

 #
 # Performance portability
 #
 depends_on('raja@0.12.1 +openmp +shared ~examples ~exercises')
 depends_on('raja +cuda', when='+cuda')

 depends_on('umpire@4.1.2 ~c +shared +openmp ~examples')
 depends_on('umpire +cuda', when='+cuda')

 depends_on('chai@2.2.2 +shared +raja ~benchmarks ~examples')
 depends_on('chai@2.2.2 +cuda', when='+cuda')

 #
 # IO
 #
 depends_on('hdf5@1.10.5: +shared +pic +mpi', when='~vtk')

 depends_on('conduit@0.5.0 +shared ~test ~fortran +mpi +hdf5 ~hdf5_compat')

 depends_on('silo@4.10: ~fortran +shared ~silex +pic +mpi ~zlib')

 depends_on('adiak@0.2: +mpi +shared', when='+caliper')
 depends_on('caliper@2.4: +shared +adiak +mpi ~callpath ~libpfm ~gotcha ~sampler', when='+caliper')

 depends_on('pugixml@1.8: +shared')

 depends_on('fmt@8.0: +cxxstd=14 +pic')

 #
 # Math
 #
 depends_on('intel-mkl +shared ~ilp64', when='+mkl')

 # depends_on('essl ~ilp64 threads=openmp +lapack +cuda', when='+essl')

 depends_on('parmetis@4.0.3: +shared +int64')

 depends_on('superlu-dist +int64 +openmp +shared', when='~petsc')
 depends_on('superlu-dist@6.3.0 +int64 +openmp +shared', when='+petsc')

 depends_on('suite-sparse@5.8.1: +pic +openmp +amd +camd +colamd +ccolamd +cholmod +umfpack', when='+suite-sparse')
 depends_on('suite-sparse +blas-no-underscore', when='%gcc +suite-sparse +essl')

 trilinos_build_options = '~fortran +openmp +shared'
 trilinos_tpls = '~boost ~glm ~gtest ~hdf5 ~hypre ~matio ~metis +mpi ~mumps ~netcdf ~suite-sparse'
 trilinos_packages = '+amesos +aztec +epetra +epetraext +ifpack +kokkos +ml +stk +stratimikos +teuchos +tpetra ~amesos2 ~anasazi ~belos ~exodus ~ifpack2 ~muelu ~sacado ~zoltan ~zoltan2'
 depends_on('trilinos@12.18.1 ' + trilinos_build_options + trilinos_tpls + trilinos_packages, when='+trilinos')
 depends_on('trilinos +blas_lowercase_no_underscore', when='+trilinos +essl')
 # depends_on('trilinos +force-new-lapack', when='+trilinos +essl')

 depends_on('hypre@2.20.300 +shared +superlu-dist +mixedint +mpi +openmp', when='+hypre')
 depends_on('hypre@2.20.300 +cuda +shared +superlu-dist +mpi +openmp +unified-memory +cusparse', when='+hypre-cuda')

 petsc_build_options = '+shared +mpi'
 petsc_tpls = '+metis ~hdf5 ~hypre +superlu-dist +int64'
 depends_on('petsc@3.13.0: ' + petsc_build_options + petsc_tpls, when='+petsc')

 #
 # Python
 #
 depends_on('python +shared +pic', when='+pygeosx')
 depends_on('py-numpy@1.19: +blas +lapack +force-parallel-build', when='+pygeosx')
 depends_on('py-scipy@1.5.2: +force-parallel-build', when='+pygeosx')
 depends_on('py-mpi4py@3.0.3:', when='+pygeosx')
 depends_on('py-pip', when='+pygeosx')

 #
 # Dev tools
 #
 depends_on('uncrustify@0.71:')

 #
 # Documentation
 #
 depends_on('doxygen@1.8.13:', when='+docs', type='build')
 depends_on('py-sphinx@1.6.3:', when='+docs', type='build')

Using the Spack spec syntax you can inturn specify variants for each of the dependencies of GEOSX. So for example if you could modify the spec above to build RAJA in debug by using %gcc@8.3.1 ~caliper lai=petsc ^raja build_type=Debug. When building with Uberenv Spack should print out a table containing the full spec for every dependency it will build. If you would like to look at the variants for say RAJA in more detail you can find the package file at uberenv_libs/spack/var/spack/repos/builtin/packages/raja/package.py.

Adding a Dependency (Advanced)

Adding a dependency to GEOSX is straight forward if the dependency already builds with Spack. If that is the case then all you need to do is add a depends_on('cool-new-library') to the GEOSX package.py file. If however the dependency doesn’t have a Spack package, you will have to add one by creating a cool-new-library/package.yaml file in the scripts/uberenv/packages directory and adding the logic to build it there.

Oftentimes (unfortunately), even when a package already exists, it might not work out of the box for your system. In this case copy over the existing package.py file from the Spack repository into scripts/uberenv/packages/cool-new-library/package.py, as if you were adding a new package, and perform your modifications there. Once you have the package working, copy the package back into the Spack repository (running Uberenv should do this for you) and commit+push your changes to Spack.

Continuous Integration process

To save building time, the third party libraries (that do not change so often) and GEOSX are build separately.

Everytime a pull is requested in the TPL repository, docker images are generated and deployed on dockerhub [https://hub.docker.com/r/geosx].
The repository names (ubuntu18.04-gcc8 [https://hub.docker.com/r/geosx/ubuntu18.04-gcc8],
centos7.7.1908-clang9.0.0 [https://hub.docker.com/r/geosx/centos7.5.1804-clang6.0.1], centos7.6.1810-gcc8.3.1-cuda10.1.243 [https://hub.docker.com/r/geosx/centos7.6.1810-gcc8.3.1-cuda10.1.243] etc.)
obviously reflect the OS and the compiler flavour used.
For each image, the unique ${TRAVIS_PULL_REQUEST}-${TRAVIS_BUILD_NUMBER} tag is used so we can connect the related code source in a rather convenient way.
Each docker contains the org.opencontainers.image.created and org.opencontainers.image.revision labels to provide additional information.

For the OSX builds, we construct a tarball of the TPLs and save them in a remote cloud storage.
There is currently only one mac osx tested environment (xcode 11.2) and the same ${TRAVIS_PULL_REQUEST}-${TRAVIS_BUILD_NUMBER} pattern is used as an identifier for the build.
An important counterpart to using a tarball and not a docker image is that the tarball does not provide the whole system the precompiled binaries rely on.
Problems may arise since we use the rolling release Homebrew [https://brew.sh/] (to install open-mpi in particular).
To circumvent this potential issue, the brew version is fixed to a specific commit (see BREW_HASH variable in third party’s .travis.yml [https://github.com/GEOSX/thirdPartyLibs/blob/master/.travis.yml])
and stored as a metainformation of the tarball blob inside the cloud storage.
It is therefore possible for GEOSX to recover this informatiom and build against the same revision of brew packages.
Note that the TRAVIS_PULL_REQUEST, TRAVIS_BUILD_NUMBER and TRAVIS_COMMIT are also stored as metainformation in the same way
(have a look at the OSX build section of GEOSX’s .travis.yml [https://github.com/GEOSX/GEOSX/blob/develop/.travis.yml] to see how to retrieve these informations).

There thus is only one unique identifier for both dockers and mac osx builds for one TPL code base.
It is necessary to define the global environment GEOSX_TPL_TAG (e.g. something like 82-254) to build against one selected version of the TPL.

It must be mentioned that one and only one version of the compiled TPL tarball is stored per pull request (older ones are removed automatically).
Therefore, a client building against a work in progress PR may experience a 404 error sooner or later.

Building docker images

Our continuous integration process builds the TPL and GEOSX against two operating systems (ubuntu and centos) and two compilers (clang and gcc).
The docker files use multi-stage builds [https://docs.docker.com/develop/develop-images/multistage-build/] in order to minimise the sizes of the images.

	First stage installs and defines all the elements that are commons to both TPL and GEOSX (for example, MPI and c++ compiler, BLAS, LAPACK, path to the installation directory…).

	As a second stage, we install everything needed to build (not run) the TPLs.
We keep nothing from this second step for GEOSX, except the compiled TPL themselves.
For example, a fortran compiler is needed by the TPL but not by GEOSX: it shall be installed during this step, so GEOSX won’t access a fortran compiler (it does not have to).

	Last stage copies the compiled TPL from second stage and installs the elements only required by GEOSX (there are few).

Docker images contract

GEOSX will find a compiled version of the third party libraries.

As part of the contract provided by the TPL, the docker images also defines several environment variables.
The

GEOSX_TPL_DIR

variable contains the absolute path of the installation root directory of the third party libraries.
GEOSX must use it when building.

Other variables are classical absolute path compiler variables.

CC
CXX
MPICC
MPICXX

And the absolute path the mpirun (or equivalent) command.

MPIEXEC

The following openmpi environment variables allow it to work properly in the docker container.
But there should be no reason to access or use them explicitly.

OMPI_CC=$CC
OMPI_CXX=$CXX

Datastructure Index

Input Schema Definitions

XML Schema

Element: AcousticSEM

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	outputSismoTrace

	localIndex

	0

	Flag that indicates if we write the sismo trace in a file .txt, 0 no output, 1 otherwise

	receiverCoordinates

	real64_array2d

	required

	Coordinates (x,y,z) of the receivers

	rickerOrder

	localIndex

	2

	Flag that indicates the order of the Ricker to be used o, 1 or 2. Order 2 by default

	sourceCoordinates

	real64_array2d

	required

	Coordinates (x,y,z) of the sources

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	timeSourceFrequency

	real64

	required

	Central frequency for the time source

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: Aquifer

	Name

	Type

	Default

	Description

	allowAllPhasesIntoAquifer

	integer

	0

	
Flag to allow all phases to flow into the aquifer.

This flag only matters for the configuration in which flow is from reservoir to aquifer.

- If the flag is equal to 1, then all phases, including non-aqueous phases, are allowed to flow into the aquifer.

- If the flag is equal to 0, then only the water phase is allowed to flow into the aquifer.

If you are in a configuration in which flow is from reservoir to aquifer and you expect non-aqueous phases to saturate the reservoir cells next to the aquifer, set this flag to 1.

This keyword is ignored for single-phase flow simulations

	aquiferAngle

	real64

	required

	Angle subtended by the aquifer boundary from the center of the reservoir [degress]

	aquiferElevation

	real64

	required

	Aquifer elevation (positive going upward) [m]

	aquiferInitialPressure

	real64

	required

	Aquifer initial pressure [Pa]

	aquiferInnerRadius

	real64

	required

	Aquifer inner radius [m]

	aquiferPermeability

	real64

	required

	Aquifer permeability [m^2]

	aquiferPorosity

	real64

	required

	Aquifer porosity

	aquiferThickness

	real64

	required

	Aquifer thickness [m]

	aquiferTotalCompressibility

	real64

	required

	Aquifer total compressibility (rock and fluid) [Pa^-1]

	aquiferWaterDensity

	real64

	required

	Aquifer water density [kg.m^-3]

	aquiferWaterPhaseComponentFraction

	real64_array

	{0}

	Aquifer water phase component fraction. This keyword is ignored for single-phase flow simulations.

	aquiferWaterPhaseComponentNames

	string_array

	{}

	Aquifer water phase component names. This keyword is ignored for single-phase flow simulations.

	aquiferWaterViscosity

	real64

	required

	Aquifer water viscosity [Pa.s]

	bcApplicationTableName

	string

	
	Name of table that specifies the on/off application of the bc.

	beginTime

	real64

	-1e+99

	time at which BC will start being applied.

	direction

	R1Tensor

	{0,0,0}

	Direction to apply boundary condition to

	endTime

	real64

	1e+99

	time at which bc will stop being applied

	functionName

	string

	
	Name of function that specifies variation of the BC

	initialCondition

	integer

	0

	BC is applied as an initial condition.

	name

	string

	required

	A name is required for any non-unique nodes

	pressureInfluenceFunctionName

	string

	
	
Name of the table describing the pressure influence function

. If not provided, we use a default pressure influence function

	scale

	real64

	0

	Scale factor for value of BC.

	setNames

	string_array

	required

	Name of sets that boundary condition is applied to.

Element: Benchmarks

	Name

	Type

	Default

	Description

	lassen

	node

	unique

	Element: lassen

	quartz

	node

	unique

	Element: quartz

Element: BiotPorosity

	Name

	Type

	Default

	Description

	defaultReferencePorosity

	real64

	required

	Default value of the reference porosity

	grainBulkModulus

	real64

	required

	Grain bulk modulus

	name

	string

	required

	A name is required for any non-unique nodes

Element: BlackOilFluid

	Name

	Type

	Default

	Description

	componentMolarWeight

	real64_array

	required

	Component molar weights

	componentNames

	string_array

	{}

	List of component names

	hydrocarbonFormationVolFactorTableNames

	string_array

	{}

	
List of formation volume factor TableFunction names from the Functions block.

The user must provide one TableFunction per hydrocarbon phase, in the order provided in “phaseNames”.

For instance, if “oil” is before “gas” in “phaseNames”, the table order should be: oilTableName, gasTableName

	hydrocarbonViscosityTableNames

	string_array

	{}

	
List of viscosity TableFunction names from the Functions block.

The user must provide one TableFunction per hydrocarbon phase, in the order provided in “phaseNames”.

For instance, if “oil” is before “gas” in “phaseNames”, the table order should be: oilTableName, gasTableName

	name

	string

	required

	A name is required for any non-unique nodes

	phaseNames

	string_array

	required

	List of fluid phases

	surfaceDensities

	real64_array

	required

	List of surface mass densities for each phase

	tableFiles

	path_array

	{}

	List of filenames with input PVT tables (one per phase)

	waterCompressibility

	real64

	0

	Water compressibility

	waterFormationVolumeFactor

	real64

	0

	Water formation volume factor

	waterReferencePressure

	real64

	0

	Water reference pressure

	waterViscosity

	real64

	0

	Water viscosity

Element: Blueprint

	Name

	Type

	Default

	Description

	childDirectory

	string

	
	Child directory path

	name

	string

	required

	A name is required for any non-unique nodes

	outputFullQuadratureData

	integer

	0

	If true writes out data associated with every quadrature point.

	parallelThreads

	integer

	1

	Number of plot files.

	plotLevel

	geosx_dataRepository_PlotLevel

	1

	Determines which fields to write.

Element: BoundedPlane

	Name

	Type

	Default

	Description

	dimensions

	real64_array

	required

	Length and width of the bounded plane

	lengthVector

	R1Tensor

	required

	Tangent vector defining the orthonormal basis along with the normal.

	name

	string

	required

	A name is required for any non-unique nodes

	normal

	R1Tensor

	required

	Normal (n_x,n_y,n_z) to the plane (will be normalized automatically)

	origin

	R1Tensor

	required

	Origin point (x,y,z) of the plane (basically, any point on the plane)

	tolerance

	real64

	1e-05

	Tolerance to determine if a point sits on the plane or not. It is relative to the maximum dimension of the plane.

	widthVector

	R1Tensor

	required

	Tangent vector defining the orthonormal basis along with the normal.

Element: Box

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	strike

	real64

	-90

	The strike angle of the box

	xMax

	R1Tensor

	required

	Maximum (x,y,z) coordinates of the box

	xMin

	R1Tensor

	required

	Minimum (x,y,z) coordinates of the box

Element: BrooksCoreyBakerRelativePermeability

	Name

	Type

	Default

	Description

	gasOilRelPermExponent

	real64_array

	{1}

	
Rel perm power law exponent for the pair (gas phase, oil phase) at residual water saturation

The expected format is “{ gasExp, oilExp }”, in that order

	gasOilRelPermMaxValue

	real64_array

	{0}

	
Maximum rel perm value for the pair (gas phase, oil phase) at residual water saturation

The expected format is “{ gasMax, oilMax }”, in that order

	name

	string

	required

	A name is required for any non-unique nodes

	phaseMinVolumeFraction

	real64_array

	{0}

	Minimum volume fraction value for each phase

	phaseNames

	string_array

	required

	List of fluid phases

	waterOilRelPermExponent

	real64_array

	{1}

	
Rel perm power law exponent for the pair (water phase, oil phase) at residual gas saturation

The expected format is “{ waterExp, oilExp }”, in that order

	waterOilRelPermMaxValue

	real64_array

	{0}

	
Maximum rel perm value for the pair (water phase, oil phase) at residual gas saturation

The expected format is “{ waterMax, oilMax }”, in that order

Element: BrooksCoreyCapillaryPressure

	Name

	Type

	Default

	Description

	capPressureEpsilon

	real64

	1e-06

	Wetting-phase saturation at which the max cap. pressure is attained; used to avoid infinite cap. pressure values for saturations close to zero

	name

	string

	required

	A name is required for any non-unique nodes

	phaseCapPressureExponentInv

	real64_array

	{2}

	Inverse of capillary power law exponent for each phase

	phaseEntryPressure

	real64_array

	{1}

	Entry pressure value for each phase

	phaseMinVolumeFraction

	real64_array

	{0}

	Minimum volume fraction value for each phase

	phaseNames

	string_array

	required

	List of fluid phases

Element: BrooksCoreyRelativePermeability

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	phaseMinVolumeFraction

	real64_array

	{0}

	Minimum volume fraction value for each phase

	phaseNames

	string_array

	required

	List of fluid phases

	phaseRelPermExponent

	real64_array

	{1}

	Minimum relative permeability power law exponent for each phase

	phaseRelPermMaxValue

	real64_array

	{0}

	Maximum relative permeability value for each phase

Element: CO2BrineFluid

	Name

	Type

	Default

	Description

	componentMolarWeight

	real64_array

	{0}

	Component molar weights

	componentNames

	string_array

	{}

	List of component names

	flashModelParaFile

	path

	required

	Name of the file defining the parameters of the flash model

	name

	string

	required

	A name is required for any non-unique nodes

	phaseNames

	string_array

	{}

	List of fluid phases

	phasePVTParaFiles

	path_array

	required

	Names of the files defining the parameters of the viscosity and density models

Element: CarmanKozenyPermeability

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	particleDiameter

	real64

	required

	Diameter of the spherical particles.

	sphericity

	real64

	required

	Sphericity of the particles.

Element: CellElementRegion

	Name

	Type

	Default

	Description

	cellBlocks

	string_array

	{}

	(no description available)

	coarseningRatio

	real64

	0

	(no description available)

	materialList

	string_array

	required

	List of materials present in this region

	name

	string

	required

	A name is required for any non-unique nodes

Element: ChomboIO

	Name

	Type

	Default

	Description

	beginCycle

	real64

	required

	Cycle at which the coupling will commence.

	childDirectory

	string

	
	Child directory path

	inputPath

	string

	/INVALID_INPUT_PATH

	Path at which the chombo to geosx file will be written.

	name

	string

	required

	A name is required for any non-unique nodes

	outputPath

	string

	required

	Path at which the geosx to chombo file will be written.

	parallelThreads

	integer

	1

	Number of plot files.

	useChomboPressures

	integer

	0

	True iff geosx should use the pressures chombo writes out.

	waitForInput

	integer

	required

	True iff geosx should wait for chombo to write out a file. When true the inputPath must be set.

Element: CompositeFunction

	Name

	Type

	Default

	Description

	expression

	string

	
	Composite math expression

	functionNames

	string_array

	{}

	List of source functions. The order must match the variableNames argument.

	inputVarNames

	string_array

	{}

	Name of fields are input to function.

	name

	string

	required

	A name is required for any non-unique nodes

	variableNames

	string_array

	{}

	List of variables in expression

Element: CompositionalMultiphaseFVM

	Name

	Type

	Default

	Description

	allowLocalCompDensityChopping

	integer

	1

	Flag indicating whether local (cell-wise) chopping of negative compositions is allowed

	capPressureNames

	string_array

	{}

	Name of the capillary pressure constitutive model to use

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	computeCFLNumbers

	integer

	0

	Flag indicating whether CFL numbers are computed or not

	discretization

	string

	required

	Name of discretization object to use for this solver.

	fluidNames

	string_array

	required

	Names of fluid constitutive models for each region.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	inputFluxEstimate

	real64

	1

	Initial estimate of the input flux used only for residual scaling. This should be essentially equivalent to the input flux * dt.

	logLevel

	integer

	0

	Log level

	maxCompFractionChange

	real64

	1

	Maximum (absolute) change in a component fraction between two Newton iterations

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityNames

	string_array

	required

	Names of permeability constitutive models for each region.

	relPermNames

	string_array

	required

	Name of the relative permeability constitutive model to use

	solidNames

	string_array

	required

	Names of solid constitutive models for each region.

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	temperature

	real64

	required

	Temperature

	useMass

	integer

	0

	Use mass formulation instead of molar

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: CompositionalMultiphaseFluid

	Name

	Type

	Default

	Description

	componentAcentricFactor

	real64_array

	required

	Component acentric factors

	componentBinaryCoeff

	real64_array2d

	{{0}}

	Table of binary interaction coefficients

	componentCriticalPressure

	real64_array

	required

	Component critical pressures

	componentCriticalTemperature

	real64_array

	required

	Component critical temperatures

	componentMolarWeight

	real64_array

	required

	Component molar weights

	componentNames

	string_array

	required

	List of component names

	componentVolumeShift

	real64_array

	{0}

	Component volume shifts

	equationsOfState

	string_array

	required

	List of equation of state types for each phase

	name

	string

	required

	A name is required for any non-unique nodes

	phaseNames

	string_array

	required

	List of fluid phases

Element: CompositionalMultiphaseHybridFVM

	Name

	Type

	Default

	Description

	allowLocalCompDensityChopping

	integer

	1

	Flag indicating whether local (cell-wise) chopping of negative compositions is allowed

	capPressureNames

	string_array

	{}

	Name of the capillary pressure constitutive model to use

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	computeCFLNumbers

	integer

	0

	Flag indicating whether CFL numbers are computed or not

	discretization

	string

	required

	Name of discretization object to use for this solver.

	fluidNames

	string_array

	required

	Names of fluid constitutive models for each region.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	inputFluxEstimate

	real64

	1

	Initial estimate of the input flux used only for residual scaling. This should be essentially equivalent to the input flux * dt.

	logLevel

	integer

	0

	Log level

	maxCompFractionChange

	real64

	1

	Maximum (absolute) change in a component fraction between two Newton iterations

	maxRelativePressureChange

	real64

	1

	Maximum (relative) change in (face) pressure between two Newton iterations

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityNames

	string_array

	required

	Names of permeability constitutive models for each region.

	relPermNames

	string_array

	required

	Name of the relative permeability constitutive model to use

	solidNames

	string_array

	required

	Names of solid constitutive models for each region.

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	temperature

	real64

	required

	Temperature

	useMass

	integer

	0

	Use mass formulation instead of molar

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: CompositionalMultiphaseReservoir

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	flowSolverName

	string

	required

	Name of the flow solver to use in the reservoir-well system solver

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	wellSolverName

	string

	required

	Name of the well solver to use in the reservoir-well system solver

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: CompositionalMultiphaseWell

	Name

	Type

	Default

	Description

	allowLocalCompDensityChopping

	integer

	1

	Flag indicating whether local (cell-wise) chopping of negative compositions is allowed

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	fluidNames

	string_array

	required

	Name of fluid constitutive object to use for this solver.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	maxCompFractionChange

	real64

	1

	Maximum (absolute) change in a component fraction between two Newton iterations

	maxRelativePressureChange

	real64

	1

	Maximum (relative) change in pressure between two Newton iterations (recommended with rate control)

	name

	string

	required

	A name is required for any non-unique nodes

	relPermNames

	string_array

	required

	Names of relative permeability constitutive models to use

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	useMass

	integer

	0

	Use mass formulation instead of molar

	wellTemperature

	real64

	required

	Temperature

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	WellControls

	node

	
	Element: WellControls

Element: CompressibleSinglePhaseFluid

	Name

	Type

	Default

	Description

	compressibility

	real64

	0

	Fluid compressibility

	defaultDensity

	real64

	required

	Default value for density.

	defaultViscosity

	real64

	required

	Default value for viscosity.

	densityModelType

	geosx_constitutive_ExponentApproximationType

	linear

	
Type of density model. Valid options:

* exponential

* linear

* quadratic

	name

	string

	required

	A name is required for any non-unique nodes

	referenceDensity

	real64

	1000

	Reference fluid density

	referencePressure

	real64

	0

	Reference pressure

	referenceViscosity

	real64

	0.001

	Reference fluid viscosity

	viscosibility

	real64

	0

	Fluid viscosity exponential coefficient

	viscosityModelType

	geosx_constitutive_ExponentApproximationType

	linear

	
Type of viscosity model. Valid options:

* exponential

* linear

* quadratic

Element: CompressibleSolidCarmanKozenyPermeability

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

Element: CompressibleSolidConstantPermeability

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

Element: CompressibleSolidParallelPlatesPermeability

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

Element: ConstantPermeability

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityComponents

	R1Tensor

	required

	xx, yy and zz components of a diagonal permeability tensor.

Element: Constitutive

	Name

	Type

	Default

	Description

	BiotPorosity

	node

	
	Element: BiotPorosity

	BlackOilFluid

	node

	
	Element: BlackOilFluid

	BrooksCoreyBakerRelativePermeability

	node

	
	Element: BrooksCoreyBakerRelativePermeability

	BrooksCoreyCapillaryPressure

	node

	
	Element: BrooksCoreyCapillaryPressure

	BrooksCoreyRelativePermeability

	node

	
	Element: BrooksCoreyRelativePermeability

	CO2BrineFluid

	node

	
	Element: CO2BrineFluid

	CarmanKozenyPermeability

	node

	
	Element: CarmanKozenyPermeability

	CompositionalMultiphaseFluid

	node

	
	Element: CompositionalMultiphaseFluid

	CompressibleSinglePhaseFluid

	node

	
	Element: CompressibleSinglePhaseFluid

	CompressibleSolidCarmanKozenyPermeability

	node

	
	Element: CompressibleSolidCarmanKozenyPermeability

	CompressibleSolidConstantPermeability

	node

	
	Element: CompressibleSolidConstantPermeability

	CompressibleSolidParallelPlatesPermeability

	node

	
	Element: CompressibleSolidParallelPlatesPermeability

	ConstantPermeability

	node

	
	Element: ConstantPermeability

	Contact

	node

	
	Element: Contact

	Coulomb

	node

	
	Element: Coulomb

	DamageElasticIsotropic

	node

	
	Element: DamageElasticIsotropic

	DamageSpectralElasticIsotropic

	node

	
	Element: DamageSpectralElasticIsotropic

	DamageVolDevElasticIsotropic

	node

	
	Element: DamageVolDevElasticIsotropic

	DeadOilFluid

	node

	
	Element: DeadOilFluid

	DelftEgg

	node

	
	Element: DelftEgg

	DruckerPrager

	node

	
	Element: DruckerPrager

	ElasticIsotropic

	node

	
	Element: ElasticIsotropic

	ElasticIsotropicPressureDependent

	node

	
	Element: ElasticIsotropicPressureDependent

	ElasticOrthotropic

	node

	
	Element: ElasticOrthotropic

	ElasticTransverseIsotropic

	node

	
	Element: ElasticTransverseIsotropic

	ExtendedDruckerPrager

	node

	
	Element: ExtendedDruckerPrager

	ModifiedCamClay

	node

	
	Element: ModifiedCamClay

	NullModel

	node

	
	Element: NullModel

	ParallelPlatesPermeability

	node

	
	Element: ParallelPlatesPermeability

	ParticleFluid

	node

	
	Element: ParticleFluid

	PermeabilityBase

	node

	
	Element: PermeabilityBase

	PorousDruckerPrager

	node

	
	Element: PorousDruckerPrager

	PorousElasticIsotropic

	node

	
	Element: PorousElasticIsotropic

	PorousElasticOrthotropic

	node

	
	Element: PorousElasticOrthotropic

	PorousElasticTransverseIsotropic

	node

	
	Element: PorousElasticTransverseIsotropic

	PorousExtendedDruckerPrager

	node

	
	Element: PorousExtendedDruckerPrager

	PressurePorosity

	node

	
	Element: PressurePorosity

	ProppantPermeability

	node

	
	Element: ProppantPermeability

	ProppantPorosity

	node

	
	Element: ProppantPorosity

	ProppantSlurryFluid

	node

	
	Element: ProppantSlurryFluid

	ProppantSolidProppantPermeability

	node

	
	Element: ProppantSolidProppantPermeability

	StrainDependentPermeability

	node

	
	Element: StrainDependentPermeability

	TableCapillaryPressure

	node

	
	Element: TableCapillaryPressure

	TableRelativePermeability

	node

	
	Element: TableRelativePermeability

	VanGenuchtenBakerRelativePermeability

	node

	
	Element: VanGenuchtenBakerRelativePermeability

	VanGenuchtenCapillaryPressure

	node

	
	Element: VanGenuchtenCapillaryPressure

Element: Contact

	Name

	Type

	Default

	Description

	apertureTableName

	string

	required

	Name of the aperture table

	apertureTolerance

	real64

	1e-09

	Value to be used to avoid floating point errors in expressions involving aperture. For example in the case of dividing by the actual aperture (not the effective aperture that results from the aperture function) this value may be used to avoid the 1/0 error. Note that this value may have some physical significance in its usage, as it may be used to smooth out highly nonlinear behavior associated with 1/0 in addition to avoiding the 1/0 error.

	name

	string

	required

	A name is required for any non-unique nodes

	penaltyStiffness

	real64

	0

	Value of the penetration penalty stiffness. Units of Pressure/length

Element: Coulomb

	Name

	Type

	Default

	Description

	cohesion

	real64

	required

	Cohesion

	frictionAngle

	real64

	-1

	Friction angle (in radians)

	frictionCoefficient

	real64

	-1

	Friction coefficient

	name

	string

	required

	A name is required for any non-unique nodes

	penaltyStiffness

	real64

	0

	Value of the penetration penalty stiffness. Units of Pressure/length

Element: Cylinder

	Name

	Type

	Default

	Description

	innerRadius

	real64

	-1

	Inner radius of the anulus

	name

	string

	required

	A name is required for any non-unique nodes

	point1

	R1Tensor

	required

	Center point of one (upper or lower) face of the cylinder

	point2

	R1Tensor

	required

	Center point of the other face of the cylinder

	radius

	real64

	required

	Radius of the cylinder

Element: DamageElasticIsotropic

	Name

	Type

	Default

	Description

	criticalFractureEnergy

	real64

	required

	Critical fracture energy

	criticalStrainEnergy

	real64

	required

	Critical stress in a 1d tension test

	defaultBulkModulus

	real64

	-1

	Default Bulk Modulus Parameter

	defaultDensity

	real64

	required

	Default Material Density

	defaultPoissonRatio

	real64

	-1

	Default Poisson’s Ratio

	defaultShearModulus

	real64

	-1

	Default Shear Modulus Parameter

	defaultYoungModulus

	real64

	-1

	Default Young’s Modulus

	lengthScale

	real64

	required

	Length scale l in the phase-field equation

	name

	string

	required

	A name is required for any non-unique nodes

Element: DamageSpectralElasticIsotropic

	Name

	Type

	Default

	Description

	criticalFractureEnergy

	real64

	required

	Critical fracture energy

	criticalStrainEnergy

	real64

	required

	Critical stress in a 1d tension test

	defaultBulkModulus

	real64

	-1

	Default Bulk Modulus Parameter

	defaultDensity

	real64

	required

	Default Material Density

	defaultPoissonRatio

	real64

	-1

	Default Poisson’s Ratio

	defaultShearModulus

	real64

	-1

	Default Shear Modulus Parameter

	defaultYoungModulus

	real64

	-1

	Default Young’s Modulus

	lengthScale

	real64

	required

	Length scale l in the phase-field equation

	name

	string

	required

	A name is required for any non-unique nodes

Element: DamageVolDevElasticIsotropic

	Name

	Type

	Default

	Description

	criticalFractureEnergy

	real64

	required

	Critical fracture energy

	criticalStrainEnergy

	real64

	required

	Critical stress in a 1d tension test

	defaultBulkModulus

	real64

	-1

	Default Bulk Modulus Parameter

	defaultDensity

	real64

	required

	Default Material Density

	defaultPoissonRatio

	real64

	-1

	Default Poisson’s Ratio

	defaultShearModulus

	real64

	-1

	Default Shear Modulus Parameter

	defaultYoungModulus

	real64

	-1

	Default Young’s Modulus

	lengthScale

	real64

	required

	Length scale l in the phase-field equation

	name

	string

	required

	A name is required for any non-unique nodes

Element: DeadOilFluid

	Name

	Type

	Default

	Description

	componentMolarWeight

	real64_array

	required

	Component molar weights

	componentNames

	string_array

	{}

	List of component names

	hydrocarbonFormationVolFactorTableNames

	string_array

	{}

	
List of formation volume factor TableFunction names from the Functions block.

The user must provide one TableFunction per hydrocarbon phase, in the order provided in “phaseNames”.

For instance, if “oil” is before “gas” in “phaseNames”, the table order should be: oilTableName, gasTableName

	hydrocarbonViscosityTableNames

	string_array

	{}

	
List of viscosity TableFunction names from the Functions block.

The user must provide one TableFunction per hydrocarbon phase, in the order provided in “phaseNames”.

For instance, if “oil” is before “gas” in “phaseNames”, the table order should be: oilTableName, gasTableName

	name

	string

	required

	A name is required for any non-unique nodes

	phaseNames

	string_array

	required

	List of fluid phases

	surfaceDensities

	real64_array

	required

	List of surface mass densities for each phase

	tableFiles

	path_array

	{}

	List of filenames with input PVT tables (one per phase)

	waterCompressibility

	real64

	0

	Water compressibility

	waterFormationVolumeFactor

	real64

	0

	Water formation volume factor

	waterReferencePressure

	real64

	0

	Water reference pressure

	waterViscosity

	real64

	0

	Water viscosity

Element: DelftEgg

	Name

	Type

	Default

	Description

	defaultBulkModulus

	real64

	-1

	Default Bulk Modulus Parameter

	defaultCslSlope

	real64

	1

	Slope of the critical state line

	defaultDensity

	real64

	required

	Default Material Density

	defaultPoissonRatio

	real64

	-1

	Default Poisson’s Ratio

	defaultPreConsolidationPressure

	real64

	-1.5

	Initial preconsolidation pressure

	defaultRecompressionIndex

	real64

	0.002

	Recompresion Index

	defaultShapeParameter

	real64

	1

	Shape parameter for the yield surface

	defaultShearModulus

	real64

	-1

	Default Shear Modulus Parameter

	defaultVirginCompressionIndex

	real64

	0.005

	Virgin compression index

	defaultYoungModulus

	real64

	-1

	Default Young’s Modulus

	name

	string

	required

	A name is required for any non-unique nodes

Element: Dirichlet

	Name

	Type

	Default

	Description

	bcApplicationTableName

	string

	
	Name of table that specifies the on/off application of the bc.

	beginTime

	real64

	-1e+99

	time at which BC will start being applied.

	component

	integer

	-1

	Component of field (if tensor) to apply boundary condition to

	direction

	R1Tensor

	{0,0,0}

	Direction to apply boundary condition to

	endTime

	real64

	1e+99

	time at which bc will stop being applied

	fieldName

	string

	
	Name of field that boundary condition is applied to.

	functionName

	string

	
	Name of function that specifies variation of the BC

	initialCondition

	integer

	0

	BC is applied as an initial condition.

	name

	string

	required

	A name is required for any non-unique nodes

	objectPath

	string

	
	Path to the target field

	scale

	real64

	0

	Scale factor for value of BC.

	setNames

	string_array

	required

	Name of sets that boundary condition is applied to.

Element: DruckerPrager

	Name

	Type

	Default

	Description

	defaultBulkModulus

	real64

	-1

	Default Bulk Modulus Parameter

	defaultCohesion

	real64

	0

	Initial cohesion

	defaultDensity

	real64

	required

	Default Material Density

	defaultDilationAngle

	real64

	30

	Dilation angle (degrees)

	defaultFrictionAngle

	real64

	30

	Friction angle (degrees)

	defaultHardeningRate

	real64

	0

	Cohesion hardening/softening rate

	defaultPoissonRatio

	real64

	-1

	Default Poisson’s Ratio

	defaultShearModulus

	real64

	-1

	Default Shear Modulus Parameter

	defaultYoungModulus

	real64

	-1

	Default Young’s Modulus

	name

	string

	required

	A name is required for any non-unique nodes

Element: ElasticIsotropic

	Name

	Type

	Default

	Description

	defaultBulkModulus

	real64

	-1

	Default Bulk Modulus Parameter

	defaultDensity

	real64

	required

	Default Material Density

	defaultPoissonRatio

	real64

	-1

	Default Poisson’s Ratio

	defaultShearModulus

	real64

	-1

	Default Shear Modulus Parameter

	defaultYoungModulus

	real64

	-1

	Default Young’s Modulus

	name

	string

	required

	A name is required for any non-unique nodes

Element: ElasticIsotropicPressureDependent

	Name

	Type

	Default

	Description

	defaultDensity

	real64

	required

	Default Material Density

	defaultRecompressionIndex

	real64

	0.002

	Recompresion Index

	defaultRefPressure

	real64

	-1

	Reference Pressure

	defaultRefStrainVol

	real64

	0

	Reference Volumetric Strain

	defaultShearModulus

	real64

	-1

	Elastic Shear Modulus Parameter

	name

	string

	required

	A name is required for any non-unique nodes

Element: ElasticOrthotropic

	Name

	Type

	Default

	Description

	defaultC11

	real64

	-1

	Default C11 Component of Voigt Stiffness Tensor

	defaultC12

	real64

	-1

	Default C12 Component of Voigt Stiffness Tensor

	defaultC13

	real64

	-1

	Default C13 Component of Voigt Stiffness Tensor

	defaultC22

	real64

	-1

	Default C22 Component of Voigt Stiffness Tensor

	defaultC23

	real64

	-1

	Default C23 Component of Voigt Stiffness Tensor

	defaultC33

	real64

	-1

	Default C33 Component of Voigt Stiffness Tensor

	defaultC44

	real64

	-1

	Default C44 Component of Voigt Stiffness Tensor

	defaultC55

	real64

	-1

	Default C55 Component of Voigt Stiffness Tensor

	defaultC66

	real64

	-1

	Default C66 Component of Voigt Stiffness Tensor

	defaultDensity

	real64

	required

	Default Material Density

	defaultE1

	real64

	-1

	Default Young’s Modulus E1

	defaultE2

	real64

	-1

	Default Young’s Modulus E2

	defaultE3

	real64

	-1

	Default Young’s Modulus E3

	defaultG12

	real64

	-1

	Default Shear Modulus G12

	defaultG13

	real64

	-1

	Default Shear Modulus G13

	defaultG23

	real64

	-1

	Default Shear Modulus G23

	defaultNu12

	real64

	-1

	Default Poission’s Ratio Nu12

	defaultNu13

	real64

	-1

	Default Poission’s Ratio Nu13

	defaultNu23

	real64

	-1

	Default Poission’s Ratio Nu23

	name

	string

	required

	A name is required for any non-unique nodes

Element: ElasticTransverseIsotropic

	Name

	Type

	Default

	Description

	defaultC11

	real64

	-1

	Default Stiffness Parameter C11

	defaultC13

	real64

	-1

	Default Stiffness Parameter C13

	defaultC33

	real64

	-1

	Default Stiffness Parameter C33

	defaultC44

	real64

	-1

	Default Stiffness Parameter C44

	defaultC66

	real64

	-1

	Default Stiffness Parameter C66

	defaultDensity

	real64

	required

	Default Material Density

	defaultPoissonRatioAxialTransverse

	real64

	-1

	Default Axial-Transverse Poisson’s Ratio

	defaultPoissonRatioTransverse

	real64

	-1

	Default Transverse Poisson’s Ratio

	defaultShearModulusAxialTransverse

	real64

	-1

	Default Axial-Transverse Shear Modulus

	defaultYoungModulusAxial

	real64

	-1

	Default Axial Young’s Modulus

	defaultYoungModulusTransverse

	real64

	-1

	Default Transverse Young’s Modulus

	name

	string

	required

	A name is required for any non-unique nodes

Element: ElementRegions

	Name

	Type

	Default

	Description

	CellElementRegion

	node

	
	Element: CellElementRegion

	SurfaceElementRegion

	node

	
	Element: SurfaceElementRegion

	WellElementRegion

	node

	
	Element: WellElementRegion

Element: EmbeddedSurfaceGenerator

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	fractureRegion

	string

	FractureRegion

	(no description available)

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	mpiCommOrder

	integer

	0

	Flag to enable MPI consistent communication ordering

	name

	string

	required

	A name is required for any non-unique nodes

	solidMaterialNames

	string_array

	required

	Name of the solid material used in solid mechanic solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: Events

	Name

	Type

	Default

	Description

	logLevel

	integer

	0

	Log level

	maxCycle

	integer

	2147483647

	Maximum simulation cycle for the global event loop.

	maxTime

	real64

	1.79769e+308

	Maximum simulation time for the global event loop.

	HaltEvent

	node

	
	Element: HaltEvent

	PeriodicEvent

	node

	
	Element: PeriodicEvent

	SoloEvent

	node

	
	Element: SoloEvent

Element: ExtendedDruckerPrager

	Name

	Type

	Default

	Description

	defaultBulkModulus

	real64

	-1

	Default Bulk Modulus Parameter

	defaultCohesion

	real64

	0

	Initial cohesion

	defaultDensity

	real64

	required

	Default Material Density

	defaultDilationRatio

	real64

	1

	Dilation ratio [0,1] (ratio = tan dilationAngle / tan frictionAngle)

	defaultHardening

	real64

	0

	Hardening parameter (hardening rate is faster for smaller values)

	defaultInitialFrictionAngle

	real64

	30

	Initial friction angle (degrees)

	defaultPoissonRatio

	real64

	-1

	Default Poisson’s Ratio

	defaultResidualFrictionAngle

	real64

	30

	Residual friction angle (degrees)

	defaultShearModulus

	real64

	-1

	Default Shear Modulus Parameter

	defaultYoungModulus

	real64

	-1

	Default Young’s Modulus

	name

	string

	required

	A name is required for any non-unique nodes

Element: FieldSpecification

	Name

	Type

	Default

	Description

	bcApplicationTableName

	string

	
	Name of table that specifies the on/off application of the bc.

	beginTime

	real64

	-1e+99

	time at which BC will start being applied.

	component

	integer

	-1

	Component of field (if tensor) to apply boundary condition to

	direction

	R1Tensor

	{0,0,0}

	Direction to apply boundary condition to

	endTime

	real64

	1e+99

	time at which bc will stop being applied

	fieldName

	string

	
	Name of field that boundary condition is applied to.

	functionName

	string

	
	Name of function that specifies variation of the BC

	initialCondition

	integer

	0

	BC is applied as an initial condition.

	name

	string

	required

	A name is required for any non-unique nodes

	objectPath

	string

	
	Path to the target field

	scale

	real64

	0

	Scale factor for value of BC.

	setNames

	string_array

	required

	Name of sets that boundary condition is applied to.

Element: FieldSpecifications

	Name

	Type

	Default

	Description

	Aquifer

	node

	
	Element: Aquifer

	Dirichlet

	node

	
	Element: Dirichlet

	FieldSpecification

	node

	
	Element: FieldSpecification

	SourceFlux

	node

	
	Element: SourceFlux

	Traction

	node

	
	Element: Traction

Element: File

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

Element: FiniteElementSpace

	Name

	Type

	Default

	Description

	formulation

	string

	default

	Specifier to indicate any specialized formuations. For instance, one of the many enhanced assumed strain methods of the Hexahedron parent shape would be indicated here

	name

	string

	required

	A name is required for any non-unique nodes

	order

	integer

	required

	The order of the finite element basis.

Element: FiniteElements

	Name

	Type

	Default

	Description

	FiniteElementSpace

	node

	
	Element: FiniteElementSpace

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: FiniteVolume

	Name

	Type

	Default

	Description

	HybridMimeticDiscretization

	node

	
	Element: HybridMimeticDiscretization

	TwoPointFluxApproximation

	node

	
	Element: TwoPointFluxApproximation

Element: FlowProppantTransport

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	flowSolverName

	string

	required

	Name of the flow solver to use in the flowProppantTransport solver

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	proppantSolverName

	string

	required

	Name of the proppant transport solver to use in the flowProppantTransport solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: Functions

	Name

	Type

	Default

	Description

	CompositeFunction

	node

	
	Element: CompositeFunction

	SymbolicFunction

	node

	
	Element: SymbolicFunction

	TableFunction

	node

	
	Element: TableFunction

Element: Geometry

	Name

	Type

	Default

	Description

	BoundedPlane

	node

	
	Element: BoundedPlane

	Box

	node

	
	Element: Box

	Cylinder

	node

	
	Element: Cylinder

	ThickPlane

	node

	
	Element: ThickPlane

Element: HaltEvent

	Name

	Type

	Default

	Description

	beginTime

	real64

	0

	Start time of this event.

	endTime

	real64

	1e+100

	End time of this event.

	finalDtStretch

	real64

	0.001

	Allow the final dt request for this event to grow by this percentage to match the endTime exactly.

	forceDt

	real64

	-1

	While active, this event will request this timestep value (ignoring any children/targets requests).

	logLevel

	integer

	0

	Log level

	maxEventDt

	real64

	-1

	While active, this event will request a timestep <= this value (depending upon any child/target requests).

	maxRuntime

	real64

	required

	The maximum allowable runtime for the job.

	name

	string

	required

	A name is required for any non-unique nodes

	target

	string

	
	Name of the object to be executed when the event criteria are met.

	targetExactStartStop

	integer

	1

	If this option is set, the event will reduce its timestep requests to match any specified beginTime/endTimes exactly.

	HaltEvent

	node

	
	Element: HaltEvent

	PeriodicEvent

	node

	
	Element: PeriodicEvent

	SoloEvent

	node

	
	Element: SoloEvent

Element: HybridMimeticDiscretization

	Name

	Type

	Default

	Description

	coefficientName

	string

	required

	Name of coefficient field

	innerProductType

	string

	required

	Type of inner product used in the hybrid FVM solver

	name

	string

	required

	A name is required for any non-unique nodes

Element: Hydrofracture

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	contactRelationName

	string

	required

	Name of contact relation to enforce constraints on fracture boundary.

	couplingTypeOption

	geosx_HydrofractureSolver_CouplingTypeOption

	required

	
Coupling method. Valid options:

* FIM

* SIM_FixedStress

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	fluidSolverName

	string

	required

	Name of the fluid mechanics solver to use in the poromechanics solver

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	maxNumResolves

	integer

	10

	Value to indicate how many resolves may be executed to perform surface generation after the execution of flow and mechanics solver.

	name

	string

	required

	A name is required for any non-unique nodes

	porousMaterialNames

	string_array

	required

	The name of the material that should be used in the constitutive updates

	solidSolverName

	string

	required

	Name of the solid mechanics solver to use in the poromechanics solver

	surfaceGeneratorName

	string

	required

	Name of the surface generator to use in the hydrofracture solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: Included

	Name

	Type

	Default

	Description

	File

	node

	
	Element: File

Element: InternalMesh

	Name

	Type

	Default

	Description

	cellBlockNames

	string_array

	required

	Names of each mesh block

	elementTypes

	string_array

	required

	Element types of each mesh block

	name

	string

	required

	A name is required for any non-unique nodes

	nx

	integer_array

	required

	Number of elements in the x-direction within each mesh block

	ny

	integer_array

	required

	Number of elements in the y-direction within each mesh block

	nz

	integer_array

	required

	Number of elements in the z-direction within each mesh block

	positionTolerance

	real64

	1e-10

	A position tolerance to verify if a node belong to a nodeset

	trianglePattern

	integer

	0

	Pattern by which to decompose the hex mesh into prisms (more explanation required)

	xBias

	real64_array

	{1}

	Bias of element sizes in the x-direction within each mesh block (dx_left=(1+b)*L/N, dx_right=(1-b)*L/N)

	xCoords

	real64_array

	required

	x-coordinates of each mesh block vertex

	yBias

	real64_array

	{1}

	Bias of element sizes in the y-direction within each mesh block (dy_left=(1+b)*L/N, dx_right=(1-b)*L/N)

	yCoords

	real64_array

	required

	y-coordinates of each mesh block vertex

	zBias

	real64_array

	{1}

	Bias of element sizes in the z-direction within each mesh block (dz_left=(1+b)*L/N, dz_right=(1-b)*L/N)

	zCoords

	real64_array

	required

	z-coordinates of each mesh block vertex

Element: InternalWell

	Name

	Type

	Default

	Description

	logLevel

	integer

	0

	Log level

	meshName

	string

	required

	Name of the reservoir mesh associated with this well

	name

	string

	required

	A name is required for any non-unique nodes

	numElementsPerSegment

	integer

	required

	Number of well elements per polyline segment

	polylineNodeCoords

	real64_array2d

	required

	Physical coordinates of the well polyline nodes

	polylineSegmentConn

	globalIndex_array2d

	required

	Connectivity of the polyline segments

	radius

	real64

	required

	Radius of the well

	wellControlsName

	string

	required

	Name of the set of constraints associated with this well

	wellRegionName

	string

	required

	Name of the well element region

	Perforation

	node

	
	Element: Perforation

Element: InternalWellbore

	Name

	Type

	Default

	Description

	autoSpaceRadialElems

	real64_array

	{-1}

	Automatically set number and spacing of elements in the radial direction. This overrides the values of nr!Value in each block indicates factor to scale the radial increment.Larger numbers indicate larger radial elements.

	cartesianMappingInnerRadius

	real64

	1e+99

	If using a Cartesian aligned outer boundary, this is inner radius at which to start the mapping.

	cellBlockNames

	string_array

	required

	Names of each mesh block

	elementTypes

	string_array

	required

	Element types of each mesh block

	hardRadialCoords

	real64_array

	{0}

	Sets the radial spacing to specified values

	name

	string

	required

	A name is required for any non-unique nodes

	nr

	integer_array

	required

	Number of elements in the radial direction

	nt

	integer_array

	required

	Number of elements in the tangent direction

	nz

	integer_array

	required

	Number of elements in the z-direction within each mesh block

	positionTolerance

	real64

	1e-10

	A position tolerance to verify if a node belong to a nodeset

	rBias

	real64_array

	{-0.8}

	Bias of element sizes in the radial direction

	radius

	real64_array

	required

	Wellbore radius

	theta

	real64_array

	required

	Tangent angle defining geometry size: 90 for quarter, 180 for half and 360 for full wellbore geometry

	trajectory

	real64_array2d

	{{0}}

	Coordinates defining the wellbore trajectory

	trianglePattern

	integer

	0

	Pattern by which to decompose the hex mesh into prisms (more explanation required)

	useCartesianOuterBoundary

	integer

	1000000

	Enforce a Cartesian aligned outer boundary on the outer block starting with the radial block specified in this value

	xBias

	real64_array

	{1}

	Bias of element sizes in the x-direction within each mesh block (dx_left=(1+b)*L/N, dx_right=(1-b)*L/N)

	yBias

	real64_array

	{1}

	Bias of element sizes in the y-direction within each mesh block (dy_left=(1+b)*L/N, dx_right=(1-b)*L/N)

	zBias

	real64_array

	{1}

	Bias of element sizes in the z-direction within each mesh block (dz_left=(1+b)*L/N, dz_right=(1-b)*L/N)

	zCoords

	real64_array

	required

	z-coordinates of each mesh block vertex

Element: LagrangianContact

	Name

	Type

	Default

	Description

	activeSetMaxIter

	integer

	10

	Maximum number of iteration for the active set strategy in the lagrangian contact solver

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	contactRelationName

	string

	required

	Name of the constitutive law used for fracture elements

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	solidSolverName

	string

	required

	Name of the solid mechanics solver to use in the lagrangian contact solver

	stabilizationName

	string

	required

	Name of the stabilization to use in the lagrangian contact solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: LaplaceFEM

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	fieldName

	string

	required

	Name of field variable

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	timeIntegrationOption

	geosx_LaplaceBaseH1_TimeIntegrationOption

	required

	
Time integration method. Options are:

* SteadyState

* ImplicitTransient

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: LaplaceVEM

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	fieldName

	string

	required

	Name of field variable

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	timeIntegrationOption

	geosx_LaplaceBaseH1_TimeIntegrationOption

	required

	
Time integration method. Options are:

* SteadyState

* ImplicitTransient

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: LinearSolverParameters

	Name

	Type

	Default

	Description

	amgAggresiveCoarseningLevels

	integer

	0

	
AMG number levels for aggressive coarsening

Available options are: TODO

	amgCoarseSolver

	geosx_LinearSolverParameters_AMG_CoarseType

	direct

	AMG coarsest level solver/smoother type. Available options are: default\|jacobi\|l1jacobi\|gs\|sgs\|l1sgs\|chebyshev\|direct

	amgCoarseningType

	string

	HMIS

	
AMG coarsening algorithm

Available options are: TODO

	amgInterpolationType

	integer

	6

	
AMG interpolation algorithm

Available options are: TODO

	amgNullSpaceType

	geosx_LinearSolverParameters_AMG_NullSpaceType

	constantModes

	AMG near null space approximation. Available options are:constantModes\|rigidBodyModes

	amgNumFunctions

	integer

	1

	
AMG number of functions

Available options are: TODO

	amgNumSweeps

	integer

	2

	AMG smoother sweeps

	amgSmootherType

	geosx_LinearSolverParameters_AMG_SmootherType

	gs

	AMG smoother type. Available options are: default\|jacobi\|l1jacobi\|gs\|sgs\|l1sgs\|chebyshev\|ilu0\|ilut\|ic0\|ict

	amgThreshold

	real64

	0

	AMG strength-of-connection threshold

	directCheckResidual

	integer

	0

	Whether to check the linear system solution residual

	directColPerm

	geosx_LinearSolverParameters_Direct_ColPerm

	metis

	How to permute the columns. Available options are: none\|MMD_AtplusA\|MMD_AtA\|colAMD\|metis\|parmetis

	directEquil

	integer

	1

	Whether to scale the rows and columns of the matrix

	directIterRef

	integer

	1

	Whether to perform iterative refinement

	directParallel

	integer

	1

	Whether to use a parallel solver (instead of a serial one)

	directReplTinyPivot

	integer

	1

	Whether to replace tiny pivots by sqrt(epsilon)*norm(A)

	directRowPerm

	geosx_LinearSolverParameters_Direct_RowPerm

	mc64

	How to permute the rows. Available options are: none\|mc64

	iluFill

	integer

	0

	ILU(K) fill factor

	iluThreshold

	real64

	0

	ILU(T) threshold factor

	krylovAdaptiveTol

	integer

	0

	Use Eisenstat-Walker adaptive linear tolerance

	krylovMaxIter

	integer

	200

	Maximum iterations allowed for an iterative solver

	krylovMaxRestart

	integer

	200

	Maximum iterations before restart (GMRES only)

	krylovTol

	real64

	1e-06

	
Relative convergence tolerance of the iterative method

If the method converges, the iterative solution [image: \mathsf{x}_k] is such that

the relative residual norm satisfies:

[image: \left\lVert \mathsf{b} - \mathsf{A} \mathsf{x}_k \right\rVert_2] < krylovTol * [image: \left\lVert\mathsf{b}\right\rVert_2]

	krylovWeakestTol

	real64

	0.001

	Weakest-allowed tolerance for adaptive method

	logLevel

	integer

	0

	Log level

	preconditionerType

	geosx_LinearSolverParameters_PreconditionerType

	iluk

	Preconditioner type. Available options are: none\|jacobi\|l1-jacobi\|gs\|sgs\|l1-sgs\|chebyshev\|iluk\|ilut\|icc\|ict\|amg\|mgr\|block\|direct

	solverType

	geosx_LinearSolverParameters_SolverType

	direct

	Linear solver type. Available options are: direct\|cg\|gmres\|fgmres\|bicgstab\|preconditioner

	stopIfError

	integer

	1

	Whether to stop the simulation if the linear solver reports an error

Element: Mesh

	Name

	Type

	Default

	Description

	InternalMesh

	node

	
	Element: InternalMesh

	InternalWell

	node

	
	Element: InternalWell

	InternalWellbore

	node

	
	Element: InternalWellbore

	PAMELAMeshGenerator

	node

	
	Element: PAMELAMeshGenerator

Element: ModifiedCamClay

	Name

	Type

	Default

	Description

	defaultCslSlope

	real64

	1

	Slope of the critical state line

	defaultDensity

	real64

	required

	Default Material Density

	defaultPreConsolidationPressure

	real64

	-1.5

	Initial preconsolidation pressure

	defaultRecompressionIndex

	real64

	0.002

	Recompresion Index

	defaultRefPressure

	real64

	-1

	Reference Pressure

	defaultRefStrainVol

	real64

	0

	Reference Volumetric Strain

	defaultShearModulus

	real64

	-1

	Elastic Shear Modulus Parameter

	defaultVirginCompressionIndex

	real64

	0.005

	Virgin compression index

	name

	string

	required

	A name is required for any non-unique nodes

Element: MultiphasePoromechanics

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	fluidSolverName

	string

	required

	Name of the fluid mechanics solver to use in the poroelastic solver

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	porousMaterialNames

	string_array

	required

	The name of the material that should be used in the constitutive updates

	solidSolverName

	string

	required

	Name of the solid mechanics solver to use in the poroelastic solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	allowNonConverged

	integer

	0

	Allow non-converged solution to be accepted. (i.e. exit from the Newton loop without achieving the desired tolerance)

	dtCutIterLimit

	real64

	0.7

	Fraction of the Max Newton iterations above which the solver asks for the time-step to be cut for the next dt.

	dtIncIterLimit

	real64

	0.4

	Fraction of the Max Newton iterations below which the solver asks for the time-step to be doubled for the next dt.

	lineSearchAction

	geosx_NonlinearSolverParameters_LineSearchAction

	Attempt

	
How the line search is to be used. Options are:

* None - Do not use line search.

* Attempt - Use line search. Allow exit from line search without achieving smaller residual than starting residual.

* Require - Use line search. If smaller residual than starting resdual is not achieved, cut time step.

	lineSearchCutFactor

	real64

	0.5

	Line search cut factor. For instance, a value of 0.5 will result in the effective application of the last solution by a factor of (0.5, 0.25, 0.125, …)

	lineSearchMaxCuts

	integer

	4

	Maximum number of line search cuts.

	logLevel

	integer

	0

	Log level

	maxSubSteps

	integer

	10

	Maximum number of time sub-steps allowed for the solver

	maxTimeStepCuts

	integer

	2

	Max number of time step cuts

	newtonMaxIter

	integer

	5

	Maximum number of iterations that are allowed in a Newton loop.

	newtonMinIter

	integer

	1

	Minimum number of iterations that are required before exiting the Newton loop.

	newtonTol

	real64

	1e-06

	The required tolerance in order to exit the Newton iteration loop.

	timestepCutFactor

	real64

	0.5

	Factor by which the time step will be cut if a timestep cut is required.

Element: NullModel

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

Element: NumericalMethods

	Name

	Type

	Default

	Description

	FiniteElements

	node

	unique

	Element: FiniteElements

	FiniteVolume

	node

	unique

	Element: FiniteVolume

Element: Outputs

	Name

	Type

	Default

	Description

	Blueprint

	node

	
	Element: Blueprint

	ChomboIO

	node

	
	Element: ChomboIO

	Python

	node

	
	Element: Python

	Restart

	node

	
	Element: Restart

	Silo

	node

	
	Element: Silo

	TimeHistory

	node

	
	Element: TimeHistory

	VTK

	node

	
	Element: VTK

Element: PAMELAMeshGenerator

	Name

	Type

	Default

	Description

	fieldNamesInGEOSX

	string_array

	{}

	Name of the fields within GEOSX

	fieldsToImport

	string_array

	{}

	Fields to be imported from the external mesh file

	file

	path

	required

	path to the mesh file

	name

	string

	required

	A name is required for any non-unique nodes

	reverseZ

	integer

	0

	0 : Z coordinate is upward, 1 : Z coordinate is downward

	scale

	real64

	1

	Scale the coordinates of the vertices

Element: PackCollection

	Name

	Type

	Default

	Description

	fieldName

	string

	required

	The name of the (packable) field associated with the specified object to retrieve data from

	name

	string

	required

	A name is required for any non-unique nodes

	objectPath

	string

	required

	The name of the object from which to retrieve field values.

	onlyOnSetChange

	localIndex

	0

	Whether or not to only collect when the collected sets of indices change in any way.

	setNames

	string_array

	{}

	The set(s) for which to retrieve data.

Element: ParallelPlatesPermeability

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

Element: Parameter

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	value

	string

	required

	Input parameter definition for the preprocessor

Element: Parameters

	Name

	Type

	Default

	Description

	Parameter

	node

	
	Element: Parameter

Element: ParticleFluid

	Name

	Type

	Default

	Description

	collisionAlpha

	real64

	1.27

	Collision alpha coefficient

	collisionBeta

	real64

	1.5

	Collision beta coefficient

	fluidViscosity

	real64

	0.001

	Fluid viscosity

	hinderedSettlingCoefficient

	real64

	5.9

	Hindered settling coefficient

	isCollisionalSlip

	integer

	0

	Whether the collisional component of the slip velocity is considered

	maxProppantConcentration

	real64

	0.6

	Max proppant concentration

	name

	string

	required

	A name is required for any non-unique nodes

	particleSettlingModel

	geosx_constitutive_ParticleSettlingModel

	required

	
Particle settling velocity model. Valid options:

* Stokes

* Intermediate

* Turbulence

	proppantDensity

	real64

	1400

	Proppant density

	proppantDiameter

	real64

	0.0002

	Proppant diameter

	slipConcentration

	real64

	0.1

	Slip concentration

	sphericity

	real64

	1

	Sphericity

Element: Perforation

	Name

	Type

	Default

	Description

	distanceFromHead

	real64

	required

	Linear distance from well head to the perforation

	name

	string

	required

	A name is required for any non-unique nodes

	transmissibility

	real64

	-1

	Perforation transmissibility

Element: PeriodicEvent

	Name

	Type

	Default

	Description

	beginTime

	real64

	0

	Start time of this event.

	cycleFrequency

	integer

	1

	Event application frequency (cycle, default)

	endTime

	real64

	1e+100

	End time of this event.

	finalDtStretch

	real64

	0.001

	Allow the final dt request for this event to grow by this percentage to match the endTime exactly.

	forceDt

	real64

	-1

	While active, this event will request this timestep value (ignoring any children/targets requests).

	function

	string

	
	Name of an optional function to evaluate when the time/cycle criteria are met.If the result is greater than the specified eventThreshold, the function will continue to execute.

	logLevel

	integer

	0

	Log level

	maxEventDt

	real64

	-1

	While active, this event will request a timestep <= this value (depending upon any child/target requests).

	name

	string

	required

	A name is required for any non-unique nodes

	object

	string

	
	If the optional function requires an object as an input, specify its path here.

	set

	string

	
	If the optional function is applied to an object, specify the setname to evaluate (default = everything).

	stat

	integer

	0

	If the optional function is applied to an object, specify the statistic to compare to the eventThreshold.The current options include: min, avg, and max.

	target

	string

	
	Name of the object to be executed when the event criteria are met.

	targetExactStartStop

	integer

	1

	If this option is set, the event will reduce its timestep requests to match any specified beginTime/endTimes exactly.

	targetExactTimestep

	integer

	1

	If this option is set, the event will reduce its timestep requests to match the specified timeFrequency perfectly: dt_request = min(dt_request, t_last + time_frequency - time)).

	threshold

	real64

	0

	If the optional function is used, the event will execute if the value returned by the function exceeds this threshold.

	timeFrequency

	real64

	-1

	Event application frequency (time). Note: if this value is specified, it will override any cycle-based behavior.

	HaltEvent

	node

	
	Element: HaltEvent

	PeriodicEvent

	node

	
	Element: PeriodicEvent

	SoloEvent

	node

	
	Element: SoloEvent

Element: PermeabilityBase

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

Element: PhaseFieldDamageFEM

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	fieldName

	string

	required

	name of field variable

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	localDissipation

	string

	required

	Type of local dissipation function. Can be Linear or Quadratic

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	solidMaterialNames

	string_array

	required

	name of solid constitutive model

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	timeIntegrationOption

	string

	required

	option for default time integration method

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: PhaseFieldFracture

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	couplingTypeOption

	geosx_PhaseFieldFractureSolver_CouplingTypeOption

	required

	
Coupling option. Valid options:

* FixedStress

* TightlyCoupled

	damageSolverName

	string

	required

	Name of the damage mechanics solver to use in the PhaseFieldFracture solver

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	solidSolverName

	string

	required

	Name of the solid mechanics solver to use in the PhaseFieldFracture solver

	subcycling

	integer

	required

	turn on subcycling on each load step

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: PorousDruckerPrager

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

Element: PorousElasticIsotropic

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

Element: PorousElasticOrthotropic

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

Element: PorousElasticTransverseIsotropic

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

Element: PorousExtendedDruckerPrager

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

Element: PressurePorosity

	Name

	Type

	Default

	Description

	compressibility

	real64

	required

	Solid compressibility

	defaultReferencePorosity

	real64

	required

	Default value of the reference porosity

	name

	string

	required

	A name is required for any non-unique nodes

	referencePressure

	real64

	required

	Reference pressure for solid compressibility

Element: Problem

	Name

	Type

	Default

	Description

	Benchmarks

	node

	unique

	Element: Benchmarks

	Constitutive

	node

	unique

	Element: Constitutive

	ElementRegions

	node

	unique

	Element: ElementRegions

	Events

	node

	unique, required

	Element: Events

	FieldSpecifications

	node

	unique

	Element: FieldSpecifications

	Functions

	node

	unique

	Element: Functions

	Geometry

	node

	unique

	Element: Geometry

	Included

	node

	unique

	Element: Included

	Mesh

	node

	unique, required

	Element: Mesh

	NumericalMethods

	node

	unique

	Element: NumericalMethods

	Outputs

	node

	unique, required

	Element: Outputs

	Parameters

	node

	unique

	Element: Parameters

	Solvers

	node

	unique, required

	Element: Solvers

	Tasks

	node

	unique

	Element: Tasks

Element: ProppantPermeability

	Name

	Type

	Default

	Description

	maxProppantConcentration

	real64

	required

	Maximum proppant concentration.

	name

	string

	required

	A name is required for any non-unique nodes

	proppantDiameter

	real64

	required

	Proppant diameter.

Element: ProppantPorosity

	Name

	Type

	Default

	Description

	defaultReferencePorosity

	real64

	required

	Default value of the reference porosity

	maxProppantConcentration

	real64

	required

	Maximum proppant concentration

	name

	string

	required

	A name is required for any non-unique nodes

Element: ProppantSlurryFluid

	Name

	Type

	Default

	Description

	componentNames

	string_array

	{}

	List of fluid component names

	compressibility

	real64

	0

	Fluid compressibility

	defaultCompressibility

	real64_array

	{0}

	Default value for compressibility.

	defaultDensity

	real64_array

	{0}

	Default value for density.

	defaultViscosity

	real64_array

	{0}

	Default value for viscosity.

	flowBehaviorIndex

	real64_array

	{0}

	Flow behavior index

	flowConsistencyIndex

	real64_array

	{0}

	Flow consistency index

	maxProppantConcentration

	real64

	0.6

	Maximum proppant concentration

	name

	string

	required

	A name is required for any non-unique nodes

	referenceDensity

	real64

	1000

	Reference fluid density

	referencePressure

	real64

	100000

	Reference pressure

	referenceProppantDensity

	real64

	1400

	Reference proppant density

	referenceViscosity

	real64

	0.001

	Reference fluid viscosity

Element: ProppantSolidProppantPermeability

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

Element: ProppantTransport

	Name

	Type

	Default

	Description

	bridgingFactor

	real64

	0

	Bridging factor used for bridging/screen-out calculation

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	criticalShieldsNumber

	real64

	0

	Critical Shields number

	discretization

	string

	required

	Name of discretization object to use for this solver.

	fluidNames

	string_array

	required

	Names of fluid constitutive models for each region.

	frictionCoefficient

	real64

	0.03

	Friction coefficient

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	inputFluxEstimate

	real64

	1

	Initial estimate of the input flux used only for residual scaling. This should be essentially equivalent to the input flux * dt.

	logLevel

	integer

	0

	Log level

	maxProppantConcentration

	real64

	0.6

	Maximum proppant concentration

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityNames

	string_array

	required

	Names of permeability constitutive models for each region.

	proppantDensity

	real64

	2500

	Proppant density

	proppantDiameter

	real64

	0.0004

	Proppant diameter

	proppantNames

	string_array

	required

	Name of proppant constitutive object to use for this solver.

	solidNames

	string_array

	required

	Names of solid constitutive models for each region.

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	updateProppantPacking

	integer

	0

	Flag that enables/disables proppant-packing update

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: Python

	Name

	Type

	Default

	Description

	childDirectory

	string

	
	Child directory path

	name

	string

	required

	A name is required for any non-unique nodes

	parallelThreads

	integer

	1

	Number of plot files.

Element: Restart

	Name

	Type

	Default

	Description

	childDirectory

	string

	
	Child directory path

	name

	string

	required

	A name is required for any non-unique nodes

	parallelThreads

	integer

	1

	Number of plot files.

Element: Run

	Name

	Type

	Default

	Description

	args

	string

	
	Any extra command line arguments to pass to GEOSX.

	autoPartition

	string

	
	May be ‘Off’ or ‘On’, if ‘On’ partitioning arguments are created automatically. Default is Off.

	name

	string

	required

	The name of this benchmark.

	nodes

	integer

	required

	The number of nodes needed to run the benchmark.

	strongScaling

	integer_array

	{0}

	Repeat the benchmark N times, scaling the number of nodes in the benchmark by these values.

	tasksPerNode

	integer

	required

	The number of tasks per node to run the benchmark with.

	threadsPerTask

	integer

	0

	The number of threads per task to run the benchmark with.

	timeLimit

	integer

	0

	The time limit of the benchmark.

Element: Silo

	Name

	Type

	Default

	Description

	childDirectory

	string

	
	Child directory path

	name

	string

	required

	A name is required for any non-unique nodes

	parallelThreads

	integer

	1

	Number of plot files.

	plotFileRoot

	string

	plot

	(no description available)

	plotLevel

	integer

	1

	(no description available)

	writeCellElementMesh

	integer

	1

	(no description available)

	writeEdgeMesh

	integer

	0

	(no description available)

	writeFEMFaces

	integer

	0

	(no description available)

	writeFaceElementMesh

	integer

	1

	(no description available)

Element: SinglePhaseFVM

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object to use for this solver.

	fluidNames

	string_array

	required

	Names of fluid constitutive models for each region.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	inputFluxEstimate

	real64

	1

	Initial estimate of the input flux used only for residual scaling. This should be essentially equivalent to the input flux * dt.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityNames

	string_array

	required

	Names of permeability constitutive models for each region.

	solidNames

	string_array

	required

	Names of solid constitutive models for each region.

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: SinglePhaseHybridFVM

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object to use for this solver.

	fluidNames

	string_array

	required

	Names of fluid constitutive models for each region.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	inputFluxEstimate

	real64

	1

	Initial estimate of the input flux used only for residual scaling. This should be essentially equivalent to the input flux * dt.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityNames

	string_array

	required

	Names of permeability constitutive models for each region.

	solidNames

	string_array

	required

	Names of solid constitutive models for each region.

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: SinglePhasePoromechanics

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	fluidSolverName

	string

	required

	Name of the fluid mechanics solver to use in the poromechanics solver

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	porousMaterialNames

	string_array

	required

	The name of the material that should be used in the constitutive updates

	solidSolverName

	string

	required

	Name of the solid mechanics solver to use in the poromechanics solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: SinglePhasePoromechanicsEmbeddedFractures

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	fluidSolverName

	string

	required

	Name of the fluid mechanics solver to use in the poromechanics solver

	fracturesSolverName

	string

	required

	Name of the fractures solver to use in the fractured poroelastic solver

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	porousMaterialNames

	string_array

	required

	The name of the material that should be used in the constitutive updates

	solidSolverName

	string

	required

	Name of the solid mechanics solver to use in the poromechanics solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: SinglePhaseProppantFVM

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object to use for this solver.

	fluidNames

	string_array

	required

	Names of fluid constitutive models for each region.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	inputFluxEstimate

	real64

	1

	Initial estimate of the input flux used only for residual scaling. This should be essentially equivalent to the input flux * dt.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityNames

	string_array

	required

	Names of permeability constitutive models for each region.

	solidNames

	string_array

	required

	Names of solid constitutive models for each region.

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: SinglePhaseReservoir

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	flowSolverName

	string

	required

	Name of the flow solver to use in the reservoir-well system solver

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	wellSolverName

	string

	required

	Name of the well solver to use in the reservoir-well system solver

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: SinglePhaseWell

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	fluidNames

	string_array

	required

	Name of fluid constitutive object to use for this solver.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	WellControls

	node

	
	Element: WellControls

Element: SolidMechanicsEmbeddedFractures

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	contactRelationName

	string

	required

	Name of contact relation to enforce constraints on fracture boundary.

	fractureRegionName

	string

	required

	Name of the fracture region.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	solidSolverName

	string

	required

	Name of the solid mechanics solver in the rock matrix

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: SolidMechanicsLagrangianSSLE

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	contactRelationName

	string

	NOCONTACT

	Name of contact relation to enforce constraints on fracture boundary.

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	massDamping

	real64

	0

	Value of mass based damping coefficient.

	maxNumResolves

	integer

	10

	Value to indicate how many resolves may be executed after some other event is executed. For example, if a SurfaceGenerator is specified, it will be executed after the mechanics solve. However if a new surface is generated, then the mechanics solve must be executed again due to the change in topology.

	name

	string

	required

	A name is required for any non-unique nodes

	newmarkBeta

	real64

	0.25

	Value of [image: \beta] in the Newmark Method for Implicit Dynamic time integration option. This should be pow(newmarkGamma+0.5,2.0)/4.0 unless you know what you are doing.

	newmarkGamma

	real64

	0.5

	Value of [image: \gamma] in the Newmark Method for Implicit Dynamic time integration option

	solidMaterialNames

	string_array

	required

	The name of the material that should be used in the constitutive updates

	stiffnessDamping

	real64

	0

	Value of stiffness based damping coefficient.

	strainTheory

	integer

	0

	
Indicates whether or not to use Infinitesimal Strain Theory [https://en.wikipedia.org/wiki/Infinitesimal_strain_theory], or Finite Strain Theory [https://en.wikipedia.org/wiki/Finite_strain_theory]. Valid Inputs are:

0 - Infinitesimal Strain

1 - Finite Strain

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	timeIntegrationOption

	geosx_SolidMechanicsLagrangianFEM_TimeIntegrationOption

	ExplicitDynamic

	
Time integration method. Options are:

* QuasiStatic

* ImplicitDynamic

* ExplicitDynamic

	useVelocityForQS

	integer

	0

	Flag to indicate the use of the incremental displacement from the previous step as an initial estimate for the incremental displacement of the current step.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: SolidMechanics_LagrangianFEM

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	contactRelationName

	string

	NOCONTACT

	Name of contact relation to enforce constraints on fracture boundary.

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	massDamping

	real64

	0

	Value of mass based damping coefficient.

	maxNumResolves

	integer

	10

	Value to indicate how many resolves may be executed after some other event is executed. For example, if a SurfaceGenerator is specified, it will be executed after the mechanics solve. However if a new surface is generated, then the mechanics solve must be executed again due to the change in topology.

	name

	string

	required

	A name is required for any non-unique nodes

	newmarkBeta

	real64

	0.25

	Value of [image: \beta] in the Newmark Method for Implicit Dynamic time integration option. This should be pow(newmarkGamma+0.5,2.0)/4.0 unless you know what you are doing.

	newmarkGamma

	real64

	0.5

	Value of [image: \gamma] in the Newmark Method for Implicit Dynamic time integration option

	solidMaterialNames

	string_array

	required

	The name of the material that should be used in the constitutive updates

	stiffnessDamping

	real64

	0

	Value of stiffness based damping coefficient.

	strainTheory

	integer

	0

	
Indicates whether or not to use Infinitesimal Strain Theory [https://en.wikipedia.org/wiki/Infinitesimal_strain_theory], or Finite Strain Theory [https://en.wikipedia.org/wiki/Finite_strain_theory]. Valid Inputs are:

0 - Infinitesimal Strain

1 - Finite Strain

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	timeIntegrationOption

	geosx_SolidMechanicsLagrangianFEM_TimeIntegrationOption

	ExplicitDynamic

	
Time integration method. Options are:

* QuasiStatic

* ImplicitDynamic

* ExplicitDynamic

	useVelocityForQS

	integer

	0

	Flag to indicate the use of the incremental displacement from the previous step as an initial estimate for the incremental displacement of the current step.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: SoloEvent

	Name

	Type

	Default

	Description

	beginTime

	real64

	0

	Start time of this event.

	endTime

	real64

	1e+100

	End time of this event.

	finalDtStretch

	real64

	0.001

	Allow the final dt request for this event to grow by this percentage to match the endTime exactly.

	forceDt

	real64

	-1

	While active, this event will request this timestep value (ignoring any children/targets requests).

	logLevel

	integer

	0

	Log level

	maxEventDt

	real64

	-1

	While active, this event will request a timestep <= this value (depending upon any child/target requests).

	name

	string

	required

	A name is required for any non-unique nodes

	target

	string

	
	Name of the object to be executed when the event criteria are met.

	targetCycle

	integer

	-1

	Targeted cycle to execute the event.

	targetExactStartStop

	integer

	1

	If this option is set, the event will reduce its timestep requests to match any specified beginTime/endTimes exactly.

	targetExactTimestep

	integer

	1

	If this option is set, the event will reduce its timestep requests to match the specified execution time exactly: dt_request = min(dt_request, t_target - time)).

	targetTime

	real64

	-1

	Targeted time to execute the event.

	HaltEvent

	node

	
	Element: HaltEvent

	PeriodicEvent

	node

	
	Element: PeriodicEvent

	SoloEvent

	node

	
	Element: SoloEvent

Element: Solvers

	Name

	Type

	Default

	Description

	gravityVector

	R1Tensor

	{0,0,-9.81}

	Gravity vector used in the physics solvers

	AcousticSEM

	node

	
	Element: AcousticSEM

	CompositionalMultiphaseFVM

	node

	
	Element: CompositionalMultiphaseFVM

	CompositionalMultiphaseHybridFVM

	node

	
	Element: CompositionalMultiphaseHybridFVM

	CompositionalMultiphaseReservoir

	node

	
	Element: CompositionalMultiphaseReservoir

	CompositionalMultiphaseWell

	node

	
	Element: CompositionalMultiphaseWell

	EmbeddedSurfaceGenerator

	node

	
	Element: EmbeddedSurfaceGenerator

	FlowProppantTransport

	node

	
	Element: FlowProppantTransport

	Hydrofracture

	node

	
	Element: Hydrofracture

	LagrangianContact

	node

	
	Element: LagrangianContact

	LaplaceFEM

	node

	
	Element: LaplaceFEM

	LaplaceVEM

	node

	
	Element: LaplaceVEM

	MultiphasePoromechanics

	node

	
	Element: MultiphasePoromechanics

	PhaseFieldDamageFEM

	node

	
	Element: PhaseFieldDamageFEM

	PhaseFieldFracture

	node

	
	Element: PhaseFieldFracture

	ProppantTransport

	node

	
	Element: ProppantTransport

	SinglePhaseFVM

	node

	
	Element: SinglePhaseFVM

	SinglePhaseHybridFVM

	node

	
	Element: SinglePhaseHybridFVM

	SinglePhasePoromechanics

	node

	
	Element: SinglePhasePoromechanics

	SinglePhasePoromechanicsEmbeddedFractures

	node

	
	Element: SinglePhasePoromechanicsEmbeddedFractures

	SinglePhaseProppantFVM

	node

	
	Element: SinglePhaseProppantFVM

	SinglePhaseReservoir

	node

	
	Element: SinglePhaseReservoir

	SinglePhaseWell

	node

	
	Element: SinglePhaseWell

	SolidMechanicsEmbeddedFractures

	node

	
	Element: SolidMechanicsEmbeddedFractures

	SolidMechanicsLagrangianSSLE

	node

	
	Element: SolidMechanicsLagrangianSSLE

	SolidMechanics_LagrangianFEM

	node

	
	Element: SolidMechanics_LagrangianFEM

	SurfaceGenerator

	node

	
	Element: SurfaceGenerator

Element: SourceFlux

	Name

	Type

	Default

	Description

	bcApplicationTableName

	string

	
	Name of table that specifies the on/off application of the bc.

	beginTime

	real64

	-1e+99

	time at which BC will start being applied.

	component

	integer

	-1

	Component of field (if tensor) to apply boundary condition to

	direction

	R1Tensor

	{0,0,0}

	Direction to apply boundary condition to

	endTime

	real64

	1e+99

	time at which bc will stop being applied

	fieldName

	string

	
	Name of field that boundary condition is applied to.

	functionName

	string

	
	Name of function that specifies variation of the BC

	initialCondition

	integer

	0

	BC is applied as an initial condition.

	name

	string

	required

	A name is required for any non-unique nodes

	objectPath

	string

	
	Path to the target field

	scale

	real64

	0

	Scale factor for value of BC.

	setNames

	string_array

	required

	Name of sets that boundary condition is applied to.

Element: StrainDependentPermeability

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

Element: SurfaceElementRegion

	Name

	Type

	Default

	Description

	defaultAperture

	real64

	required

	The default aperture of newly formed surface elements.

	materialList

	string_array

	required

	List of materials present in this region

	name

	string

	required

	A name is required for any non-unique nodes

	subRegionType

	geosx_SurfaceElementRegion_SurfaceSubRegionType

	faceElement

	
Type of surface element subregion. Valid options:

* faceElement

* embeddedElement

Element: SurfaceGenerator

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	fractureRegion

	string

	Fracture

	(no description available)

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	mpiCommOrder

	integer

	0

	Flag to enable MPI consistent communication ordering

	name

	string

	required

	A name is required for any non-unique nodes

	nodeBasedSIF

	integer

	0

	Flag for choosing between node or edge based criteria: 1 for node based criterion

	rockToughness

	real64

	required

	Rock toughness of the solid material

	solidMaterialNames

	string_array

	required

	Name of the solid material used in solid mechanic solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

Element: SymbolicFunction

	Name

	Type

	Default

	Description

	expression

	string

	required

	Symbolic math expression

	inputVarNames

	string_array

	{}

	Name of fields are input to function.

	name

	string

	required

	A name is required for any non-unique nodes

	variableNames

	string_array

	required

	List of variables in expression. The order must match the evaluate argument

Element: TableCapillaryPressure

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	nonWettingIntermediateCapPressureTableName

	string

	
	
Capillary pressure table for the pair (non-wetting phase, intermediate phase)

Note that this input is only used for three-phase flow.

If you want to do a two-phase simulation, please use instead wettingNonWettingCapPressureTableName to specify the table names

	phaseNames

	string_array

	required

	List of fluid phases

	wettingIntermediateCapPressureTableName

	string

	
	
Capillary pressure table for the pair (wetting phase, intermediate phase)

Note that this input is only used for three-phase flow.

If you want to do a two-phase simulation, please use instead wettingNonWettingCapPressureTableName to specify the table names

	wettingNonWettingCapPressureTableName

	string

	
	
Capillary pressure table for the pair (wetting phase, non-wetting phase)

Note that this input is only used for two-phase flow.

If you want to do a three-phase simulation, please use instead wettingIntermediateCapPressureTableName and nonWettingIntermediateCapPressureTableName to specify the table names

Element: TableFunction

	Name

	Type

	Default

	Description

	coordinateFiles

	path_array

	{}

	List of coordinate file names for ND Table

	coordinates

	real64_array

	{0}

	Coordinates inputs for 1D tables

	inputVarNames

	string_array

	{}

	Name of fields are input to function.

	interpolation

	geosx_TableFunction_InterpolationType

	linear

	
Interpolation method. Valid options:

* linear

* nearest

* upper

* lower

	name

	string

	required

	A name is required for any non-unique nodes

	values

	real64_array

	{0}

	Values for 1D tables

	voxelFile

	path

	
	Voxel file name for ND Table

Element: TableRelativePermeability

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	nonWettingIntermediateRelPermTableNames

	string_array

	{}

	
List of relative permeability tables for the pair (non-wetting phase, intermediate phase)

The expected format is “{ nonWettingPhaseRelPermTableName, intermediatePhaseRelPermTableName }”, in that order

Note that this input is only used for three-phase flow.

If you want to do a two-phase simulation, please use instead wettingNonWettingRelPermTableNames to specify the table names

	phaseNames

	string_array

	required

	List of fluid phases

	wettingIntermediateRelPermTableNames

	string_array

	{}

	
List of relative permeability tables for the pair (wetting phase, intermediate phase)

The expected format is “{ wettingPhaseRelPermTableName, intermediatePhaseRelPermTableName }”, in that order

Note that this input is only used for three-phase flow.

If you want to do a two-phase simulation, please use instead wettingNonWettingRelPermTableNames to specify the table names

	wettingNonWettingRelPermTableNames

	string_array

	{}

	
List of relative permeability tables for the pair (wetting phase, non-wetting phase)

The expected format is “{ wettingPhaseRelPermTableName, nonWettingPhaseRelPermTableName }”, in that order

Note that this input is only used for two-phase flow.

If you want to do a three-phase simulation, please use instead wettingIntermediateRelPermTableNames and nonWettingIntermediateRelPermTableNames to specify the table names

Element: Tasks

	Name

	Type

	Default

	Description

	PackCollection

	node

	
	Element: PackCollection

	TriaxialDriver

	node

	
	Element: TriaxialDriver

Element: ThickPlane

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	normal

	R1Tensor

	required

	Normal (n_x,n_y,n_z) to the plane (will be normalized automatically)

	origin

	R1Tensor

	required

	Origin point (x,y,z) of the plane (basically, any point on the plane)

	thickness

	real64

	required

	The total thickness of the plane (with half to each side)

Element: TimeHistory

	Name

	Type

	Default

	Description

	childDirectory

	string

	
	Child directory path

	filename

	string

	TimeHistory

	The filename to which to write time history output.

	format

	string

	hdf

	The output file format for time history output.

	name

	string

	required

	A name is required for any non-unique nodes

	parallelThreads

	integer

	1

	Number of plot files.

	sources

	string_array

	required

	A list of collectors from which to collect and output time history information.

Element: Traction

	Name

	Type

	Default

	Description

	bcApplicationTableName

	string

	
	Name of table that specifies the on/off application of the bc.

	beginTime

	real64

	-1e+99

	time at which BC will start being applied.

	direction

	R1Tensor

	{0,0,0}

	Direction to apply boundary condition to

	endTime

	real64

	1e+99

	time at which bc will stop being applied

	functionName

	string

	
	Name of function that specifies variation of the BC

	initialCondition

	integer

	0

	BC is applied as an initial condition.

	inputStress

	R2SymTensor

	{0,0,0,0,0,0}

	Input stress for tractionType = stress

	name

	string

	required

	A name is required for any non-unique nodes

	objectPath

	string

	
	Path to the target field

	scale

	real64

	0

	Scale factor for value of BC.

	setNames

	string_array

	required

	Name of sets that boundary condition is applied to.

	tractionType

	geosx_TractionBoundaryCondition_TractionType

	vector

	
Type of traction boundary condition. Options are:

vector - traction is applied to the faces as specified from the scale and direction,

normal - traction is applied to the faces as a pressure specified from the product of scale and the outward face normal,

stress - traction is applied to the faces as specified by the inner product of input stress and face normal.

Element: TriaxialDriver

	Name

	Type

	Default

	Description

	axialControl

	string

	required

	Function controlling axial stress or strain (depending on test mode)

	baseline

	path

	none

	Baseline file

	initialStress

	real64

	required

	Initial stress (scalar used to set an isotropic stress state)

	logLevel

	integer

	0

	Log level

	material

	string

	required

	Solid material to test

	mode

	string

	required

	Test mode [stressControl, strainControl, mixedControl]

	name

	string

	required

	A name is required for any non-unique nodes

	output

	string

	none

	Output file

	radialControl

	string

	required

	Function controlling radial stress or strain (depending on test mode)

	steps

	integer

	required

	Number of load steps to take

Element: TwoPointFluxApproximation

	Name

	Type

	Default

	Description

	areaRelTol

	real64

	1e-08

	Relative tolerance for area calculations.

	coefficientModelNames

	string_array

	{}

	List of constitutive models that contain the coefficient used to build the stencil

	coefficientName

	string

	required

	Name of coefficient field

	fieldName

	string

	required

	Name of primary solution field

	meanPermCoefficient

	real64

	1

	(no description available)

	name

	string

	required

	A name is required for any non-unique nodes

	targetRegions

	string_array

	{}

	List of regions to build the stencil for

	usePEDFM

	integer

	0

	(no description available)

Element: VTK

	Name

	Type

	Default

	Description

	childDirectory

	string

	
	Child directory path

	name

	string

	required

	A name is required for any non-unique nodes

	parallelThreads

	integer

	1

	Number of plot files.

	plotFileRoot

	string

	VTK

	Name of the root file for this output.

	plotLevel

	integer

	1

	Level detail plot. Only fields with lower of equal plot level will be output.

	writeBinaryData

	integer

	1

	Output the data in binary format

	writeFEMFaces

	integer

	0

	(no description available)

Element: VanGenuchtenBakerRelativePermeability

	Name

	Type

	Default

	Description

	gasOilRelPermExponentInv

	real64_array

	{0.5}

	
Rel perm power law exponent inverse for the pair (gas phase, oil phase) at residual water saturation

The expected format is “{ gasExp, oilExp }”, in that order

	gasOilRelPermMaxValue

	real64_array

	{0}

	
Maximum rel perm value for the pair (gas phase, oil phase) at residual water saturation

The expected format is “{ gasMax, oilMax }”, in that order

	name

	string

	required

	A name is required for any non-unique nodes

	phaseMinVolumeFraction

	real64_array

	{0}

	Minimum volume fraction value for each phase

	phaseNames

	string_array

	required

	List of fluid phases

	waterOilRelPermExponentInv

	real64_array

	{0.5}

	
Rel perm power law exponent inverse for the pair (water phase, oil phase) at residual gas saturation

The expected format is “{ waterExp, oilExp }”, in that order

	waterOilRelPermMaxValue

	real64_array

	{0}

	
Maximum rel perm value for the pair (water phase, oil phase) at residual gas saturation

The expected format is “{ waterMax, oilMax }”, in that order

Element: VanGenuchtenCapillaryPressure

	Name

	Type

	Default

	Description

	capPressureEpsilon

	real64

	1e-06

	Saturation at which the extremum capillary pressure is attained; used to avoid infinite capillary pressure values for saturations close to 0 and 1

	name

	string

	required

	A name is required for any non-unique nodes

	phaseCapPressureExponentInv

	real64_array

	{0.5}

	Inverse of capillary power law exponent for each phase

	phaseCapPressureMultiplier

	real64_array

	{1}

	Entry pressure value for each phase

	phaseMinVolumeFraction

	real64_array

	{0}

	Minimum volume fraction value for each phase

	phaseNames

	string_array

	required

	List of fluid phases

Element: WellControls

	Name

	Type

	Default

	Description

	control

	geosx_WellControls_Control

	required

	
Well control. Valid options:

* BHP

* phaseVolRate

* totalVolRate

	injectionStream

	real64_array

	{-1}

	Global component densities for the injection stream

	name

	string

	required

	A name is required for any non-unique nodes

	referenceElevation

	real64

	required

	Reference elevation where BHP control is enforced

	surfacePressure

	real64

	0

	Surface pressure used to compute volumetric rates when surface conditions are used

	surfaceTemperature

	real64

	0

	Surface temperature used to compute volumetric rates when surface conditions are used

	targetBHP

	real64

	-1

	Target bottom-hole pressure

	targetBHPTableName

	string

	
	Name of the BHP table when the rate is a time dependent function

	targetPhaseName

	string

	
	Name of the target phase

	targetPhaseRate

	real64

	0

	Target phase volumetric rate

	targetPhaseRateTableName

	string

	
	Name of the phase rate table when the rate is a time dependent function

	targetTotalRate

	real64

	0

	Target total volumetric rate

	targetTotalRateTableName

	string

	
	Name of the total rate table when the rate is a time dependent function

	type

	geosx_WellControls_Type

	required

	
Well type. Valid options:

* producer

* injector

	useSurfaceConditions

	integer

	0

	
Flag to specify whether rates are checked at surface or reservoir conditions.

Equal to 1 for surface conditions, and to 0 for reservoir conditions

Element: WellElementRegion

	Name

	Type

	Default

	Description

	materialList

	string_array

	required

	List of materials present in this region

	name

	string

	required

	A name is required for any non-unique nodes

Element: lassen

	Name

	Type

	Default

	Description

	Run

	node

	unique

	Element: Run

Element: quartz

	Name

	Type

	Default

	Description

	Run

	node

	unique

	Element: Run

Datastructure Definitions

Datastructure: AcousticSEM

	Name

	Type

	Registered On

	Description

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	pressureNp1AtReceivers

	real64_array

	
	Pressure value at each receiver for each timestep

	receiverIsLocal

	localIndex_array

	
	Flag that indicates whether the receiver is local to this MPI rank

	receiverNodeIds

	localIndex_array2d

	
	Indices of the nodes (in the right order) for each receiver point

	sourceConstants

	real64_array2d

	
	Constant part of the receiver for the nodes listed in m_receiverNodeIds

	sourceIsLocal

	localIndex_array

	
	Flag that indicates whether the source is local to this MPI rank

	sourceNodeIds

	localIndex_array2d

	
	Indices of the nodes (in the right order) for each source point

	dampingVector

	real64_array

	Datastructure: nodeManager

	Diagonal of the Damping Matrix.

	freeSurfaceFaceIndicator

	localIndex_array

	Datastructure: FaceManager

	Free surface indicator, 1 if a face is on free surface 0 otherwise.

	freeSurfaceNodeIndicator

	localIndex_array

	Datastructure: nodeManager

	Free surface indicator, 1 if a node is on free surface 0 otherwise.

	massVector

	real64_array

	Datastructure: nodeManager

	Diagonal of the Mass Matrix.

	pressure_n

	real64_array

	Datastructure: nodeManager

	Scalar pressure at time n.

	pressure_nm1

	real64_array

	Datastructure: nodeManager

	Scalar pressure at time n-1.

	pressure_np1

	real64_array

	Datastructure: nodeManager

	Scalar pressure at time n+1.

	rhs

	real64_array

	Datastructure: nodeManager

	RHS

	stiffnessVector

	real64_array

	Datastructure: nodeManager

	Stiffness vector contains R_h*Pressure_n.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

Datastructure: Aquifer

	Name

	Type

	Description

	component

	integer

	Component of field (if tensor) to apply boundary condition to

	cumulativeFlux

	real64

	(no description available)

	fieldName

	string

	Name of field that boundary condition is applied to.

	objectPath

	string

	Path to the target field

Datastructure: Benchmarks

	Name

	Type

	Description

	lassen

	node

	Datastructure: lassen

	quartz

	node

	Datastructure: quartz

Datastructure: BiotPorosity

	Name

	Type

	Description

	biotCoefficient

	real64_array

	Biot coefficient.

	dPorosity_dPressure

	real64_array2d

	(no description available)

	oldPorosity

	real64_array2d

	(no description available)

	porosity

	real64_array2d

	(no description available)

	referencePorosity

	real64_array

	(no description available)

Datastructure: BlackOilFluid

	Name

	Type

	Description

	PVTO

	geosx_constitutive_PVTOData

	(no description available)

	dPhaseCompFraction_dGlobalCompFraction

	LvArray_Array< double, 5, camp_int_seq< long, 0l, 1l, 2l, 3l, 4l >, long, LvArray_ChaiBuffer >

	(no description available)

	dPhaseCompFraction_dPressure

	real64_array4d

	(no description available)

	dPhaseCompFraction_dTemperature

	real64_array4d

	(no description available)

	dPhaseDensity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseDensity_dPressure

	real64_array3d

	(no description available)

	dPhaseDensity_dTemperature

	real64_array3d

	(no description available)

	dPhaseFraction_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseFraction_dPressure

	real64_array3d

	(no description available)

	dPhaseFraction_dTemperature

	real64_array3d

	(no description available)

	dPhaseMassDensity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseMassDensity_dPressure

	real64_array3d

	(no description available)

	dPhaseMassDensity_dTemperature

	real64_array3d

	(no description available)

	dPhaseViscosity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseViscosity_dPressure

	real64_array3d

	(no description available)

	dPhaseViscosity_dTemperature

	real64_array3d

	(no description available)

	dTotalDensity_dGlobalCompFraction

	real64_array3d

	(no description available)

	dTotalDensity_dPressure

	real64_array2d

	(no description available)

	dTotalDensity_dTemperature

	real64_array2d

	(no description available)

	formationVolFactorTableWrappers

	LvArray_Array< geosx_TableFunction_KernelWrapper, 1, camp_int_seq< long, 0l >, long, LvArray_ChaiBuffer >

	(no description available)

	hydrocarbonPhaseOrder

	integer_array

	(no description available)

	phaseCompFraction

	real64_array4d

	(no description available)

	phaseDensity

	real64_array3d

	(no description available)

	phaseFraction

	real64_array3d

	(no description available)

	phaseMassDensity

	real64_array3d

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	phaseViscosity

	real64_array3d

	(no description available)

	totalDensity

	real64_array2d

	(no description available)

	useMass

	integer

	(no description available)

	viscosityTableWrappers

	LvArray_Array< geosx_TableFunction_KernelWrapper, 1, camp_int_seq< long, 0l >, long, LvArray_ChaiBuffer >

	(no description available)

Datastructure: Blueprint

	Name

	Type

	Description

	
	
	

Datastructure: BoundedPlane

	Name

	Type

	Description

	
	
	

Datastructure: Box

	Name

	Type

	Description

	center

	R1Tensor

	(no description available)

	cosStrike

	real64

	(no description available)

	sinStrike

	real64

	(no description available)

Datastructure: BrooksCoreyBakerRelativePermeability

	Name

	Type

	Description

	dPhaseRelPerm_dPhaseVolFraction

	real64_array4d

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseRelPerm

	real64_array3d

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	volFracScale

	real64

	Factor used to scale the phase capillary pressure, defined as: one minus the sum of the phase minimum volume fractions.

Datastructure: BrooksCoreyCapillaryPressure

	Name

	Type

	Description

	dPhaseCapPressure_dPhaseVolFraction

	real64_array4d

	(no description available)

	phaseCapPressure

	real64_array3d

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	volFracScale

	real64

	Factor used to scale the phase capillary pressure, defined as: one minus the sum of the phase minimum volume fractions.

Datastructure: BrooksCoreyRelativePermeability

	Name

	Type

	Description

	dPhaseRelPerm_dPhaseVolFraction

	real64_array4d

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseRelPerm

	real64_array3d

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	volFracScale

	real64

	Factor used to scale the phase relative permeability, defined as: one minus the sum of the phase minimum volume fractions.

Datastructure: CO2BrineFluid

	Name

	Type

	Description

	dPhaseCompFraction_dGlobalCompFraction

	LvArray_Array< double, 5, camp_int_seq< long, 0l, 1l, 2l, 3l, 4l >, long, LvArray_ChaiBuffer >

	(no description available)

	dPhaseCompFraction_dPressure

	real64_array4d

	(no description available)

	dPhaseCompFraction_dTemperature

	real64_array4d

	(no description available)

	dPhaseDensity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseDensity_dPressure

	real64_array3d

	(no description available)

	dPhaseDensity_dTemperature

	real64_array3d

	(no description available)

	dPhaseFraction_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseFraction_dPressure

	real64_array3d

	(no description available)

	dPhaseFraction_dTemperature

	real64_array3d

	(no description available)

	dPhaseMassDensity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseMassDensity_dPressure

	real64_array3d

	(no description available)

	dPhaseMassDensity_dTemperature

	real64_array3d

	(no description available)

	dPhaseViscosity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseViscosity_dPressure

	real64_array3d

	(no description available)

	dPhaseViscosity_dTemperature

	real64_array3d

	(no description available)

	dTotalDensity_dGlobalCompFraction

	real64_array3d

	(no description available)

	dTotalDensity_dPressure

	real64_array2d

	(no description available)

	dTotalDensity_dTemperature

	real64_array2d

	(no description available)

	phaseCompFraction

	real64_array4d

	(no description available)

	phaseDensity

	real64_array3d

	(no description available)

	phaseFraction

	real64_array3d

	(no description available)

	phaseMassDensity

	real64_array3d

	(no description available)

	phaseViscosity

	real64_array3d

	(no description available)

	totalDensity

	real64_array2d

	(no description available)

	useMass

	integer

	(no description available)

Datastructure: CarmanKozenyPermeability

	Name

	Type

	Description

	dPerm_dPorosity

	real64_array3d

	(no description available)

	dPerm_dPressure

	real64_array3d

	dPerm_dPressure of the rock.

	permeability

	real64_array3d

	permeability of the rock.

Datastructure: CellElementRegion

	Name

	Type

	Description

	domainBoundaryIndicator

	integer_array

	(no description available)

	ghostRank

	integer_array

	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	(no description available)

	isExternal

	integer_array

	(no description available)

	localToGlobalMap

	globalIndex_array

	Array that contains a map from localIndex to globalIndex.

	elementSubRegions

	node

	Datastructure: elementSubRegions

	neighborData

	node

	Datastructure: neighborData

	sets

	node

	Datastructure: sets

Datastructure: ChomboIO

	Name

	Type

	Description

	
	
	

Datastructure: CompositeFunction

	Name

	Type

	Description

	
	
	

Datastructure: CompositionalMultiphaseFVM

	Name

	Type

	Registered On

	Description

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	facePressure

	real64_array

	Datastructure: FaceManager

	An array that holds the pressures at the faces.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

Datastructure: CompositionalMultiphaseFluid

	Name

	Type

	Description

	dPhaseCompFraction_dGlobalCompFraction

	LvArray_Array< double, 5, camp_int_seq< long, 0l, 1l, 2l, 3l, 4l >, long, LvArray_ChaiBuffer >

	(no description available)

	dPhaseCompFraction_dPressure

	real64_array4d

	(no description available)

	dPhaseCompFraction_dTemperature

	real64_array4d

	(no description available)

	dPhaseDensity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseDensity_dPressure

	real64_array3d

	(no description available)

	dPhaseDensity_dTemperature

	real64_array3d

	(no description available)

	dPhaseFraction_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseFraction_dPressure

	real64_array3d

	(no description available)

	dPhaseFraction_dTemperature

	real64_array3d

	(no description available)

	dPhaseMassDensity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseMassDensity_dPressure

	real64_array3d

	(no description available)

	dPhaseMassDensity_dTemperature

	real64_array3d

	(no description available)

	dPhaseViscosity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseViscosity_dPressure

	real64_array3d

	(no description available)

	dPhaseViscosity_dTemperature

	real64_array3d

	(no description available)

	dTotalDensity_dGlobalCompFraction

	real64_array3d

	(no description available)

	dTotalDensity_dPressure

	real64_array2d

	(no description available)

	dTotalDensity_dTemperature

	real64_array2d

	(no description available)

	phaseCompFraction

	real64_array4d

	(no description available)

	phaseDensity

	real64_array3d

	(no description available)

	phaseFraction

	real64_array3d

	(no description available)

	phaseMassDensity

	real64_array3d

	(no description available)

	phaseViscosity

	real64_array3d

	(no description available)

	totalDensity

	real64_array2d

	(no description available)

	useMass

	integer

	(no description available)

Datastructure: CompositionalMultiphaseHybridFVM

	Name

	Type

	Registered On

	Description

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	facePressure

	real64_array

	Datastructure: FaceManager

	An array that holds the pressures at the faces.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

Datastructure: CompositionalMultiphaseReservoir

	Name

	Type

	Description

	discretization

	string

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

Datastructure: CompositionalMultiphaseWell

	Name

	Type

	Description

	discretization

	string

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	WellControls

	node

	Datastructure: WellControls

Datastructure: CompressibleSinglePhaseFluid

	Name

	Type

	Description

	dDensity_dPressure

	real64_array2d

	(no description available)

	dViscosity_dPressure

	real64_array2d

	(no description available)

	density

	real64_array2d

	(no description available)

	viscosity

	real64_array2d

	(no description available)

Datastructure: CompressibleSolidCarmanKozenyPermeability

	Name

	Type

	Description

	
	
	

Datastructure: CompressibleSolidConstantPermeability

	Name

	Type

	Description

	
	
	

Datastructure: CompressibleSolidParallelPlatesPermeability

	Name

	Type

	Description

	
	
	

Datastructure: ConstantPermeability

	Name

	Type

	Description

	dPerm_dPressure

	real64_array3d

	dPerm_dPressure of the rock.

	permeability

	real64_array3d

	permeability of the rock.

Datastructure: Constitutive

	Name

	Type

	Description

	BiotPorosity

	node

	Datastructure: BiotPorosity

	BlackOilFluid

	node

	Datastructure: BlackOilFluid

	BrooksCoreyBakerRelativePermeability

	node

	Datastructure: BrooksCoreyBakerRelativePermeability

	BrooksCoreyCapillaryPressure

	node

	Datastructure: BrooksCoreyCapillaryPressure

	BrooksCoreyRelativePermeability

	node

	Datastructure: BrooksCoreyRelativePermeability

	CO2BrineFluid

	node

	Datastructure: CO2BrineFluid

	CarmanKozenyPermeability

	node

	Datastructure: CarmanKozenyPermeability

	CompositionalMultiphaseFluid

	node

	Datastructure: CompositionalMultiphaseFluid

	CompressibleSinglePhaseFluid

	node

	Datastructure: CompressibleSinglePhaseFluid

	CompressibleSolidCarmanKozenyPermeability

	node

	Datastructure: CompressibleSolidCarmanKozenyPermeability

	CompressibleSolidConstantPermeability

	node

	Datastructure: CompressibleSolidConstantPermeability

	CompressibleSolidParallelPlatesPermeability

	node

	Datastructure: CompressibleSolidParallelPlatesPermeability

	ConstantPermeability

	node

	Datastructure: ConstantPermeability

	Contact

	node

	Datastructure: Contact

	Coulomb

	node

	Datastructure: Coulomb

	DamageElasticIsotropic

	node

	Datastructure: DamageElasticIsotropic

	DamageSpectralElasticIsotropic

	node

	Datastructure: DamageSpectralElasticIsotropic

	DamageVolDevElasticIsotropic

	node

	Datastructure: DamageVolDevElasticIsotropic

	DeadOilFluid

	node

	Datastructure: DeadOilFluid

	DelftEgg

	node

	Datastructure: DelftEgg

	DruckerPrager

	node

	Datastructure: DruckerPrager

	ElasticIsotropic

	node

	Datastructure: ElasticIsotropic

	ElasticIsotropicPressureDependent

	node

	Datastructure: ElasticIsotropicPressureDependent

	ElasticOrthotropic

	node

	Datastructure: ElasticOrthotropic

	ElasticTransverseIsotropic

	node

	Datastructure: ElasticTransverseIsotropic

	ExtendedDruckerPrager

	node

	Datastructure: ExtendedDruckerPrager

	ModifiedCamClay

	node

	Datastructure: ModifiedCamClay

	NullModel

	node

	Datastructure: NullModel

	ParallelPlatesPermeability

	node

	Datastructure: ParallelPlatesPermeability

	ParticleFluid

	node

	Datastructure: ParticleFluid

	PermeabilityBase

	node

	Datastructure: PermeabilityBase

	PorousDruckerPrager

	node

	Datastructure: PorousDruckerPrager

	PorousElasticIsotropic

	node

	Datastructure: PorousElasticIsotropic

	PorousElasticOrthotropic

	node

	Datastructure: PorousElasticOrthotropic

	PorousElasticTransverseIsotropic

	node

	Datastructure: PorousElasticTransverseIsotropic

	PorousExtendedDruckerPrager

	node

	Datastructure: PorousExtendedDruckerPrager

	PressurePorosity

	node

	Datastructure: PressurePorosity

	ProppantPermeability

	node

	Datastructure: ProppantPermeability

	ProppantPorosity

	node

	Datastructure: ProppantPorosity

	ProppantSlurryFluid

	node

	Datastructure: ProppantSlurryFluid

	ProppantSolidProppantPermeability

	node

	Datastructure: ProppantSolidProppantPermeability

	StrainDependentPermeability

	node

	Datastructure: StrainDependentPermeability

	TableCapillaryPressure

	node

	Datastructure: TableCapillaryPressure

	TableRelativePermeability

	node

	Datastructure: TableRelativePermeability

	VanGenuchtenBakerRelativePermeability

	node

	Datastructure: VanGenuchtenBakerRelativePermeability

	VanGenuchtenCapillaryPressure

	node

	Datastructure: VanGenuchtenCapillaryPressure

Datastructure: ConstitutiveModels

	Name

	Type

	Description

	
	
	

Datastructure: Contact

	Name

	Type

	Description

	
	
	

Datastructure: Coulomb

	Name

	Type

	Description

	
	
	

Datastructure: Cylinder

	Name

	Type

	Description

	
	
	

Datastructure: DamageElasticIsotropic

	Name

	Type

	Description

	bulkModulus

	real64_array

	Elastic Bulk Modulus Field

	damage

	real64_array2d

	Material Damage Variable

	density

	real64_array2d

	Material Density

	oldStress

	real64_array3d

	Previous Material Stress

	shearModulus

	real64_array

	Elastic Shear Modulus Field

	strainEnergyDensity

	real64_array2d

	Strain Energy Density

	stress

	real64_array3d

	Current Material Stress

Datastructure: DamageSpectralElasticIsotropic

	Name

	Type

	Description

	bulkModulus

	real64_array

	Elastic Bulk Modulus Field

	damage

	real64_array2d

	Material Damage Variable

	density

	real64_array2d

	Material Density

	oldStress

	real64_array3d

	Previous Material Stress

	shearModulus

	real64_array

	Elastic Shear Modulus Field

	strainEnergyDensity

	real64_array2d

	Strain Energy Density

	stress

	real64_array3d

	Current Material Stress

Datastructure: DamageVolDevElasticIsotropic

	Name

	Type

	Description

	bulkModulus

	real64_array

	Elastic Bulk Modulus Field

	damage

	real64_array2d

	Material Damage Variable

	density

	real64_array2d

	Material Density

	oldStress

	real64_array3d

	Previous Material Stress

	shearModulus

	real64_array

	Elastic Shear Modulus Field

	strainEnergyDensity

	real64_array2d

	Strain Energy Density

	stress

	real64_array3d

	Current Material Stress

Datastructure: DeadOilFluid

	Name

	Type

	Description

	dPhaseCompFraction_dGlobalCompFraction

	LvArray_Array< double, 5, camp_int_seq< long, 0l, 1l, 2l, 3l, 4l >, long, LvArray_ChaiBuffer >

	(no description available)

	dPhaseCompFraction_dPressure

	real64_array4d

	(no description available)

	dPhaseCompFraction_dTemperature

	real64_array4d

	(no description available)

	dPhaseDensity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseDensity_dPressure

	real64_array3d

	(no description available)

	dPhaseDensity_dTemperature

	real64_array3d

	(no description available)

	dPhaseFraction_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseFraction_dPressure

	real64_array3d

	(no description available)

	dPhaseFraction_dTemperature

	real64_array3d

	(no description available)

	dPhaseMassDensity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseMassDensity_dPressure

	real64_array3d

	(no description available)

	dPhaseMassDensity_dTemperature

	real64_array3d

	(no description available)

	dPhaseViscosity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseViscosity_dPressure

	real64_array3d

	(no description available)

	dPhaseViscosity_dTemperature

	real64_array3d

	(no description available)

	dTotalDensity_dGlobalCompFraction

	real64_array3d

	(no description available)

	dTotalDensity_dPressure

	real64_array2d

	(no description available)

	dTotalDensity_dTemperature

	real64_array2d

	(no description available)

	formationVolFactorTableWrappers

	LvArray_Array< geosx_TableFunction_KernelWrapper, 1, camp_int_seq< long, 0l >, long, LvArray_ChaiBuffer >

	(no description available)

	hydrocarbonPhaseOrder

	integer_array

	(no description available)

	phaseCompFraction

	real64_array4d

	(no description available)

	phaseDensity

	real64_array3d

	(no description available)

	phaseFraction

	real64_array3d

	(no description available)

	phaseMassDensity

	real64_array3d

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	phaseViscosity

	real64_array3d

	(no description available)

	totalDensity

	real64_array2d

	(no description available)

	useMass

	integer

	(no description available)

	viscosityTableWrappers

	LvArray_Array< geosx_TableFunction_KernelWrapper, 1, camp_int_seq< long, 0l >, long, LvArray_ChaiBuffer >

	(no description available)

Datastructure: DelftEgg

	Name

	Type

	Description

	bulkModulus

	real64_array

	Elastic Bulk Modulus Field

	cslSlope

	real64_array

	Slope of the critical state line

	density

	real64_array2d

	Material Density

	oldPreConsolidationPressure

	real64_array2d

	Old preconsolidation pressure

	oldStress

	real64_array3d

	Previous Material Stress

	preConsolidationPressure

	real64_array2d

	New preconsolidation pressure

	recompressionIndex

	real64_array

	Recompression index

	shapeParameter

	real64_array

	Shape parameter for the yield surface

	shearModulus

	real64_array

	Elastic Shear Modulus Field

	stress

	real64_array3d

	Current Material Stress

	virginCompressionIndex

	real64_array

	Virgin compression index

Datastructure: Dirichlet

	Name

	Type

	Description

	
	
	

Datastructure: DruckerPrager

	Name

	Type

	Description

	bulkModulus

	real64_array

	Elastic Bulk Modulus Field

	cohesion

	real64_array2d

	New cohesion state

	density

	real64_array2d

	Material Density

	dilation

	real64_array

	Plastic potential slope

	friction

	real64_array

	Yield surface slope

	hardening

	real64_array

	Hardening rate

	oldCohesion

	real64_array2d

	Old cohesion state

	oldStress

	real64_array3d

	Previous Material Stress

	shearModulus

	real64_array

	Elastic Shear Modulus Field

	stress

	real64_array3d

	Current Material Stress

Datastructure: ElasticIsotropic

	Name

	Type

	Description

	bulkModulus

	real64_array

	Elastic Bulk Modulus Field

	density

	real64_array2d

	Material Density

	oldStress

	real64_array3d

	Previous Material Stress

	shearModulus

	real64_array

	Elastic Shear Modulus Field

	stress

	real64_array3d

	Current Material Stress

Datastructure: ElasticIsotropicPressureDependent

	Name

	Type

	Description

	density

	real64_array2d

	Material Density

	oldStress

	real64_array3d

	Previous Material Stress

	recompressionIndex

	real64_array

	Recompression Index Field

	refPressure

	real64

	Reference Pressure Field

	refStrainVol

	real64

	Reference Volumetric Strain

	shearModulus

	real64_array

	Elastic Shear Modulus

	stress

	real64_array3d

	Current Material Stress

Datastructure: ElasticOrthotropic

	Name

	Type

	Description

	c11

	real64_array

	Elastic Stiffness Field C11

	c12

	real64_array

	Elastic Stiffness Field C12

	c13

	real64_array

	Elastic Stiffness Field C13

	c22

	real64_array

	Elastic Stiffness Field C22

	c23

	real64_array

	Elastic Stiffness Field C23

	c33

	real64_array

	Elastic Stiffness Field C33

	c44

	real64_array

	Elastic Stiffness Field C44

	c55

	real64_array

	Elastic Stiffness Field C55

	c66

	real64_array

	Elastic Stiffness Field C66

	density

	real64_array2d

	Material Density

	oldStress

	real64_array3d

	Previous Material Stress

	stress

	real64_array3d

	Current Material Stress

Datastructure: ElasticTransverseIsotropic

	Name

	Type

	Description

	c11

	real64_array

	Elastic Stiffness Field C11

	c13

	real64_array

	Elastic Stiffness Field C13

	c33

	real64_array

	Elastic Stiffness Field C33

	c44

	real64_array

	Elastic Stiffness Field C44

	c66

	real64_array

	Elastic Stiffness Field C66

	density

	real64_array2d

	Material Density

	oldStress

	real64_array3d

	Previous Material Stress

	stress

	real64_array3d

	Current Material Stress

Datastructure: ElementRegions

	Name

	Type

	Description

	domainBoundaryIndicator

	integer_array

	(no description available)

	ghostRank

	integer_array

	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	(no description available)

	isExternal

	integer_array

	(no description available)

	localToGlobalMap

	globalIndex_array

	Array that contains a map from localIndex to globalIndex.

	CellElementRegion

	node

	Datastructure: CellElementRegion

	SurfaceElementRegion

	node

	Datastructure: SurfaceElementRegion

	WellElementRegion

	node

	Datastructure: WellElementRegion

	elementRegionsGroup

	node

	Datastructure: elementRegionsGroup

	neighborData

	node

	Datastructure: neighborData

	sets

	node

	Datastructure: sets

Datastructure: EmbeddedSurfaceGenerator

	Name

	Type

	Registered On

	Description

	discretization

	string

	
	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	parentEdgeIndex

	localIndex_array

	Datastructure: embeddedSurfacesNodeManager

	Index of parent edge within the mesh object it is registered on.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

Datastructure: Events

	Name

	Type

	Description

	currentSubEvent

	integer

	Index of the current subevent.

	cycle

	integer

	Current simulation cycle number.

	dt

	real64

	Current simulation timestep.

	time

	real64

	Current simulation time.

	HaltEvent

	node

	Datastructure: HaltEvent

	PeriodicEvent

	node

	Datastructure: PeriodicEvent

	SoloEvent

	node

	Datastructure: SoloEvent

Datastructure: ExtendedDruckerPrager

	Name

	Type

	Description

	bulkModulus

	real64_array

	Elastic Bulk Modulus Field

	density

	real64_array2d

	Material Density

	dilationRatio

	real64_array

	Plastic potential slope ratio

	hardening

	real64_array

	Hardening parameter

	initialFriction

	real64_array

	Initial yield surface slope

	oldStateVariable

	real64_array2d

	Old equivalent plastic shear strain

	oldStress

	real64_array3d

	Previous Material Stress

	pressureIntercept

	real64_array

	Pressure point at cone vertex

	residualFriction

	real64_array

	Residual yield surface slope

	shearModulus

	real64_array

	Elastic Shear Modulus Field

	stateVariable

	real64_array2d

	New equivalent plastic shear strain

	stress

	real64_array3d

	Current Material Stress

Datastructure: FaceManager

	Name

	Type

	Registered By

	Description

	deltaFacePressure

	real64_array

	
	(no description available)

	domainBoundaryIndicator

	integer_array

	
	(no description available)

	edgeList

	geosx_InterObjectRelation< LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer > >

	
	(no description available)

	elemList

	localIndex_array2d

	
	(no description available)

	elemRegionList

	localIndex_array2d

	
	(no description available)

	elemSubRegionList

	localIndex_array2d

	
	(no description available)

	faceArea

	real64_array

	
	(no description available)

	faceCenter

	real64_array2d

	
	(no description available)

	faceNormal

	real64_array2d

	
	(no description available)

	ghostRank

	integer_array

	
	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	
	(no description available)

	gravityCoefficient

	real64_array

	
	(no description available)

	isExternal

	integer_array

	
	(no description available)

	localToGlobalMap

	globalIndex_array

	
	Array that contains a map from localIndex to globalIndex.

	mimGravityCoefficient

	real64_array

	
	(no description available)

	nodeList

	geosx_InterObjectRelation< LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer > >

	
	(no description available)

	K_IC

	real64_array2d

	Datastructure: SurfaceGenerator

	Critical Stress Intensity Factor [image: K_{IC}] in the plane of the face.

	SIFonFace

	real64_array

	Datastructure: SurfaceGenerator

	Calculated Stress Intensity Factor on the face.

	TransMultiplier

	real64_array

	Datastructure: HybridMimeticDiscretization, Datastructure: TwoPointFluxApproximation

	An array that holds the transmissibility multipliers

	childIndex

	localIndex_array

	Datastructure: SurfaceGenerator

	Index of child within the mesh object it is registered on.

	degreeFromCrackTip

	integer_array

	Datastructure: SurfaceGenerator

	Distance to the crack tip in terms of topological distance. (i.e. how many nodes are along the path to the closest node that is on the crack surface.

	facePressure

	real64_array

	Datastructure: CompositionalMultiphaseFVM, Datastructure: CompositionalMultiphaseHybridFVM, Datastructure: SinglePhaseFVM, Datastructure: SinglePhaseHybridFVM, Datastructure: SinglePhaseProppantFVM

	An array that holds the pressures at the faces.

	freeSurfaceFaceIndicator

	localIndex_array

	Datastructure: AcousticSEM

	Free surface indicator, 1 if a face is on free surface 0 otherwise.

	isFaceSeparable

	integer_array

	Datastructure: SurfaceGenerator

	A flag to mark if the face is separable.

	parentIndex

	localIndex_array

	Datastructure: SurfaceGenerator

	Index of parent within the mesh object it is registered on.

	primaryCandidateFace

	localIndex_array

	Datastructure: SurfaceGenerator

	??

	ruptureState

	integer_array

	Datastructure: SurfaceGenerator

	
Rupture state of the face:

0=not ready for rupture

1=ready for rupture

2=ruptured.

	ruptureTime

	real64_array

	Datastructure: SurfaceGenerator

	Time that the object was ruptured/split.

	neighborData

	node

	
	Datastructure: neighborData

	sets

	node

	
	Datastructure: sets

Datastructure: FieldSpecification

	Name

	Type

	Description

	
	
	

Datastructure: FieldSpecifications

	Name

	Type

	Description

	Aquifer

	node

	Datastructure: Aquifer

	Dirichlet

	node

	Datastructure: Dirichlet

	FieldSpecification

	node

	Datastructure: FieldSpecification

	SourceFlux

	node

	Datastructure: SourceFlux

	Traction

	node

	Datastructure: Traction

Datastructure: File

	Name

	Type

	Description

	
	
	

Datastructure: FiniteElementSpace

	Name

	Type

	Description

	
	
	

Datastructure: FiniteElements

	Name

	Type

	Description

	FiniteElementSpace

	node

	Datastructure: FiniteElementSpace

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

Datastructure: FiniteVolume

	Name

	Type

	Description

	HybridMimeticDiscretization

	node

	Datastructure: HybridMimeticDiscretization

	TwoPointFluxApproximation

	node

	Datastructure: TwoPointFluxApproximation

Datastructure: FlowProppantTransport

	Name

	Type

	Description

	discretization

	string

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

Datastructure: Functions

	Name

	Type

	Description

	CompositeFunction

	node

	Datastructure: CompositeFunction

	SymbolicFunction

	node

	Datastructure: SymbolicFunction

	TableFunction

	node

	Datastructure: TableFunction

Datastructure: Geometry

	Name

	Type

	Description

	BoundedPlane

	node

	Datastructure: BoundedPlane

	Box

	node

	Datastructure: Box

	Cylinder

	node

	Datastructure: Cylinder

	ThickPlane

	node

	Datastructure: ThickPlane

Datastructure: HaltEvent

	Name

	Type

	Description

	currentSubEvent

	integer

	Index of the current subevent

	eventForecast

	integer

	Indicates when the event is expected to execute

	isTargetExecuting

	integer

	Index of the current subevent

	lastCycle

	integer

	Last event occurrence (cycle)

	lastTime

	real64

	Last event occurrence (time)

	HaltEvent

	node

	Datastructure: HaltEvent

	PeriodicEvent

	node

	Datastructure: PeriodicEvent

	SoloEvent

	node

	Datastructure: SoloEvent

Datastructure: HybridMimeticDiscretization

	Name

	Type

	Registered On

	Description

	TransMultiplier

	real64_array

	Datastructure: FaceManager

	An array that holds the transmissibility multipliers

Datastructure: Hydrofracture

	Name

	Type

	Description

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

Datastructure: Included

	Name

	Type

	Description

	File

	node

	Datastructure: File

Datastructure: InternalMesh

	Name

	Type

	Description

	meshLevels

	integer

	(no description available)

	Level0

	node

	Datastructure: Level0

Datastructure: InternalWell

	Name

	Type

	Description

	meshLevels

	integer

	(no description available)

	Level0

	node

	Datastructure: Level0

	Perforation

	node

	Datastructure: Perforation

Datastructure: InternalWellbore

	Name

	Type

	Description

	meshLevels

	integer

	(no description available)

	nx

	integer_array

	Number of elements in the x-direction within each mesh block

	ny

	integer_array

	Number of elements in the y-direction within each mesh block

	xCoords

	real64_array

	x-coordinates of each mesh block vertex

	yCoords

	real64_array

	y-coordinates of each mesh block vertex

	Level0

	node

	Datastructure: Level0

Datastructure: LagrangianContact

	Name

	Type

	Description

	discretization

	string

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

Datastructure: LaplaceFEM

	Name

	Type

	Description

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

Datastructure: LaplaceVEM

	Name

	Type

	Description

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

Datastructure: Level0

	Name

	Type

	Description

	meshLevel

	integer

	(no description available)

	ElementRegions

	node

	Datastructure: ElementRegions

	FaceManager

	node

	Datastructure: FaceManager

	edgeManager

	node

	Datastructure: edgeManager

	embeddedSurfacesEdgeManager

	node

	Datastructure: embeddedSurfacesEdgeManager

	embeddedSurfacesNodeManager

	node

	Datastructure: embeddedSurfacesNodeManager

	finiteVolumeStencils

	node

	Datastructure: finiteVolumeStencils

	nodeManager

	node

	Datastructure: nodeManager

Datastructure: LinearSolverParameters

	Name

	Type

	Description

	
	
	

Datastructure: Mesh

	Name

	Type

	Description

	InternalMesh

	node

	Datastructure: InternalMesh

	InternalWell

	node

	Datastructure: InternalWell

	InternalWellbore

	node

	Datastructure: InternalWellbore

	PAMELAMeshGenerator

	node

	Datastructure: PAMELAMeshGenerator

Datastructure: MeshBodies

	Name

	Type

	Description

	InternalMesh

	node

	Datastructure: InternalMesh

	InternalWell

	node

	Datastructure: InternalWell

	InternalWellbore

	node

	Datastructure: InternalWellbore

	PAMELAMeshGenerator

	node

	Datastructure: PAMELAMeshGenerator

Datastructure: ModifiedCamClay

	Name

	Type

	Description

	cslSlope

	real64_array

	Slope of the critical state line

	density

	real64_array2d

	Material Density

	oldPreConsolidationPressure

	real64_array2d

	Old preconsolidation pressure

	oldStress

	real64_array3d

	Previous Material Stress

	preConsolidationPressure

	real64_array2d

	New preconsolidation pressure

	recompressionIndex

	real64_array

	Recompression Index Field

	refPressure

	real64

	Reference Pressure Field

	refStrainVol

	real64

	Reference Volumetric Strain

	shearModulus

	real64_array

	Elastic Shear Modulus

	stress

	real64_array3d

	Current Material Stress

	virginCompressionIndex

	real64_array

	Virgin compression index

Datastructure: MultiphasePoromechanics

	Name

	Type

	Description

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

Datastructure: NonlinearSolverParameters

	Name

	Type

	Description

	newtonNumberOfIterations

	integer

	Number of Newton’s iterations.

Datastructure: NullModel

	Name

	Type

	Description

	
	
	

Datastructure: NumericalMethods

	Name

	Type

	Description

	FiniteElements

	node

	Datastructure: FiniteElements

	FiniteVolume

	node

	Datastructure: FiniteVolume

Datastructure: Outputs

	Name

	Type

	Description

	Blueprint

	node

	Datastructure: Blueprint

	ChomboIO

	node

	Datastructure: ChomboIO

	Python

	node

	Datastructure: Python

	Restart

	node

	Datastructure: Restart

	Silo

	node

	Datastructure: Silo

	TimeHistory

	node

	Datastructure: TimeHistory

	VTK

	node

	Datastructure: VTK

Datastructure: PAMELAMeshGenerator

	Name

	Type

	Description

	meshLevels

	integer

	(no description available)

	Level0

	node

	Datastructure: Level0

Datastructure: PackCollection

	Name

	Type

	Description

	
	
	

Datastructure: ParallelPlatesPermeability

	Name

	Type

	Description

	dPerm_dAperture

	real64_array3d

	(no description available)

	dPerm_dPressure

	real64_array3d

	dPerm_dPressure of the rock.

	permeability

	real64_array3d

	permeability of the rock.

Datastructure: Parameter

	Name

	Type

	Description

	
	
	

Datastructure: Parameters

	Name

	Type

	Description

	Parameter

	node

	Datastructure: Parameter

Datastructure: ParticleFluid

	Name

	Type

	Description

	collisionFactor

	real64_array

	(no description available)

	dCollisionFactor_dProppantConcentration

	real64_array

	(no description available)

	dSettlingFactor_dComponentConcentration

	real64_array2d

	(no description available)

	dSettlingFactor_dPressure

	real64_array

	(no description available)

	dSettlingFactor_dProppantConcentration

	real64_array

	(no description available)

	proppantPackPermeability

	real64_array

	(no description available)

	settlingFactor

	real64_array

	(no description available)

Datastructure: Perforation

	Name

	Type

	Description

	
	
	

Datastructure: PeriodicEvent

	Name

	Type

	Description

	currentSubEvent

	integer

	Index of the current subevent

	eventForecast

	integer

	Indicates when the event is expected to execute

	isTargetExecuting

	integer

	Index of the current subevent

	lastCycle

	integer

	Last event occurrence (cycle)

	lastTime

	real64

	Last event occurrence (time)

	HaltEvent

	node

	Datastructure: HaltEvent

	PeriodicEvent

	node

	Datastructure: PeriodicEvent

	SoloEvent

	node

	Datastructure: SoloEvent

Datastructure: PermeabilityBase

	Name

	Type

	Description

	dPerm_dPressure

	real64_array3d

	dPerm_dPressure of the rock.

	permeability

	real64_array3d

	permeability of the rock.

Datastructure: PhaseFieldDamageFEM

	Name

	Type

	Description

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

Datastructure: PhaseFieldFracture

	Name

	Type

	Description

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

Datastructure: PorousDruckerPrager

	Name

	Type

	Description

	
	
	

Datastructure: PorousElasticIsotropic

	Name

	Type

	Description

	
	
	

Datastructure: PorousElasticOrthotropic

	Name

	Type

	Description

	
	
	

Datastructure: PorousElasticTransverseIsotropic

	Name

	Type

	Description

	
	
	

Datastructure: PorousExtendedDruckerPrager

	Name

	Type

	Description

	
	
	

Datastructure: PressurePorosity

	Name

	Type

	Description

	dPorosity_dPressure

	real64_array2d

	(no description available)

	oldPorosity

	real64_array2d

	(no description available)

	porosity

	real64_array2d

	(no description available)

	referencePorosity

	real64_array

	(no description available)

Datastructure: Problem

	Name

	Type

	Description

	Benchmarks

	node

	Datastructure: Benchmarks

	Constitutive

	node

	Datastructure: Constitutive

	ElementRegions

	node

	Datastructure: ElementRegions

	Events

	node

	Datastructure: Events

	FieldSpecifications

	node

	Datastructure: FieldSpecifications

	Functions

	node

	Datastructure: Functions

	Geometry

	node

	Datastructure: Geometry

	Included

	node

	Datastructure: Included

	Mesh

	node

	Datastructure: Mesh

	NumericalMethods

	node

	Datastructure: NumericalMethods

	Outputs

	node

	Datastructure: Outputs

	Parameters

	node

	Datastructure: Parameters

	Solvers

	node

	Datastructure: Solvers

	Tasks

	node

	Datastructure: Tasks

	commandLine

	node

	Datastructure: commandLine

	domain

	node

	Datastructure: domain

Datastructure: ProppantPermeability

	Name

	Type

	Description

	dPerm_dAperture

	real64_array3d

	(no description available)

	dPerm_dPressure

	real64_array3d

	dPerm_dPressure of the rock.

	permeability

	real64_array3d

	permeability of the rock.

	permeabilityMultiplier

	real64_array3d

	(no description available)

	proppantPackPermeability

	real64

	(no description available)

Datastructure: ProppantPorosity

	Name

	Type

	Description

	dPorosity_dPressure

	real64_array2d

	(no description available)

	oldPorosity

	real64_array2d

	(no description available)

	porosity

	real64_array2d

	(no description available)

	referencePorosity

	real64_array

	(no description available)

Datastructure: ProppantSlurryFluid

	Name

	Type

	Description

	FluidDensity

	real64_array2d

	(no description available)

	FluidViscosity

	real64_array2d

	(no description available)

	componentDensity

	real64_array3d

	(no description available)

	dCompDens_dCompConc

	real64_array4d

	(no description available)

	dCompDens_dPres

	real64_array3d

	(no description available)

	dDens_dCompConc

	real64_array3d

	(no description available)

	dDens_dPres

	real64_array2d

	(no description available)

	dDens_dProppantConc

	real64_array2d

	(no description available)

	dFluidDens_dCompConc

	real64_array3d

	(no description available)

	dFluidDens_dPres

	real64_array2d

	(no description available)

	dFluidVisc_dCompConc

	real64_array3d

	(no description available)

	dFluidVisc_dPres

	real64_array2d

	(no description available)

	dVisc_dCompConc

	real64_array3d

	(no description available)

	dVisc_dPres

	real64_array2d

	(no description available)

	dVisc_dProppantConc

	real64_array2d

	(no description available)

	density

	real64_array2d

	(no description available)

	viscosity

	real64_array2d

	(no description available)

Datastructure: ProppantSolidProppantPermeability

	Name

	Type

	Description

	
	
	

Datastructure: ProppantTransport

	Name

	Type

	Description

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

Datastructure: Python

	Name

	Type

	Description

	
	
	

Datastructure: Restart

	Name

	Type

	Description

	
	
	

Datastructure: Run

	Name

	Type

	Description

	
	
	

Datastructure: Silo

	Name

	Type

	Description

	
	
	

Datastructure: SinglePhaseFVM

	Name

	Type

	Registered On

	Description

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	facePressure

	real64_array

	Datastructure: FaceManager

	An array that holds the pressures at the faces.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

Datastructure: SinglePhaseHybridFVM

	Name

	Type

	Registered On

	Description

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	facePressure

	real64_array

	Datastructure: FaceManager

	An array that holds the pressures at the faces.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

Datastructure: SinglePhasePoromechanics

	Name

	Type

	Description

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

Datastructure: SinglePhasePoromechanicsEmbeddedFractures

	Name

	Type

	Description

	discretization

	string

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

Datastructure: SinglePhaseProppantFVM

	Name

	Type

	Registered On

	Description

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	facePressure

	real64_array

	Datastructure: FaceManager

	An array that holds the pressures at the faces.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

Datastructure: SinglePhaseReservoir

	Name

	Type

	Description

	discretization

	string

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

Datastructure: SinglePhaseWell

	Name

	Type

	Description

	discretization

	string

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	WellControls

	node

	Datastructure: WellControls

Datastructure: SolidMechanicsEmbeddedFractures

	Name

	Type

	Description

	discretization

	string

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

Datastructure: SolidMechanicsLagrangianSSLE

	Name

	Type

	Registered On

	Description

	maxForce

	real64

	
	The maximum force contribution in the problem domain.

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	Acceleration

	real64_array2d

	Datastructure: nodeManager

	An array that holds the current acceleration on the nodes. This array also is used to hold the summation of nodal forces resulting from the governing equations.

	IncrementalDisplacement

	real64_array2d

	Datastructure: nodeManager

	An array that holds the incremental displacements for the current time step on the nodes.

	Mass

	real64_array

	Datastructure: nodeManager

	An array that holds the mass on the nodes.

	TotalDisplacement

	real64_array2d

	Datastructure: nodeManager

	An array that holds the total displacements on the nodes.

	Velocity

	real64_array2d

	Datastructure: nodeManager

	An array that holds the current velocity on the nodes.

	contactForce

	real64_array2d

	Datastructure: nodeManager

	An array that holds the contact force.

	externalForce

	real64_array2d

	Datastructure: nodeManager

	An array that holds the external forces on the nodes. This includes any boundary conditions as well as coupling forces such as hydraulic forces.

	uhatTilde

	real64_array2d

	Datastructure: nodeManager

	An array that holds the incremental displacement predictors on the nodes.

	velocityTilde

	real64_array2d

	Datastructure: nodeManager

	An array that holds the velocity predictors on the nodes.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

Datastructure: SolidMechanics_LagrangianFEM

	Name

	Type

	Registered On

	Description

	maxForce

	real64

	
	The maximum force contribution in the problem domain.

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	Acceleration

	real64_array2d

	Datastructure: nodeManager

	An array that holds the current acceleration on the nodes. This array also is used to hold the summation of nodal forces resulting from the governing equations.

	IncrementalDisplacement

	real64_array2d

	Datastructure: nodeManager

	An array that holds the incremental displacements for the current time step on the nodes.

	Mass

	real64_array

	Datastructure: nodeManager

	An array that holds the mass on the nodes.

	TotalDisplacement

	real64_array2d

	Datastructure: nodeManager

	An array that holds the total displacements on the nodes.

	Velocity

	real64_array2d

	Datastructure: nodeManager

	An array that holds the current velocity on the nodes.

	contactForce

	real64_array2d

	Datastructure: nodeManager

	An array that holds the contact force.

	externalForce

	real64_array2d

	Datastructure: nodeManager

	An array that holds the external forces on the nodes. This includes any boundary conditions as well as coupling forces such as hydraulic forces.

	uhatTilde

	real64_array2d

	Datastructure: nodeManager

	An array that holds the incremental displacement predictors on the nodes.

	velocityTilde

	real64_array2d

	Datastructure: nodeManager

	An array that holds the velocity predictors on the nodes.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

Datastructure: SoloEvent

	Name

	Type

	Description

	currentSubEvent

	integer

	Index of the current subevent

	eventForecast

	integer

	Indicates when the event is expected to execute

	isTargetExecuting

	integer

	Index of the current subevent

	lastCycle

	integer

	Last event occurrence (cycle)

	lastTime

	real64

	Last event occurrence (time)

	HaltEvent

	node

	Datastructure: HaltEvent

	PeriodicEvent

	node

	Datastructure: PeriodicEvent

	SoloEvent

	node

	Datastructure: SoloEvent

Datastructure: Solvers

	Name

	Type

	Description

	AcousticSEM

	node

	Datastructure: AcousticSEM

	CompositionalMultiphaseFVM

	node

	Datastructure: CompositionalMultiphaseFVM

	CompositionalMultiphaseHybridFVM

	node

	Datastructure: CompositionalMultiphaseHybridFVM

	CompositionalMultiphaseReservoir

	node

	Datastructure: CompositionalMultiphaseReservoir

	CompositionalMultiphaseWell

	node

	Datastructure: CompositionalMultiphaseWell

	EmbeddedSurfaceGenerator

	node

	Datastructure: EmbeddedSurfaceGenerator

	FlowProppantTransport

	node

	Datastructure: FlowProppantTransport

	Hydrofracture

	node

	Datastructure: Hydrofracture

	LagrangianContact

	node

	Datastructure: LagrangianContact

	LaplaceFEM

	node

	Datastructure: LaplaceFEM

	LaplaceVEM

	node

	Datastructure: LaplaceVEM

	MultiphasePoromechanics

	node

	Datastructure: MultiphasePoromechanics

	PhaseFieldDamageFEM

	node

	Datastructure: PhaseFieldDamageFEM

	PhaseFieldFracture

	node

	Datastructure: PhaseFieldFracture

	ProppantTransport

	node

	Datastructure: ProppantTransport

	SinglePhaseFVM

	node

	Datastructure: SinglePhaseFVM

	SinglePhaseHybridFVM

	node

	Datastructure: SinglePhaseHybridFVM

	SinglePhasePoromechanics

	node

	Datastructure: SinglePhasePoromechanics

	SinglePhasePoromechanicsEmbeddedFractures

	node

	Datastructure: SinglePhasePoromechanicsEmbeddedFractures

	SinglePhaseProppantFVM

	node

	Datastructure: SinglePhaseProppantFVM

	SinglePhaseReservoir

	node

	Datastructure: SinglePhaseReservoir

	SinglePhaseWell

	node

	Datastructure: SinglePhaseWell

	SolidMechanicsEmbeddedFractures

	node

	Datastructure: SolidMechanicsEmbeddedFractures

	SolidMechanicsLagrangianSSLE

	node

	Datastructure: SolidMechanicsLagrangianSSLE

	SolidMechanics_LagrangianFEM

	node

	Datastructure: SolidMechanics_LagrangianFEM

	SurfaceGenerator

	node

	Datastructure: SurfaceGenerator

Datastructure: SourceFlux

	Name

	Type

	Description

	
	
	

Datastructure: StrainDependentPermeability

	Name

	Type

	Description

	dPerm_dPressure

	real64_array3d

	dPerm_dPressure of the rock.

	permeability

	real64_array3d

	permeability of the rock.

Datastructure: SurfaceElementRegion

	Name

	Type

	Description

	domainBoundaryIndicator

	integer_array

	(no description available)

	ghostRank

	integer_array

	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	(no description available)

	isExternal

	integer_array

	(no description available)

	localToGlobalMap

	globalIndex_array

	Array that contains a map from localIndex to globalIndex.

	elementSubRegions

	node

	Datastructure: elementSubRegions

	neighborData

	node

	Datastructure: neighborData

	sets

	node

	Datastructure: sets

Datastructure: SurfaceGenerator

	Name

	Type

	Registered On

	Description

	discretization

	string

	
	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	failCriterion

	integer

	
	(no description available)

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	tipEdges

	LvArray_SortedArray< long, long, LvArray_ChaiBuffer >

	
	Set containing all the tip edges

	tipFaces

	LvArray_SortedArray< long, long, LvArray_ChaiBuffer >

	
	Set containing all the tip faces

	tipNodes

	LvArray_SortedArray< long, long, LvArray_ChaiBuffer >

	
	Set containing all the nodes at the fracture tip

	trailingFaces

	LvArray_SortedArray< long, long, LvArray_ChaiBuffer >

	
	Set containing all the trailing faces

	K_IC

	real64_array2d

	Datastructure: FaceManager

	Critical Stress Intensity Factor [image: K_{IC}] in the plane of the face.

	SIFNode

	real64_array

	Datastructure: nodeManager

	Calculated Stress Intensity Factor on the node.

	SIF_I

	real64_array

	Datastructure: edgeManager

	Calculated mode 1 Stress Intensity Factor on the node.

	SIF_II

	real64_array

	Datastructure: edgeManager

	Calculated mode 2 Stress Intensity Factor on the node.

	SIF_III

	real64_array

	Datastructure: edgeManager

	Calculated mode 3 Stress Intensity Factor on the node.

	SIFonFace

	real64_array

	Datastructure: FaceManager

	Calculated Stress Intensity Factor on the face.

	childIndex

	localIndex_array

	Datastructure: edgeManager

	Index of child within the mesh object it is registered on.

	degreeFromCrack

	integer_array

	Datastructure: nodeManager

	Distance to the crack in terms of topological distance. (i.e. how many nodes are along the path to the closest node that is on the crack surface.

	degreeFromCrackTip

	integer_array

	Datastructure: nodeManager

	Distance to the crack tip in terms of topological distance. (i.e. how many nodes are along the path to the closest node that is on the crack surface.

	isFaceSeparable

	integer_array

	Datastructure: FaceManager

	A flag to mark if the face is separable.

	parentIndex

	localIndex_array

	Datastructure: edgeManager

	Index of parent within the mesh object it is registered on.

	primaryCandidateFace

	localIndex_array

	Datastructure: FaceManager

	??

	ruptureState

	integer_array

	Datastructure: FaceManager

	
Rupture state of the face:

0=not ready for rupture

1=ready for rupture

2=ruptured.

	ruptureTime

	real64_array

	Datastructure: nodeManager

	Time that the object was ruptured/split.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

Datastructure: SymbolicFunction

	Name

	Type

	Description

	
	
	

Datastructure: TableCapillaryPressure

	Name

	Type

	Description

	capPresWrappers

	LvArray_Array< geosx_TableFunction_KernelWrapper, 1, camp_int_seq< long, 0l >, long, LvArray_ChaiBuffer >

	(no description available)

	dPhaseCapPressure_dPhaseVolFraction

	real64_array4d

	(no description available)

	phaseCapPressure

	real64_array3d

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseTypes

	integer_array

	(no description available)

Datastructure: TableFunction

	Name

	Type

	Description

	
	
	

Datastructure: TableRelativePermeability

	Name

	Type

	Description

	dPhaseRelPerm_dPhaseVolFraction

	real64_array4d

	(no description available)

	phaseMinVolumeFraction

	real64_array

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseRelPerm

	real64_array3d

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	relPermWrappers

	LvArray_Array< geosx_TableFunction_KernelWrapper, 1, camp_int_seq< long, 0l >, long, LvArray_ChaiBuffer >

	(no description available)

Datastructure: Tasks

	Name

	Type

	Description

	PackCollection

	node

	Datastructure: PackCollection

	TriaxialDriver

	node

	Datastructure: TriaxialDriver

Datastructure: ThickPlane

	Name

	Type

	Description

	
	
	

Datastructure: TimeHistory

	Name

	Type

	Description

	restart

	integer

	The current history record to be written, on restart from an earlier time allows use to remove invalid future history.

Datastructure: Traction

	Name

	Type

	Description

	component

	integer

	Component of field (if tensor) to apply boundary condition to

	fieldName

	string

	Name of field that boundary condition is applied to.

Datastructure: TriaxialDriver

	Name

	Type

	Description

	
	
	

Datastructure: TwoPointFluxApproximation

	Name

	Type

	Registered On

	Description

	cellStencil

	geosx_CellElementStencilTPFA

	
	(no description available)

	edfmStencil

	geosx_EmbeddedSurfaceToCellStencil

	
	(no description available)

	faceElementToCellStencil

	geosx_FaceElementToCellStencil

	
	(no description available)

	fractureStencil

	geosx_SurfaceElementStencil

	
	(no description available)

	TransMultiplier

	real64_array

	Datastructure: FaceManager

	An array that holds the transmissibility multipliers

Datastructure: VTK

	Name

	Type

	Description

	
	
	

Datastructure: VanGenuchtenBakerRelativePermeability

	Name

	Type

	Description

	dPhaseRelPerm_dPhaseVolFraction

	real64_array4d

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseRelPerm

	real64_array3d

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	volFracScale

	real64

	Factor used to scale the phase capillary pressure, defined as: one minus the sum of the phase minimum volume fractions.

Datastructure: VanGenuchtenCapillaryPressure

	Name

	Type

	Description

	dPhaseCapPressure_dPhaseVolFraction

	real64_array4d

	(no description available)

	phaseCapPressure

	real64_array3d

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	volFracScale

	real64

	Factor used to scale the phase capillary pressure, defined as: one minus the sum of the phase minimum volume fractions.

Datastructure: WellControls

	Name

	Type

	Description

	
	
	

Datastructure: WellElementRegion

	Name

	Type

	Description

	domainBoundaryIndicator

	integer_array

	(no description available)

	ghostRank

	integer_array

	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	(no description available)

	isExternal

	integer_array

	(no description available)

	localToGlobalMap

	globalIndex_array

	Array that contains a map from localIndex to globalIndex.

	wellControlsName

	string

	(no description available)

	wellGeneratorName

	string

	(no description available)

	elementSubRegions

	node

	Datastructure: elementSubRegions

	neighborData

	node

	Datastructure: neighborData

	sets

	node

	Datastructure: sets

Datastructure: WellElementRegionuniqueSubRegion

	Name

	Type

	Description

	domainBoundaryIndicator

	integer_array

	(no description available)

	elementCenter

	real64_array2d

	(no description available)

	elementVolume

	real64_array

	(no description available)

	ghostRank

	integer_array

	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	(no description available)

	isExternal

	integer_array

	(no description available)

	localToGlobalMap

	globalIndex_array

	Array that contains a map from localIndex to globalIndex.

	nextWellElementIndex

	localIndex_array

	(no description available)

	nextWellElementIndexGlobal

	localIndex_array

	(no description available)

	nodeList

	geosx_InterObjectRelation< LvArray_Array< long, 2, camp_int_seq< long, 0l, 1l >, long, LvArray_ChaiBuffer > >

	(no description available)

	numEdgesPerElement

	localIndex

	(no description available)

	numFacesPerElement

	localIndex

	(no description available)

	numNodesPerElement

	localIndex

	(no description available)

	radius

	real64_array

	(no description available)

	topRank

	integer

	(no description available)

	topWellElementIndex

	localIndex

	(no description available)

	wellControlsName

	string

	(no description available)

	ConstitutiveModels

	node

	Datastructure: ConstitutiveModels

	neighborData

	node

	Datastructure: neighborData

	sets

	node

	Datastructure: sets

	wellElementSubRegion

	node

	Datastructure: wellElementSubRegion

Datastructure: cellBlocks

	Name

	Type

	Description

	
	
	

Datastructure: cellManager

	Name

	Type

	Description

	domainBoundaryIndicator

	integer_array

	(no description available)

	ghostRank

	integer_array

	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	(no description available)

	isExternal

	integer_array

	(no description available)

	localToGlobalMap

	globalIndex_array

	Array that contains a map from localIndex to globalIndex.

	cellBlocks

	node

	Datastructure: cellBlocks

	neighborData

	node

	Datastructure: neighborData

	sets

	node

	Datastructure: sets

Datastructure: commandLine

	Name

	Type

	Description

	beginFromRestart

	integer

	Flag to indicate restart run.

	inputFileName

	string

	Name of the input xml file.

	outputDirectory

	string

	Directory in which to put the output files, if not specified defaults to the current directory.

	overridePartitionNumbers

	integer

	Flag to indicate partition number override

	problemName

	string

	Used in writing the output files, if not specified defaults to the name of the input file.

	restartFileName

	string

	Name of the restart file.

	schemaFileName

	string

	Name of the output schema

	suppressPinned

	integer

	Whether to disallow using pinned memory allocations for MPI communication buffers.

	useNonblockingMPI

	integer

	Whether to prefer using non-blocking MPI communication where implemented (results in non-deterministic DOF numbering).

	xPartitionsOverride

	integer

	Number of partitions in the x-direction

	yPartitionsOverride

	integer

	Number of partitions in the y-direction

	zPartitionsOverride

	integer

	Number of partitions in the z-direction

Datastructure: domain

	Name

	Type

	Description

	Neighbors

	std_vector< geosx_NeighborCommunicator, std_allocator< geosx_NeighborCommunicator > >

	(no description available)

	partitionManager

	geosx_PartitionBase

	(no description available)

	Constitutive

	node

	Datastructure: Constitutive

	MeshBodies

	node

	Datastructure: MeshBodies

	cellManager

	node

	Datastructure: cellManager

Datastructure: edgeManager

	Name

	Type

	Registered By

	Description

	domainBoundaryIndicator

	integer_array

	
	(no description available)

	edgesToFractureConnectors

	geosx_mapBase< long, long, std_integral_constant< bool, true > >

	
	A map of edge local indices to the fracture connector local indices.

	faceList

	geosx_InterObjectRelation< LvArray_ArrayOfSets< long, long, LvArray_ChaiBuffer > >

	
	(no description available)

	fractureConnectorsToEdges

	localIndex_array

	
	A map of fracture connector local indices to edge local indices.

	fractureConnectorsToElementIndex

	LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer >

	
	A map of fracture connector local indices face element local indices

	ghostRank

	integer_array

	
	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	
	(no description available)

	isExternal

	integer_array

	
	(no description available)

	localToGlobalMap

	globalIndex_array

	
	Array that contains a map from localIndex to globalIndex.

	nodeList

	geosx_InterObjectRelation< LvArray_Array< long, 2, camp_int_seq< long, 0l, 1l >, long, LvArray_ChaiBuffer > >

	
	(no description available)

	SIF_I

	real64_array

	Datastructure: SurfaceGenerator

	Calculated mode 1 Stress Intensity Factor on the node.

	SIF_II

	real64_array

	Datastructure: SurfaceGenerator

	Calculated mode 2 Stress Intensity Factor on the node.

	SIF_III

	real64_array

	Datastructure: SurfaceGenerator

	Calculated mode 3 Stress Intensity Factor on the node.

	childIndex

	localIndex_array

	Datastructure: SurfaceGenerator

	Index of child within the mesh object it is registered on.

	parentIndex

	localIndex_array

	Datastructure: SurfaceGenerator

	Index of parent within the mesh object it is registered on.

	neighborData

	node

	
	Datastructure: neighborData

	sets

	node

	
	Datastructure: sets

Datastructure: elementRegionsGroup

	Name

	Type

	Description

	
	
	

Datastructure: elementSubRegions

	Name

	Type

	Description

	WellElementRegionuniqueSubRegion

	node

	Datastructure: WellElementRegionuniqueSubRegion

Datastructure: embeddedSurfacesEdgeManager

	Name

	Type

	Description

	domainBoundaryIndicator

	integer_array

	(no description available)

	edgesToFractureConnectors

	geosx_mapBase< long, long, std_integral_constant< bool, true > >

	A map of edge local indices to the fracture connector local indices.

	faceList

	geosx_InterObjectRelation< LvArray_ArrayOfSets< long, long, LvArray_ChaiBuffer > >

	(no description available)

	fractureConnectorsToEdges

	localIndex_array

	A map of fracture connector local indices to edge local indices.

	fractureConnectorsToElementIndex

	LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer >

	A map of fracture connector local indices face element local indices

	ghostRank

	integer_array

	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	(no description available)

	isExternal

	integer_array

	(no description available)

	localToGlobalMap

	globalIndex_array

	Array that contains a map from localIndex to globalIndex.

	nodeList

	geosx_InterObjectRelation< LvArray_Array< long, 2, camp_int_seq< long, 0l, 1l >, long, LvArray_ChaiBuffer > >

	(no description available)

	neighborData

	node

	Datastructure: neighborData

	sets

	node

	Datastructure: sets

Datastructure: embeddedSurfacesNodeManager

	Name

	Type

	Registered By

	Description

	domainBoundaryIndicator

	integer_array

	
	(no description available)

	edgeList

	geosx_InterObjectRelation< LvArray_ArrayOfSets< long, long, LvArray_ChaiBuffer > >

	
	(no description available)

	elemList

	LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer >

	
	(no description available)

	elemRegionList

	LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer >

	
	(no description available)

	elemSubRegionList

	LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer >

	
	(no description available)

	ghostRank

	integer_array

	
	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	
	(no description available)

	isExternal

	integer_array

	
	(no description available)

	localToGlobalMap

	globalIndex_array

	
	Array that contains a map from localIndex to globalIndex.

	parentEdgeGlobalIndex

	globalIndex_array

	
	(no description available)

	referencePosition

	real64_array2d

	
	(no description available)

	parentEdgeIndex

	localIndex_array

	Datastructure: EmbeddedSurfaceGenerator

	Index of parent edge within the mesh object it is registered on.

	neighborData

	node

	
	Datastructure: neighborData

	sets

	node

	
	Datastructure: sets

Datastructure: finiteVolumeStencils

	Name

	Type

	Description

	TwoPointFluxApproximation

	node

	Datastructure: TwoPointFluxApproximation

Datastructure: lassen

	Name

	Type

	Description

	Run

	node

	Datastructure: Run

Datastructure: neighborData

	Name

	Type

	Description

	
	
	

Datastructure: nodeManager

	Name

	Type

	Registered By

	Description

	ReferencePosition

	real64_array2d

	
	(no description available)

	domainBoundaryIndicator

	integer_array

	
	(no description available)

	edgeList

	geosx_InterObjectRelation< LvArray_ArrayOfSets< long, long, LvArray_ChaiBuffer > >

	
	(no description available)

	elemList

	LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer >

	
	(no description available)

	elemRegionList

	LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer >

	
	(no description available)

	elemSubRegionList

	LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer >

	
	(no description available)

	faceList

	geosx_InterObjectRelation< LvArray_ArrayOfSets< long, long, LvArray_ChaiBuffer > >

	
	(no description available)

	ghostRank

	integer_array

	
	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	
	(no description available)

	isExternal

	integer_array

	
	(no description available)

	localToGlobalMap

	globalIndex_array

	
	Array that contains a map from localIndex to globalIndex.

	primaryField

	real64_array

	
	Primary field variable

	Acceleration

	real64_array2d

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the current acceleration on the nodes. This array also is used to hold the summation of nodal forces resulting from the governing equations.

	IncrementalDisplacement

	real64_array2d

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the incremental displacements for the current time step on the nodes.

	Mass

	real64_array

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the mass on the nodes.

	SIFNode

	real64_array

	Datastructure: SurfaceGenerator

	Calculated Stress Intensity Factor on the node.

	TotalDisplacement

	real64_array2d

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the total displacements on the nodes.

	Velocity

	real64_array2d

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the current velocity on the nodes.

	childIndex

	localIndex_array

	Datastructure: SurfaceGenerator

	Index of child within the mesh object it is registered on.

	contactForce

	real64_array2d

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the contact force.

	dampingVector

	real64_array

	Datastructure: AcousticSEM

	Diagonal of the Damping Matrix.

	degreeFromCrack

	integer_array

	Datastructure: SurfaceGenerator

	Distance to the crack in terms of topological distance. (i.e. how many nodes are along the path to the closest node that is on the crack surface.

	degreeFromCrackTip

	integer_array

	Datastructure: SurfaceGenerator

	Distance to the crack tip in terms of topological distance. (i.e. how many nodes are along the path to the closest node that is on the crack surface.

	externalForce

	real64_array2d

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the external forces on the nodes. This includes any boundary conditions as well as coupling forces such as hydraulic forces.

	freeSurfaceNodeIndicator

	localIndex_array

	Datastructure: AcousticSEM

	Free surface indicator, 1 if a node is on free surface 0 otherwise.

	massVector

	real64_array

	Datastructure: AcousticSEM

	Diagonal of the Mass Matrix.

	parentIndex

	localIndex_array

	Datastructure: SurfaceGenerator

	Index of parent within the mesh object it is registered on.

	pressure_n

	real64_array

	Datastructure: AcousticSEM

	Scalar pressure at time n.

	pressure_nm1

	real64_array

	Datastructure: AcousticSEM

	Scalar pressure at time n-1.

	pressure_np1

	real64_array

	Datastructure: AcousticSEM

	Scalar pressure at time n+1.

	rhs

	real64_array

	Datastructure: AcousticSEM

	RHS

	ruptureTime

	real64_array

	Datastructure: SurfaceGenerator

	Time that the object was ruptured/split.

	stiffnessVector

	real64_array

	Datastructure: AcousticSEM

	Stiffness vector contains R_h*Pressure_n.

	uhatTilde

	real64_array2d

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the incremental displacement predictors on the nodes.

	velocityTilde

	real64_array2d

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the velocity predictors on the nodes.

	neighborData

	node

	
	Datastructure: neighborData

	sets

	node

	
	Datastructure: sets

Datastructure: quartz

	Name

	Type

	Description

	Run

	node

	Datastructure: Run

Datastructure: sets

	Name

	Type

	Description

	externalSet

	LvArray_SortedArray< long, long, LvArray_ChaiBuffer >

	(no description available)

Datastructure: wellElementSubRegion

	Name

	Type

	Description

	domainBoundaryIndicator

	integer_array

	(no description available)

	ghostRank

	integer_array

	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	(no description available)

	isExternal

	integer_array

	(no description available)

	localToGlobalMap

	globalIndex_array

	Array that contains a map from localIndex to globalIndex.

	location

	real64_array2d

	(no description available)

	numPerforationsGlobal

	globalIndex

	(no description available)

	reservoirElementIndex

	localIndex_array

	(no description available)

	reservoirElementRegion

	localIndex_array

	(no description available)

	reservoirElementSubregion

	localIndex_array

	(no description available)

	wellElementIndex

	localIndex_array

	(no description available)

	wellTransmissibility

	real64_array

	(no description available)

	neighborData

	node

	Datastructure: neighborData

	sets

	node

	Datastructure: sets

Contributors

An up-to-date list of all GEOSX contributors can be found on our Github page:

GEOSX Contributors [https://github.com/GEOSX/GEOSX/graphs/contributors]

The following is the list of GEOSX contributors as of January 2019:

	Author Name

	Affiliation

	Nicola Castelletto

	Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory

	Benjamin Corbett

	Applications, Simulations, and Quality Division, Lawrence Livermore National Laboratory

	Matthias Cremon

	Department of Energy Resources Engineering, Stanford University

	Pengcheng Fu

	Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory

	Hervé Gross

	Total

	François Hamon

	Total

	Jixiang Huang

	Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory

	Sergey Klevtsov

	Department of Energy Resources Engineering, Stanford University

	Alexandre Lapene

	Total

	Antoine Mazuyer

	Department of Energy Resources Engineering, Stanford University

	Shabnam Semnani

	Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory

	Randolph Settgast

	Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory

	Christopher Sherman

	Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory

	Arturo Vargas

	Applications, Simulations, and Quality Division, Lawrence Livermore National Laboratory

	Joshua A. White

	Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory

	Christopher White

	Applications, Simulations, and Quality Division, Lawrence Livermore National Laboratory

Publications

Last updated 17-September-2021

Preprints and Early-Views

	
Smooth implicit hybrid upwinding for compositional multiphase flow in porous media

SBM Bosma, FP Hamon, BT Mallison, HA Tchelepi

arXiv preprint

arXiv:2106.03317 [https://arxiv.org/abs/2106.03317]

	
Phase-field modeling of rock fractures with roughness

F Fei, J Choo, C Liu, JA White

arXiv preprint

arXiv:2105.14663 [https://arxiv.org/abs/2105.14663]

	
Enhanced Relaxed Physical Factorization preconditioner for coupled poromechanics

M Frigo, N Castelletto, M Ferronato

arXiv preprint

arXiv:2007.14591 [https://arxiv.org/abs/2007.14591]

	
An aggregation-based nonlinear multigrid solver for two-phase flow and transport in porous media

CS Lee, F Hamon, N Castelletto, PS Vassilevski, JA White

arXiv preprint

arXiv:2109.07546 [https://arxiv.org/abs/2109.07546]

	
A deep learning-accelerated data assimilation and forecasting workflow for commercial-scale geologic carbon storage

H Tang, P Fu, CS Sherman, J Zhang, X Ju, F Hamon, NA Azzolina, M Burton-Kelly, JP Morris

arXiv preprint

arXiv:2105.09468 [https://arxiv.org/abs/2105.09468]

2021

	
Hybrid mimetic finite-difference and virtual element formulation for coupled poromechanics

A Borio, FP Hamon, N Castelletto, JA White, RR Settgast

Computer Methods in Applied Mechanics and Engineering

doi:10.1016/j.cma.2021.113917 [https://doi.org/10.1016/j.cma.2021.113917]

	
Enhanced multiscale restriction-smoothed basis (MsRSB) preconditioning with applications to porous media flow and geomechanics

SBM Bosma, S Klevtsov, O Møyner, N Castelletto

Journal of Computational Physics

doi:10.1016/j.jcp.2020.109934 [https://doi.org/10.1016/j.jcp.2020.109934]

	
Multigrid reduction preconditioning framework for coupled processes in porous and fractured media

QM Bui, FP Hamon, N Castelletto, D Osei-Kuffuor, RR Settgast, JA White

Computer Methods in Applied Mechanics and Engineering

doi:10.1016/j.cma.2021.114111 [https://doi.org/10.1016/j.cma.2021.114111]

	
A macroelement stabilization for mixed finite element/finite volume discretizations of multiphase poromechanics

JT Camargo, JA White, RI Borja

Computational Geosciences

doi:10.1007/s10596-020-09964-3 [https://doi.org/10.1007/s10596-020-09964-3]

	
Preconditioners for multiphase poromechanics with strong capillarity

JT Camargo, JA White, N Castelletto, RI Borja

International Journal for Numerical and Analytical Methods in Geomechanics

doi:10.1002/nag.3192 [https://doi.org/10.1002/nag.3192]

	
An anisotropic viscoplasticity model for shale based on layered microstructure homogenization

J Choo, SJ Semnani, JA White

International Journal for Numerical and Analytical Methods in Geomechanics

doi:10.1002/nag.3167 [https://doi.org/10.1002/nag.3167]

	
Simulation of coupled multiphase flow and geomechanics in porous media with embedded discrete fractures

M Cusini, JA White, N Castelletto, RR Settgast

International Journal for Numerical and Analytical Methods in Geomechanics

doi:10.1002/nag.3168 [https://doi.org/10.1002/nag.3168]

	
Approximate inverse-based block preconditioners in poroelasticity

A Franceschini, N Castelletto, M Ferronato

Computational Geosciences

doi:10.1007/s10596-020-09981-2 [https://doi.org/10.1007/s10596-020-09981-2]

	
Efficient solvers for hybridized three-field mixed finite element coupled poromechanics

M Frigo, N Castelletto, M Ferronato, JA White

Computers and Mathematics with Applications

doi:10.1016/j.camwa.2020.07.010 [https://doi.org/10.1016/j.camwa.2020.07.010]

2020

	
Scalable multigrid reduction framework for multiphase poromechanics of heterogeneous media

QM Bui, D Osei-Kuffuor, N Castelletto, JA White

SIAM Journal on Scientific Computing

doi:10.1137/19M1256117 [https://doi.org/10.1137/19M1256117]

	
Multi-stage preconditioners for thermal–compositional–reactive flow in porous media.

MA Cremon, N Castelletto, JA White

Journal of Computational Physics

doi:10.1016/j.jcp.2020.109607 [https://doi.org/10.1016/j.jcp.2020.109607]

	
Algebraically stabilized Lagrange multiplier method for frictional contact mechanics with hydraulically active fractures.

A Franceschini, N Castelletto, JA White, HA Tchelepi

Computer Methods in Applied Mechanics and Engineering

doi:10.1016/j.cma.2020.113161 [https://doi.org/10.1016/j.cma.2020.113161]

	
Fully implicit multidimensional hybrid upwind scheme for coupled flow and transport

F Hamon, B Mallison

Computer Methods in Applied Mechanics and Engineering

doi:10.1016/j.cma.2019.112606 [https://doi.org/10.1016/j.cma.2019.112606]

	
Nonlinear multigrid based on local spectral coarsening for heterogeneous diffusion problems

CS Lee, F Hamon, N Castelletto, PS Vassilevski, JA White

Computer Methods in Applied Mechanics and Engineering

doi:10.1016/j.cma.2020.113432 [https://doi.org/10.1016/j.cma.2020.113432]

	
An inelastic homogenization framework for layered materials with planes of weakness

SJ Semnani, JA White

Computer Methods in Applied Mechanics and Engineering

doi:10.1016/j.cma.2020.113221 [https://doi.org/10.1016/j.cma.2020.113221]

2019

	
Multiscale two-stage solver for Biot’s poroelasticity equations in subsurface media

N Castelletto, S Klevtsov, H Hajibeygi, HA Tchelepi

Computational Geosciences

doi:10.1007/s10596-018-9791-z [https://doi.org/10.1007/s10596-018-9791-z]

	
Block preconditioning for fault/fracture mechanics saddle-point problems

A Franceschini, N Castelletto, M Ferronato

Computer Methods in Applied Mechanics and Engineering

doi:10.1016/j.cma.2018.09.039 [https://doi.org/10.1016/j.cma.2018.09.039]

	
A relaxed physical factorization preconditioner for mixed finite element coupled poromechanics

M Frigo, N Castelletto, M Ferronato

SIAM Journal on Scientific Computing

doi:10.1137/18M120645X [https://doi.org/10.1137/18M120645X]

	
A two-stage preconditioner for multiphase poromechanics in reservoir simulation

JA White, N Castelletto, S Klevtsov, QM Bui, D Osei-Kuffuor, HA Tchelepi

Computer Methods in Applied Mechanics and Engineering

doi:10.1016/j.cma.2019.112575 [https://doi.org/10.1016/j.cma.2019.112575]

Acknowledgements

GEOSX was developed with supporting funds from a number of organizations, including

	Lawrence Livermore National Laboratory

	U.S. Department of Energy, Office of Science

	TotalEnergies.

This support is gratefully acknowledged.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pylvarray	
 Manipulate LvArray objects in Python

Index

 A
 | C
 | E
 | G
 | I
 | N
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	add_to_row() (pylvarray.pylvarray.CRSMatrix method)

C

 	
 	compress() (pylvarray.pylvarray.CRSMatrix method)

E

 	
 	erase_from() (pylvarray.pylvarray.ArrayOfArrays method)

 	(pylvarray.pylvarray.ArrayOfSets method)

G

 	
 	get_access_level() (pylvarray.pylvarray.Array method)

 	(pylvarray.pylvarray.ArrayOfArrays method)

 	(pylvarray.pylvarray.ArrayOfSets method)

 	(pylvarray.pylvarray.CRSMatrix method)

 	(pylvarray.pylvarray.SortedArray method)

 	
 	get_entries() (pylvarray.pylvarray.CRSMatrix method)

 	get_group() (pygeosx.Group method), [1]

 	get_single_parameter_resize_index() (pylvarray.pylvarray.Array method)

 	get_wrapper() (pygeosx.Group method), [1]

 	groups() (pygeosx.Group method)

I

 	
 	insert() (pylvarray.pylvarray.ArrayOfArrays method)

 	(pylvarray.pylvarray.ArrayOfSets method)

 	(pylvarray.pylvarray.SortedArray method)

 	
 	insert_into() (pylvarray.pylvarray.ArrayOfArrays method)

 	(pylvarray.pylvarray.ArrayOfSets method)

 	insert_nonzeros() (pylvarray.pylvarray.CRSMatrix method)

N

 	
 	num_columns() (pylvarray.pylvarray.CRSMatrix method)

 	
 	num_rows() (pylvarray.pylvarray.CRSMatrix method)

P

 	
 	pygeosx.apply_initial_conditions() (built-in function)

 	pygeosx.COMPLETED (built-in variable)

 	pygeosx.finalize() (built-in function)

 	pygeosx.Group (built-in class)

 	pygeosx.initialize() (built-in function)

 	pygeosx.INITIALIZED (built-in variable)

 	pygeosx.READY_TO_RUN (built-in variable)

 	pygeosx.reinit() (built-in function)

 	pygeosx.run() (built-in function)

 	pygeosx.UNINITIALIZED (built-in variable)

 	pygeosx.Wrapper (built-in class)

 	
 	pylvarray (module)

 	pylvarray.Array (class in pylvarray)

 	pylvarray.ArrayOfArrays (class in pylvarray)

 	pylvarray.ArrayOfSets (class in pylvarray)

 	pylvarray.CPU (in module pylvarray)

 	pylvarray.CRSMatrix (class in pylvarray)

 	pylvarray.GPU (in module pylvarray)

 	pylvarray.MODIFIABLE (in module pylvarray)

 	pylvarray.READ_ONLY (in module pylvarray)

 	pylvarray.RESIZEABLE (in module pylvarray)

 	pylvarray.SortedArray (class in pylvarray)

R

 	
 	register() (pygeosx.Group method)

 	remove() (pylvarray.pylvarray.SortedArray method)

 	remove_nonzeros() (pylvarray.pylvarray.CRSMatrix method)

 	
 	resize() (pylvarray.pylvarray.Array method)

 	(pylvarray.pylvarray.CRSMatrix method)

 	resize_all() (pylvarray.pylvarray.Array method)

S

 	
 	set_access_level() (pylvarray.pylvarray.Array method)

 	(pylvarray.pylvarray.ArrayOfArrays method)

 	(pylvarray.pylvarray.ArrayOfSets method)

 	(pylvarray.pylvarray.CRSMatrix method)

 	(pylvarray.pylvarray.SortedArray method)

 	
 	set_single_parameter_resize_index() (pylvarray.pylvarray.Array method)

T

 	
 	to_numpy() (pylvarray.pylvarray.Array method)

 	(pylvarray.pylvarray.SortedArray method)

 	
 	to_scipy() (pylvarray.pylvarray.CRSMatrix method)

V

 	
 	value() (pygeosx.Wrapper method)

W

 	
 	wrappers() (pygeosx.Group method)

BLT

Build, Link, and Test

BLT is a composition of CMake macros and several widely used open source tools
assembled to simplify HPC software development.

BLT was released by Lawrence Livermore National Laboratory (LLNL) under a BSD-style open source license.
It is developed on github under LLNL’s github organization: https://github.com/llnl/blt

Note

BLT officially supports CMake 3.8 and above. However we only print a warning if you
are below this version. Some features in earlier versions may or may not work. Use at your own risk.

BLT at a Glance

	Simplifies setting up a CMake-based build system

	CMake macros for:

	Creating libraries and executables

	Managing compiler flags

	Managing external dependencies

	Multi-platform support (HPC Platforms, OSX, Windows)

	Batteries included

	Built-in support for HPC Basics: MPI, OpenMP, and CUDA

	Built-in support for unit testing in C/C++ and Fortran

	Streamlines development processes

	Support for documentation generation

	Support for code health tools:

	Runtime and static analysis, benchmarking

Developers

	Chris White (white238@llnl.gov)

	Cyrus Harrison (harrison37@llnl.gov)

	George Zagaris (zagaris2@llnl.gov)

	Kenneth Weiss (kweiss@llnl.gov)

	Lee Taylor (taylor16@llnl.gov)

	Aaron Black (black27@llnl.gov)

	David A. Beckingsale (beckingsale1@llnl.gov)

	Richard Hornung (hornung1@llnl.gov)

	Randolph Settgast (settgast1@llnl.gov)

	Peter Robinson (robinson96@llnl.gov)

Documentation

	User Tutorial
	Setup BLT in your CMake Project

	Creating Libraries and Executables

	Portable compiler flags

	Unit Testing

	External Dependencies

	Creating Documentation

	CMake Recommendations

	API Documentation
	Target Macros

	Target Property Macros

	Utility Macros

	Git Macros

	Code Check Macros

	Documenation Macros

Code Check Macros

blt_add_code_checks

blt_add_code_checks(PREFIX <Base name used for created targets>
 SOURCES [source1 [source2 ...]]
 ASTYLE_CFG_FILE <Path to AStyle config file>
 CLANGFORMAT_CFG_FILE <Path to ClangFormat config file>
 UNCRUSTIFY_CFG_FILE <Path to Uncrustify config file>
 CPPCHECK_FLAGS <List of flags added to Cppcheck>)

This macro adds all enabled code check targets for the given SOURCES.

	PREFIX

	Prefix used for the created code check build targets. For example:
<PREFIX>_uncrustify_check

	SOURCES

	Source list that the code checks will be ran on

	ASTYLE_CFG_FILE

	Path to AStyle config file

	CLANGFORMAT_CFG_FILE

	Path to ClangFormat config file

	UNCRUSTIFY_CFG_FILE

	Path to Uncrustify config file

	CPPCHECK_FLAGS

	List of flags added to Cppcheck

The purpose of this macro is to enable all code checks in the default manner. It runs
all code checks from the working directory CMAKE_BINARY_DIR. If you need more specific
functionality you will need to call the individual code check macros yourself.

Note

For library projects that may be included as a subproject of another code via CMake’s
add_subproject(), we recommend guarding “code check” targets against being included in
other codes. The following check if (“${PROJECT_SOURCE_DIR}” STREQUAL “${CMAKE_SOURCE_DIR}”)
will stop your code checks from running unless you are the main CMake project.

Sources are filtered based on file extensions for use in these code checks. If you need
additional file extensions defined add them to BLT_C_FILE_EXTS and BLT_Fortran_FILE_EXTS.
Currently this macro only has code checks for C/C++ and simply filters out the Fortran files.

This macro supports code formatting with either AStyle, ClangFormat, or Uncrustify
(but not all at the same time) only if the following requirements are met:

	AStyle

	ASTYLE_CFG_FILE is given

	ASTYLE_EXECUTABLE is defined and found prior to calling this macro

	ClangFormat

	CLANGFORMAT_CFG_FILE is given

	CLANGFORMAT_EXECUTABLE is defined and found prior to calling this macro

	Uncrustify

	UNCRUSTIFY_CFG_FILE is given

	UNCRUSTIFY_EXECUTABLE is defined and found prior to calling this macro

Note

ClangFormat does not support a command line option for config files. To work around this,
we copy the given config file to the build directory where this macro runs from.

Enabled code formatting checks produce a check build target that will test to see if you
are out of compliance with your code formatting and a style build target that will actually
modify your source files. It also creates smaller child build targets that follow the pattern
<PREFIX>_<astyle|clangformat|uncrustify>_<check|style>.

This macro supports the following static analysis tools with their requirements:

	CppCheck

	CPPCHECK_EXECUTABLE is defined and found prior to calling this macro

	<optional> CPPCHECK_FLAGS added to the cppcheck command line before the sources

	Clang-Query

	CLANGQUERY_EXECUTABLE is defined and found prior to calling this macro

These are added as children to the check build target and produce child build targets
that follow the pattern <PREFIX>_<cppcheck|clangquery>_check.

blt_add_clang_query_target

blt_add_clang_query_target(NAME <Created Target Name>
 WORKING_DIRECTORY <Working Directory>
 COMMENT <Additional Comment for Target Invocation>
 CHECKERS <specifies a subset of checkers>
 DIE_ON_MATCH <TRUE | FALSE (default)>
 SRC_FILES [source1 [source2 ...]])

Creates a new build target for running clang-query.

	NAME

	Name of created build target

	WORKING_DIRECTORY

	Directory in which the clang-query command is run. Defaults to where macro is called.

	COMMENT

	Comment prepended to the build target output

	CHECKERS

	list of checkers to be run by created build target

	DIE_ON_MATCH

	Causes build failure on first clang-query match. Defaults to FALSE.S

	SRC_FILES

	Source list that clang-query will be ran on

Clang-query is a tool used for examining and matching the Clang AST. It is useful for enforcing
coding standards and rules on your source code. A good primer on how to use clang-query can be
found here [https://devblogs.microsoft.com/cppblog/exploring-clang-tooling-part-2-examining-the-clang-ast-with-clang-query/].

Turning on DIE_ON_MATCH is useful if you’re using this in CI to enforce rules about your code.

CHECKERS are the static analysis passes to specifically run on the target. The following checker options
can be given:

	(no value) : run all available static analysis checks found

	(checker1:checker2) : run checker1 and checker2

	(interpreter) : run the clang-query interpeter to interactively develop queries

blt_add_cppcheck_target

blt_add_cppcheck_target(NAME <Created Target Name>
 WORKING_DIRECTORY <Working Directory>
 PREPEND_FLAGS <Additional flags for cppcheck>
 APPEND_FLAGS <Additional flags for cppcheck>
 COMMENT <Additional Comment for Target Invocation>
 SRC_FILES [source1 [source2 ...]])

Creates a new build target for running cppcheck

	NAME

	Name of created build target

	WORKING_DIRECTORY

	Directory in which the clang-query command is run. Defaults to where macro is called.

	PREPEND_FLAGS

	Additional flags added to the front of the cppcheck flags

	APPEND_FLAGS

	Additional flags added to the end of the cppcheck flags

	COMMENT

	Comment prepended to the build target output

	SRC_FILES

	Source list that cppcheck will be ran on

Cppcheck is a static analysis tool for C/C++ code. More information about
Cppcheck can be found here [http://cppcheck.sourceforge.net/].

blt_add_astyle_target

blt_add_astyle_target(NAME <Created Target Name>
 MODIFY_FILES [TRUE | FALSE (default)]
 CFG_FILE <AStyle Configuration File>
 PREPEND_FLAGS <Additional Flags to AStyle>
 APPEND_FLAGS <Additional Flags to AStyle>
 COMMENT <Additional Comment for Target Invocation>
 WORKING_DIRECTORY <Working Directory>
 SRC_FILES [FILE1 [FILE2 ...]])

Creates a new build target for running AStyle

	NAME

	Name of created build target

	MODIFY_FILES

	Modify the files in place. Defaults to FALSE.

	CFG_FILE

	Path to AStyle config file

	PREPEND_FLAGS

	Additional flags added to the front of the AStyle flags

	APPEND_FLAGS

	Additional flags added to the end of the AStyle flags

	COMMENT

	Comment prepended to the build target output

	WORKING_DIRECTORY

	Directory in which the AStyle command is run. Defaults to where macro is called.

	SRC_FILES

	Source list that AStyle will be ran on

AStyle is a Source Code Beautifier for C/C++ code. More information about
AStyle can be found here [http://astyle.sourceforge.net/].

When MODIFY_FILES is set to TRUE, modifies the files in place and adds the created build
target to the parent style build target. Otherwise the files are not modified and the
created target is added to the parent check build target. This target will notify you
which files do not conform to your style guide.

Note

Setting MODIFY_FILES to FALSE is only supported in AStyle v2.05 or greater.

blt_add_clangformat_target

blt_add_clangformat_target(NAME <Created Target Name>
 MODIFY_FILES [TRUE | FALSE (default)]
 CFG_FILE <ClangFormat Configuration File>
 PREPEND_FLAGS <Additional Flags to ClangFormat>
 APPEND_FLAGS <Additional Flags to ClangFormat>
 COMMENT <Additional Comment for Target Invocation>
 WORKING_DIRECTORY <Working Directory>
 SRC_FILES [FILE1 [FILE2 ...]])

Creates a new build target for running ClangFormat

	NAME

	Name of created build target

	MODIFY_FILES

	Modify the files in place. Defaults to FALSE.

	CFG_FILE

	Path to ClangFormat config file

	PREPEND_FLAGS

	Additional flags added to the front of the ClangFormat flags

	APPEND_FLAGS

	Additional flags added to the end of the ClangFormat flags

	COMMENT

	Comment prepended to the build target output

	WORKING_DIRECTORY

	Directory in which the ClangFormat command is run. Defaults to where macro is called.

	SRC_FILES

	Source list that ClangFormat will be ran on

ClangFormat is a Source Code Beautifier for C/C++ code. More information about
ClangFormat can be found here [https://clang.llvm.org/docs/ClangFormat.html].

When MODIFY_FILES is set to TRUE, modifies the files in place and adds the created build
target to the parent style build target. Otherwise the files are not modified and the
created target is added to the parent check build target. This target will notify you
which files do not conform to your style guide.

Note

ClangFormat does not support a command line option for config files. To work around this,
we copy the given config file to the given working directory. We recommend using the build
directory ${PROJECT_BINARY_DIR}. Also if someone is directly including your CMake project
in theirs, you may conflict with theirs. We recommend guarding your code checks against this
with the following check if (“${PROJECT_SOURCE_DIR}” STREQUAL “${CMAKE_SOURCE_DIR}”).

Note

ClangFormat does not support a command line option for check (–dry-run) until version 10.
This version is not widely used or available at this time. To work around this, we use an
included script called run-clang-format.py that does not use PREPEND_FLAGS or APPEND_FLAGS
in the check build target because the script does not support command line flags passed
to clang-format. This script is not used in the style build target.

blt_add_uncrustify_target

blt_add_uncrustify_target(NAME <Created Target Name>
 MODIFY_FILES [TRUE | FALSE (default)]
 CFG_FILE <Uncrustify Configuration File>
 PREPEND_FLAGS <Additional Flags to Uncrustify>
 APPEND_FLAGS <Additional Flags to Uncrustify>
 COMMENT <Additional Comment for Target Invocation>
 WORKING_DIRECTORY <Working Directory>
 SRC_FILES [source1 [source2 ...]])

Creates a new build target for running Uncrustify

	NAME

	Name of created build target

	MODIFY_FILES

	Modify the files in place. Defaults to FALSE.

	CFG_FILE

	Path to Uncrustify config file

	PREPEND_FLAGS

	Additional flags added to the front of the Uncrustify flags

	APPEND_FLAGS

	Additional flags added to the end of the Uncrustify flags

	COMMENT

	Comment prepended to the build target output

	WORKING_DIRECTORY

	Directory in which the Uncrustify command is run. Defaults to where macro is called.

	SRC_FILES

	Source list that Uncrustify will be ran on

Uncrustify is a Source Code Beautifier for C/C++ code. More information about
Uncrustify can be found here [http://uncrustify.sourceforge.net/].

When MODIFY_FILES is set to TRUE, modifies the files in place and adds the created build
target to the parent style build target. Otherwise the files are not modified and the
created target is added to the parent check build target. This target will notify you
which files do not conform to your style guide.
.. Note:

Setting MODIFY_FILES to FALSE is only supported in Uncrustify v0.61 or greater.

Documenation Macros

blt_add_doxygen_target

blt_add_doxygen_target(doxygen_target_name)

Creates a build target for invoking doxygen to generate docs. Expects to
find a Doxyfile.in in the directory the macro is called in.

This macro sets up the doxygen paths so that the doc builds happen
out of source. For make install, this will place the resulting docs in
docs/doxygen/<doxygen_target_name>.

blt_add_sphinx_target

blt_add_sphinx_target(sphinx_target_name)

Creates a build target for invoking sphinx to generate docs. Expects to
find a conf.py or conf.py.in in the directory the macro is called in.

If conf.py is found, it is directly used as input to sphinx.

If conf.py.in is found, this macro uses CMake’s configure_file() command
to generate a conf.py, which is then used as input to sphinx.

This macro sets up the sphinx paths so that the doc builds happen
out of source. For make install, this will place the resulting docs in
docs/sphinx/<sphinx_target_name>.

Git Macros

blt_git

blt_git(SOURCE_DIR <dir>
 GIT_COMMAND <command>
 OUTPUT_VARIABLE <out>
 RETURN_CODE <rc>
 [QUIET])

Runs the supplied git command on the given Git repository.

This macro runs the user-supplied Git command, given by GIT_COMMAND, on the
given Git repository corresponding to SOURCE_DIR. The supplied GIT_COMMAND
is just a string consisting of the Git command and its arguments. The
resulting output is returned to the supplied CMake variable provided by
the OUTPUT_VARIABLE argument.

A return code for the Git command is returned to the caller via the CMake
variable provided with the RETURN_CODE argument. A non-zero return code
indicates that an error has occured.

Note, this macro assumes FindGit() was invoked and was successful. It relies
on the following variables set by FindGit():

	Git_FOUND flag that indicates if git is found

	GIT_EXECUTABLE points to the Git binary

If Git_FOUND is “false” this macro will throw a FATAL_ERROR message.

Example

	1
2
3
4
5
6
7

	blt_git(SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}
 GIT_COMMAND describe --tags master
 OUTPUT_VARIABLE axom_tag
 RETURN_CODE rc)
if (NOT ${rc} EQUAL 0)
 message(FATAL_ERROR "blt_git failed!")
endif()

blt_is_git_repo

blt_is_git_repo(OUTPUT_STATE <state>
 [SOURCE_DIR <dir>])

Checks if we are working with a valid Git repository.

This macro checks if the corresponding source directory is a valid Git repo.
Nominally, the corresponding source directory that is used is set to
${CMAKE_CURRENT_SOURCE_DIR}. A different source directory may be optionally
specified using the SOURCE_DIR argument.

The resulting state is stored in the CMake variable specified by the caller
using the OUTPUT_STATE parameter.

Example

	1
2
3
4
5
6

	blt_is_git_repo(OUTTPUT_STATE is_git_repo)
if (${is_git_repo})
 message(STATUS "Pointing to a valid Git repo!")
else()
 message(STATUS "Not a Git repo!")
endif()

blt_git_tag

blt_git_tag(OUTPUT_TAG <tag>
 RETURN_CODE <rc>
 [SOURCE_DIR <dir>]
 [ON_BRANCH <branch>])

Returns the latest tag on a corresponding Git repository.

This macro gets the latest tag from a Git repository that can be specified
via the SOURCE_DIR argument. If SOURCE_DIR is not supplied, the macro will
use ${CMAKE_CURRENT_SOURCE_DIR}. By default the macro will return the latest
tag on the branch that is currently checked out. A particular branch may be
specified using the ON_BRANCH option.

The tag is stored in the CMake variable specified by the caller using the
the OUTPUT_TAG parameter.

A return code for the Git command is returned to the caller via the CMake
variable provided with the RETURN_CODE argument. A non-zero return code
indicates that an error has occured.

Example

	1
2
3
4
5

	blt_git_tag(OUTPUT_TAG tag RETURN_CODE rc ON_BRANCH master)
if (NOT ${rc} EQUAL 0)
 message(FATAL_ERROR "blt_git_tag failed!")
endif()
message(STATUS "tag=${tag}")

blt_git_branch

blt_git_branch(BRANCH_NAME <branch>
 RETURN_CODE <rc>
 [SOURCE_DIR <dir>])

Returns the name of the active branch in the checkout space.

This macro gets the name of the current active branch in the checkout space
that can be specified using the SOURCE_DIR argument. If SOURCE_DIR is not
supplied by the caller, this macro will point to the checkout space
corresponding to ${CMAKE_CURRENT_SOURCE_DIR}.

A return code for the Git command is returned to the caller via the CMake
variable provided with the RETURN_CODE argument. A non-zero return code
indicates that an error has occured.

Example

	1
2
3
4
5

	blt_git_branch(BRANCH_NAME active_branch RETURN_CODE rc)
if (NOT ${rc} EQUAL 0)
 message(FATAL_ERROR "blt_git_tag failed!")
endif()
message(STATUS "active_branch=${active_branch}")

blt_git_hashcode

blt_git_hashcode(HASHCODE <hc>
 RETURN_CODE <rc>
 [SOURCE_DIR <dir>]
 [ON_BRANCH <branch>])

Returns the SHA-1 hashcode at the tip of a branch.

This macro returns the SHA-1 hashcode at the tip of a branch that may be
specified with the ON_BRANCH argument. If the ON_BRANCH argument is not
supplied, the macro will return the SHA-1 hash at the tip of the current
branch. In addition, the caller may specify the target Git repository using
the SOURCE_DIR argument. Otherwise, if SOURCE_DIR is not specified, the
macro will use ${CMAKE_CURRENT_SOURCE_DIR}.

A return code for the Git command is returned to the caller via the CMake
variable provided with the RETURN_CODE argument. A non-zero return code
indicates that an error has occured.

Example

	1
2
3
4
5

	blt_git_hashcode(HASHCODE sha1 RETURN_CODE rc)
if (NOT ${rc} EQUAL 0)
 message(FATAL_ERROR "blt_git_hashcode failed!")
endif()
message(STATUS "sha1=${sha1}")

API Documentation

	Target Macros
	blt_add_benchmark

	blt_add_executable

	blt_add_library

	blt_add_test

	blt_register_library

	Target Property Macros
	blt_add_target_compile_flags

	blt_add_target_definitions

	blt_add_target_link_flags

	blt_print_target_properties

	blt_set_target_folder

	Utility Macros
	blt_assert_exists

	blt_append_custom_compiler_flag

	blt_find_libraries

	blt_list_append

	blt_list_remove_duplicates

	Git Macros
	blt_git

	blt_is_git_repo

	blt_git_tag

	blt_git_branch

	blt_git_hashcode

	Code Check Macros
	blt_add_code_checks

	blt_add_clang_query_target

	blt_add_cppcheck_target

	blt_add_astyle_target

	blt_add_clangformat_target

	blt_add_uncrustify_target

	Documenation Macros
	blt_add_doxygen_target

	blt_add_sphinx_target

Target Macros

blt_add_benchmark

blt_add_benchmark(NAME [name]
 COMMAND [command]
 NUM_MPI_TASKS [n])

Adds a benchmark to the project.

	NAME

	Name that CTest reports.

	COMMAND

	Command line that will be used to run the test and can include arguments.

	NUM_MPI_TASKS

	Indicates this is an MPI test and how many MPI tasks to use.

This macro adds a benchmark test to the Benchmark CTest configuration
which can be run by the run_benchmarks build target. These tests are
not run when you use the regular test build target.

This macro is just a thin wrapper around blt_add_test and assists
with building up the correct command line for running the benchmark. For more
information see blt_add_test.

The underlying executable should be previously added to the build system
with blt_add_executable. It should include the necessary benchmarking
library in its DEPENDS_ON list.

Any calls to this macro should be guarded with ENABLE_BENCHMARKS unless this option
is always on in your build project.

Note

BLT provides a built-in Google Benchmark that is enabled by default if you set
ENABLE_BENCHMARKS=ON and can be turned off with the option ENABLE_GBENCHMARK.

Example

	1
2
3
4
5
6
7
8

	if(ENABLE_BENCHMARKS)
 blt_add_executable(NAME component_benchmark
 SOURCES my_benchmark.cpp
 DEPENDS gbenchmark)
 blt_add_benchmark(
 NAME component_benchmark
 COMMAND component_benchmark "--benchmark_min_time=0.0 --v=3 --benchmark_format=json")
endif()

blt_add_executable

blt_add_executable(NAME <name>
 SOURCES [source1 [source2 ...]]
 INCLUDES [dir1 [dir2 ...]]
 DEFINES [define1 [define2 ...]]
 DEPENDS_ON [dep1 [dep2 ...]]
 OUTPUT_DIR [dir]
 FOLDER [name])

Adds an executable target to the project.

	NAME

	Name of the created CMake target

	SOURCES

	List of all sources to be added

	INCLUDES

	List of include directories both used by this target and inherited by dependent
targets

	DEFINES

	List of compiler defines both used by this target and inherited by dependent
targets

	DEPENDS_ON

	List of CMake targets and BLT registered libraries that this target
depends on

	OUTPUT_DIR

	Directory that this target will built to, defaults to bin

	FOLDER

	Name of the IDE folder to ease organization

Adds an executable target, called <name>, to be built from the given sources.
It also adds the given INCLUDES and DEFINES from the parameters to this macro
and adds all inherited information from the list given by DEPENDS_ON. This
macro creates a true CMake target that can be altered by other CMake commands
like normal, such as set_target_property().

Note

If the first entry in SOURCES is a Fortran source file, the fortran linker
is used. (via setting the CMake target property LINKER_LANGUAGE to Fortran)

Note

The FOLDER option is only used when ENABLE_FOLDERS is ON and when the CMake generator
supports this feature and will otherwise be ignored.

blt_add_library

blt_add_library(NAME <libname>
 SOURCES [source1 [source2 ...]]
 HEADERS [header1 [header2 ...]]
 INCLUDES [dir1 [dir2 ...]]
 DEFINES [define1 [define2 ...]]
 DEPENDS_ON [dep1 ...]
 OUTPUT_NAME [name]
 OUTPUT_DIR [dir]
 SHARED [TRUE | FALSE]
 OBJECT [TRUE | FALSE]
 CLEAR_PREFIX [TRUE | FALSE]
 FOLDER [name])

Adds a library target to your project.

	NAME

	Name of the created CMake target

	SOURCES

	List of all sources to be added

	HEADERS

	List of all headers to be added

	INCLUDES

	List of include directories both used by this target and inherited by dependent
targets

	DEFINES

	List of compiler defines both used by this target and inherited by dependent
targets

	DEPENDS_ON

	List of CMake targets and BLT registered libraries that this library
depends on

	OUTPUT_NAME

	Override built file name of library (defaults to <NAME>)

	OUTPUT_DIR

	Directory that this target will built to

	SHARED

	Builds library as shared and overrides global BUILD_SHARED_LIBS (defaults to OFF)

	OBJECT

	Create an Object library

	CLEAR_PREFIX

	Removes library prefix (defaults to ‘lib’ on linux)

	FOLDER

	Name of the IDE folder to ease organization

This macro creates a true CMake target that can be altered by other CMake commands
like normal, such as set_target_property().

This macro supports three types of libraries automatically: normal, header-only,
or object.

Normal libraries are libraries that have sources that are compiled and linked into a single
library and have headers that go along with them (unless it’s a Fortran library).

Header-only libraries are useful when you do not want the library separately compiled or
are using C++ templates that require the library’s user to instatiate them. These libraries
have headers but no sources. To create a header-only library (CMake calls them INTERFACE libraries),
simply list all headers under the HEADER argument and do not specify SOURCES (because there aren’t any).

Object libraries are basically a collection of compiled source files that are not
archived or linked. They are sometimes useful when you want to solve compilicated linking
problems (like circular dependencies) or when you want to combine smaller libraries into
one larger library but don’t want the linker to remove unused symbols. Unlike regular CMake
object libraries you do not have to use the $<TARGET_OBJECTS:<libname>> syntax, you can just
use <libname> with BLT macros. Unless you have a good reason don’t use Object libraries.

Note

BLT Object libraries do not follow CMake’s normal transitivity rules. Due to CMake requiring
you install the individual object files if you install the target that uses them. BLT manually
adds the INTERFACE target properties to get around this.

This macro uses the BUILD_SHARED_LIBS, which is defaulted to OFF, to determine
whether the library will be built as shared or static. The optional boolean
SHARED argument can be used to override this choice.

If given a DEPENDS_ON argument, this macro will inherit the necessary information
from all targets given in the list. This includes CMake targets as well as any
BLT registered libraries already defined via blt_register_library. To ease
use, all information is used by this library and inherited by anything depending on this
library (CMake PUBLIC inheritance).

OUTPUT_NAME is useful when multiple libraries with the same name need to be created
by different targets. For example, you might want to build both a shared and static
library in the same build instead of building twice, once with BUILD_SHARED_LIBS set to ON
and then with OFF. NAME is the CMake target name, OUTPUT_NAME is the created library name.

Note

The FOLDER option is only used when ENABLE_FOLDERS is ON and when the CMake generator
supports this feature and will otherwise be ignored.

blt_add_test

blt_add_test(NAME [name]
 COMMAND [command]
 NUM_MPI_TASKS [n]
 NUM_OMP_THREADS [n]
 CONFIGURATIONS [config1 [config2...]])

Adds a test to the project.

	NAME

	Name that CTest reports.

	COMMAND

	Command line that will be used to run the test and can include arguments.

	NUM_MPI_TASKS

	Indicates this is an MPI test and how many MPI tasks to use.

	NUM_OMP_THREADS

	Indicates this test requires the defined environment variable OMP_NUM_THREADS set to the given variable.

	CONFIGURATIONS

	Set the CTest configuration for this test. When not specified, the test
will be added to the default CTest configuration.

This macro adds the named test to CTest, which is run by the build target test. This macro
does not build the executable and requires a prior call to blt_add_executable.

This macro assists with building up the correct command line. It will prepend
the RUNTIME_OUTPUT_DIRECTORY target property to the executable.

If NUM_MPI_TASKS is given or ENABLE_WRAP_ALL_TESTS_WITH_MPIEXEC is set, the macro
will appropiately use MPIEXEC, MPIEXEC_NUMPROC_FLAG, and BLT_MPI_COMMAND_APPEND
to create the MPI run line.

MPIEXEC and MPIEXEC_NUMPROC_FLAG are filled in by CMake’s FindMPI.cmake but can
be overwritten in your host-config specific to your platform. BLT_MPI_COMMAND_APPEND
is useful on machines that require extra arguments to MPIEXEC.

If NUM_OMP_THREADS is given, this macro will set the environment variable OMP_NUM_THREADS
before running this test. This is done by appending to the CMake tests property.

Note

If you do not require this macros command line assistance, you can call CMake’s
add_test() directly. For example, you may have a script checked into your
repository you wish to run as a test instead of an executable you built as a part
of your build system.

Any calls to this macro should be guarded with ENABLE_TESTS unless this option
is always on in your build project.

Example

	1
2
3
4
5
6

	if (ENABLE_TESTS)
 blt_add_executable(NAME my_test
 SOURCES my_test.cpp)
 blt_add_test(NAME my_test
 COMMAND my_test --with-some-argument)
endif()

blt_register_library

blt_register_library(NAME <libname>
 DEPENDS_ON [dep1 [dep2 ...]]
 INCLUDES [include1 [include2 ...]]
 TREAT_INCLUDES_AS_SYSTEM [ON|OFF]
 FORTRAN_MODULES [path1 [path2 ..]]
 LIBRARIES [lib1 [lib2 ...]]
 COMPILE_FLAGS [flag1 [flag2 ..]]
 LINK_FLAGS [flag1 [flag2 ..]]
 DEFINES [def1 [def2 ...]])

Registers a library to the project to ease use in other BLT macro calls.

Stores information about a library in a specific way that is easily recalled
in other macros. For example, after registering gtest, you can add gtest to
the DEPENDS_ON in your blt_add_executable call and it will add the INCLUDES
and LIBRARIES to that executable.

TREAT_INCLUDES_AS_SYSTEM informs the compiler to treat this library’s include paths
as system headers. Only some compilers support this. This is useful if the headers
generate warnings you want to not have them reported in your build. This defaults
to OFF.

This does not actually build the library. This is strictly to ease use after
discovering it on your system or building it yourself inside your project.

Note: The OBJECT parameter is for internal BLT support for object libraries
and is not for users. Object libraries are created using blt_add_library().

	Internally created variables (NAME = “foo”):

	
BLT_FOO_IS_REGISTERED_LIBRARY

BLT_FOO_IS_OBJECT_LIBRARY

BLT_FOO_DEPENDS_ON

BLT_FOO_INCLUDES

BLT_FOO_TREAT_INCLUDES_AS_SYSTEM

BLT_FOO_FORTRAN_MODULES

BLT_FOO_LIBRARIES

BLT_FOO_COMPILE_FLAGS

BLT_FOO_LINK_FLAGS

BLT_FOO_DEFINES

Target Property Macros

blt_add_target_compile_flags

blt_add_target_compile_flags(TO <target>
 SCOPE <PUBLIC (Default)| INTERFACE | PRIVATE>
 FLAGS [FOO [BAR ...]])

Appends compiler flags to a CMake target by appending to the target’s existing flags.

	TO

	Name of CMake target

	SCOPE

	Defines the scope of the given flags. Defaults to PUBLIC and is case insensitive.

	FLAGS

	List of compile flags

This macro provides very similar functionality to CMake’s native
add_compile_options and target_compile_options commands, but
provides more fine-grained scoping for the compile flags on a
per target basis.

The given target must be added via CMake’s add_executable or add_library commands
or with the corresponding blt_add_executable and blt_add_library macros.

PRIVATE flags are used for the given target. INTERFACE flags are inherited
by any target that depends on this target. PUBLIC flags are both INTERFACE and PRIVATE.

Note

This macro will strip away leading and trailing whitespace from each flag.

blt_add_target_definitions

blt_add_target_definitions(TO <target>
 SCOPE <PUBLIC (Default)| INTERFACE | PRIVATE>
 TARGET_DEFINITIONS [FOO [BAR ...]])

Appends pre-processor definitions to the given target’s existing flags.

	TO

	Name of CMake target

	SCOPE

	Defines the scope of the given definitions. Defaults to PUBLIC and is case insensitive.

	FLAGS

	List of definitions flags

This macro provides very similar functionality to CMake’s native
add_definitions and target_add_defintions commands, but provides
more fine-grained scoping for the compile definitions on a per target basis.
Given a list of definitions, e.g., FOO and BAR, this macro adds compiler
definitions to the compiler command for the given target, i.e., it will pass
-DFOO and -DBAR.

The given target must be added via CMake’s add_executable or add_library commands
or with the corresponding blt_add_executable and blt_add_library macros.

PRIVATE flags are used for the given target. INTERFACE flags are inherited
by any target that depends on this target. PUBLIC flags are both INTERFACE and PRIVATE.

Note

The target definitions can either include or omit the “-D” characters.
E.g. the following are all valid ways to add two compile definitions
(A=1 and B) to target ‘foo’.

Note

This macro will strip away leading and trailing whitespace from each definition.

Example

	1
2
3
4

	blt_add_target_definitions(TO foo TARGET_DEFINITIONS A=1 B)
blt_add_target_definitions(TO foo TARGET_DEFINITIONS -DA=1 -DB)
blt_add_target_definitions(TO foo TARGET_DEFINITIONS "A=1;-DB")
blt_add_target_definitions(TO foo TARGET_DEFINITIONS " " -DA=1;B)

blt_add_target_link_flags

blt_add_target_link_flags(TO <target>
 SCOPE <PUBLIC (Default)| INTERFACE | PRIVATE>
 FLAGS [FOO [BAR ...]])

Appends linker flags to a the given target’s existing flags.

	TO

	Name of CMake target

	SCOPE

	Defines the scope of the given flags. Defaults to PUBLIC and is case insensitive.

	FLAGS

	List of linker flags

This macro provides very similar functionality to CMake’s native
add_link_options and target_link_options commands, but provides
more fine-grained scoping for the compile definitions on a per target basis.

The given target must be added via CMake’s add_executable or add_library commands
or with the corresponding blt_add_executable and blt_add_library macros.

PRIVATE flags are used for the given target. INTERFACE flags are inherited
by any target that depends on this target. PUBLIC flags are both INTERFACE and PRIVATE.

If CUDA_LINK_WITH_NVCC is set to ON, this macro will automatically convert
“-Wl,-rpath,” to “-Xlinker -rpath -Xlinker “.

Note

This macro also handles the various changes that CMake made in 3.13. For example,
the target property LINK_FLAGS was changes to LINK_OPTIONS and was changed from a
string to a list. New versions now support Generator Expressions. Also pre-3.13,
there were no macros to add link flags to targets so we do this by setting the properties
directly.

Note

In CMake versions prior to 3.13, this list is converted to a string internally
and any ; characters will be removed.

Note

In CMake versions 3.13 and above, this list is prepended with “SHELL:” which stops
CMake from de-duplicating flags. This is especially bad when linking with NVCC when
you have groups of flags like “-Xlinker -rpath -Xlinker <directory>”.

blt_print_target_properties

blt_print_target_properties(TARGET <target>)

Prints out all properties of the given target.

	TARGET

	Name of CMake target

The given target must be added via add_executable or add_library or
with the corresponding blt_add_executable, blt_add_library, or
blt_register_library macros.

	Output is of the form for each property:

	
[<target> property] <property>: <value>

blt_set_target_folder

blt_set_target_folder(TARGET <target>
 FOLDER <folder>)

Sets the FOLDER property of the given CMake target.

	TARGET

	Name of CMake target

	FOLDER

	Name of the folder

This is used to organize properties in an IDE.

This feature is only available when BLT’s ENABLE_FOLDERS option is ON and
in CMake generators that support folders (but is safe to call regardless
of the generator or value of ENABLE_FOLDERS).

Note

Do not use this macro on header-only (INTERFACE) library targets, since
this will generate a CMake configuration error.

Utility Macros

blt_assert_exists

blt_assert_exists(
 [DIRECTORIES <dir1> [<dir2> ...]]
 [FILES <file1> [<file2> ...]]
 [TARGETS <target1> [<target2> ...]])

Checks if the specified directory, file and/or cmake target exists and throws
an error message.

Note

The behavior for checking if a given file or directory exists is well-defined
only for absolute paths.

Example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	## check if the directory 'blt' exists in the project
blt_assert_exists(DIRECTORIES ${PROJECT_SOURCE_DIR}/cmake/blt)

check if the file 'SetupBLT.cmake' file exists
blt_assert_exists(FILES ${PROJECT_SOURCE_DIR}/cmake/blt/SetupBLT.cmake)

checks can also be bundled in one call
blt_assert_exists(DIRECTORIES ${PROJECT_SOURCE_DIR}/cmake/blt
 FILES ${PROJECT_SOURCE_DIR}/cmake/blt/SetupBLT.cmake)

check if the CMake targets `foo` and `bar` exist
blt_assert_exists(TARGETS foo bar)

blt_append_custom_compiler_flag

blt_append_custom_compiler_flag(
 FLAGS_VAR flagsVar (required)
 DEFAULT defaultFlag (optional)
 GNU gnuFlag (optional)
 CLANG clangFlag (optional)
 HCC hccFlag (optional)
 INTEL intelFlag (optional)
 XL xlFlag (optional)
 MSVC msvcFlag (optional)
 MSVC_INTEL msvcIntelFlag (optional)
 PGI pgiFlag (optional)
 CRAY crayFlag (optional))

Appends compiler-specific flags to a given variable of flags

If a custom flag is given for the current compiler, we use that.
Otherwise, we will use the DEFAULT flag (if present).

If ENABLE_FORTRAN is On, any flagsVar with “fortran” (any capitalization)
in its name will pick the compiler family (GNU,CLANG, INTEL, etc) based on
the fortran compiler family type. This allows mixing C and Fortran compiler
families, e.g. using Intel fortran compilers with clang C compilers.

When using the Intel toolchain within visual studio, we use the
MSVC_INTEL flag, when provided, with a fallback to the MSVC flag.

blt_find_libraries

blt_find_libraries(FOUND_LIBS <FOUND_LIBS variable name>
 NAMES [libname1 [libname2 ...]]
 REQUIRED [TRUE (default) | FALSE]
 PATHS [path1 [path2 ...]])

This command is used to find a list of libraries.

If the libraries are found the results are appended to the given FOUND_LIBS variable name.
NAMES lists the names of the libraries that will be searched for in the given PATHS.

If REQUIRED is set to TRUE, BLT will produce an error message if any of the
given libraries are not found. The default value is TRUE.

PATH lists the paths in which to search for NAMES. No system paths will be searched.

blt_list_append

blt_list_append(TO <list>
 ELEMENTS [<element>...]
 IF <bool>)

Appends elements to a list if the specified bool evaluates to true.

This macro is essentially a wrapper around CMake’s list(APPEND ...)
command which allows inlining a conditional check within the same call
for clarity and convenience.

This macro requires specifying:

	The target list to append to by passing TO <list>

	A condition to check by passing IF <bool>

	The list of elements to append by passing ELEMENTS [<element>...]

Note, the argument passed to the IF option has to be a single boolean value
and cannot be a boolean expression since CMake cannot evaluate those inline.

Example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	set(mylist A B)

set(ENABLE_C TRUE)
blt_list_append(TO mylist ELEMENTS C IF ${ENABLE_C}) # Appends 'C'

set(ENABLE_D TRUE)
blt_list_append(TO mylist ELEMENTS D IF ENABLE_D) # Appends 'D'

set(ENABLE_E FALSE)
blt_list_append(TO mylist ELEMENTS E IF ENABLE_E) # Does not append 'E'

unset(_undefined)
blt_list_append(TO mylist ELEMENTS F IF _undefined) # Does not append 'F'

blt_list_remove_duplicates

blt_list_remove_duplicates(TO <list>)

Removes duplicate elements from the given TO list.

This macro is essentially a wrapper around CMake’s list(REMOVE_DUPLICATES ...)
command but doesn’t throw an error if the list is empty or not defined.

Example

	1
2

	set(mylist A B A)
blt_list_remove_duplicates(TO mylist)

Creating Documentation

BLT provides macros to build documentation using Sphinx [http://www.sphinx-doc.org/]
and Doxygen [http://www.doxygen.org/].

Sphinx is the documentation system used by the Python programming
language project (among many others).

Doxygen is a widely used system that generates documentation from annotated source code.
Doxygen is heavily used for documenting C++ software.

Sphinx and Doxygen are not built into BLT, so the sphinx-build and doxygen executables
must be available via a user’s PATH at configuration time, or explicitly specified using the
CMake variables SPHINX_EXECUTABLE and DOXYGEN_EXECUTABLE.

Here is an example of setting sphinx-build and doxygen paths in a host-config file:

set(SPHINX_EXECUTABLE "/usr/bin/sphinx-build" CACHE FILEPATH "")

set(DOXYGEN_EXECUTABLE "/usr/bin/doxygen" CACHE FILEPATH "")

The calc_pi example provides examples of both Sphinx and Doxygen documentation.

Calc Pi Sphinx Example

Sphinx is a python package that depends on several other packages.
It can be installed via spack [https://spack.io], pip, anaconda, etc…

sphinx-build processes a config.py file which includes a tree of reStructuredText files.
The Sphinx sphinx-quickstart utility helps you generate a new sphinx project, including
selecting common settings for the config.py.

BLT provides a blt_add_sphinx_target() macro which, which will look for a conf.py file
in the current directory and add a command to build the Sphinx docs using this file to the docs
CMake target.

blt_add_sphinx_target

A macro to create a named sphinx target for user documentation.
Assumes there is a conf.py sphinx configuration file in the current directory.
This macro is active when BLT is configured with a valid SPHINX_EXECUTABLE path.

Here is an example of using blt_add_sphinx_target() in a CMakeLists.txt file:

#--
add a target to generate documentation with sphinx
#--

if(SPHINX_FOUND)
 blt_add_sphinx_target(calc_pi_sphinx)
endif()

Here is the example reStructuredText file that contains documentation for the calc_pi example.

.. Calc Pi documentation master file, created by
 sphinx-quickstart on Sun Sep 10 21:47:20 2017.
 You can adapt this file completely to your liking, but it should at least
 contain the root `toctree` directive.

Welcome to Calc Pi's documentation!
===================================

This is a tutorial example for BLT (https://github.com/llnl/blt) that creates
C++ libraries that calculate :math:`\pi` serially and in parallel using MPI
and CUDA.

These libraries calculate :math:`\pi` by approximating the integral
:math:`f(x) = \int_0^14/(1+x^2)` using numerical integration.
In the MPI implementation, the intervals are distributed across MPI tasks and
a MPI_AllReduce calculates the final result. In the CUDA implementation, the
intervals are distributed across CUDA blocks and threads and a tree reduction
calculates the final result.

The method is adapted from:
https://www.mcs.anl.gov/research/projects/mpi/usingmpi/examples-usingmpi/simplempi/cpi_c.html

Calc Pi Doxygen Example

Doxygen is a compiled executable that can be installed via spack, built-by-hand, etc…

doxygen processes a Doxyfile which specifies options, including where to look for
annotated source files.

BLT provides a blt_add_doxygen_target() macro which, which will look for a Doxyfile.in
file in the current directory, configure this file to create a Doxyfile in the build directory,
and add a command to build the Doxygen docs using this file to the docs CMake target.

blt_add_doxygen_target

A macro to create a named doxygen target for API documentation.
Assumes there is a Doxyfile.in doxygen configuration file in the current directory.
This macro is active when BLT is configured with a valid DOXYGEN_EXECUTABLE path.

Here is an example of using blt_add_doxygen_target() in a CMakeLists.txt file:

#--
add a target to generate documentation with Doxygen
#--

if(DOXYGEN_FOUND)
 blt_add_doxygen_target(calc_pi_doxygen)
endif()

Here is the example Doxyfile.in file that is configured by CMake and passed to doxygen.

#---------------------------------------
Doxygen Config for Calc Pi Example
#---------------------------------------

PROJECT_NAME = Calc Pi
PROJECT_BRIEF = "Calc Pi"

INPUT = @CMAKE_CURRENT_SOURCE_DIR@/../../

GENERATE_XML = NO
GENERATE_LATEX = NO

RECURSIVE = NO
STRIP_CODE_COMMENTS = NO

Building the Calc Pi Example Documentation

Here is an example of building both the calc_pi Sphinx and Doxygen docs using the docs CMake target:

cd build-calc-pi
make docs
...
[50%] Building HTML documentation with Sphinx
[50%] Built target calc_pi_sphinx
[50%] Built target sphinx_docs
[100%] Generating API documentation with Doxygen
Searching for include files...
Searching for example files...
Searching for images...
Searching for dot files...
...
lookup cache used 3/65536 hits=3 misses=3
finished...
[100%] Built target calc_pi_doxygen
[100%] Built target doxygen_docs
[100%] Built target docs

After this, you can view the Sphinx docs at:

	build-calc-pi/docs/sphinx/html/index.html

and the Doxygen docs at:

	build-calc-pi/docs/doxygen/html/index.html

Creating Libraries and Executables

In the previous section, we learned the basics about how to create a CMake
project with BLT, how to configure the project and how to build and test BLT’s built-in third party libraries.

We now move on to creating libraries and executables
using two of BLT’s core macros: blt_add_library() and blt_add_executable().

We begin with a simple executable that calculates [image: \pi] by numerical integration
(example_1). We will then extract that code into a library, which we link
into a new executable (example_2).

Example 1: Basic executable

This example is as basic as it gets. After setting up a BLT CMake project,
like blank_project in the previous section, we can start using BLT’s macros.
Creating an executable is as simple as calling the following macro:

blt_add_executable(NAME example_1
 SOURCES example_1.cpp)

This tells CMake to create an executable named example_1 with one source file
(example_1.cpp).

You can create this project yourself or you can run the already provided
tutorial/calc_pi project. For ease of use, we have combined many examples
into this one CMake project. After running the following commands, you will
create the executable <build dir>/bin/example_1:

cd <BLT repository/docs/tutorial/calc_pi
mkdir build
cd build
cmake -DBLT_SOURCE_DIR=../../.. ..
make

blt_add_executable

This is one of the core macros that enables BLT to simplify our CMake-based
project. It unifies many CMake calls into one easy to use macro.
blt_add_executable() creates a CMake executable target with the
given sources, sets the output directory to <build dir>/bin
(unless overridden with the macro parameter OUTPUT_DIR) and handles
internal and external dependencies in a greatly simplified manner. There
will be more on that in the following section.

Example 2: One library, one executable

This example is a bit more exciting. This time we are creating a library
that calculates the value of pi and then linking that library into an executable.

First, we create the library with the following BLT code:

blt_add_library(NAME calc_pi
 HEADERS calc_pi.hpp calc_pi_exports.h
 SOURCES calc_pi.cpp)

Just like before, this creates a CMake library target that will get built to
<build dir>/lib/libcalc_pi.a.

Next, we create an executable named example_2 and link in the previously
created library target:

blt_add_executable(NAME example_2
 SOURCES example_2.cpp
 DEPENDS_ON calc_pi)

The DEPENDS_ON parameter properly links the previously defined library
into this executable without any more work or CMake function calls.

blt_add_library

This is another core BLT macro. It creates a CMake library target and associates
the given sources and headers along with handling dependencies the same way as
blt_add_executable does. It also provides a few commonly used build options,
such as overriding the output name of the library and the output directory.
It defaults to building a static library unless you override it with
SHARED or with the global CMake option BUILD_SHARED_LIBS.

Object Libraries

BLT has simplified the use of CMake object libraries through the
blt_add_library macro. Object libraries are a collection of object files
that are not linked or archived into a library. They are used in other libraries
or executables through the DEPENDS_ON macro argument. This is generally
useful for combining smaller libraries into a larger library without
the linker removing unused symbols in the larger library.

blt_add_library(NAME myObjectLibrary
 SOURCES source1.cpp
 HEADERS header1.cpp
 OBJECT TRUE)

blt_add_exectuble(NAME helloWorld
 SOURCES main.cpp
 DEPENDS_ON myObjectLibrary)

Note

Due to record keeping on BLT’s part to make object libraries as easy to use
as possible, you need to define object libraries before you use them
if you need their inheritable information to be correct.

External Dependencies

One key goal for BLT is to simplify the use of external dependencies when building your libraries and executables.

To accomplish this BLT provides a DEPENDS_ON option for the
blt_add_library() and blt_add_executable() macros that supports both CMake targets
and external dependencies registered using the blt_register_library() macro.

The blt_register_library() macro allows you to reuse all information needed
for an external dependency under a single name. This includes any include
directories, libraries, compile flags, link flags, defines, etc. You can also
hide any warnings created by their headers by setting the
TREAT_INCLUDES_AS_SYSTEM argument.

For example, to find and register the external dependency axom as a BLT registered library, you can simply use:

FindAxom.cmake takes in AXOM_DIR, which is a installed Axom build and
sets variables AXOM_INCLUDES, AXOM_LIBRARIES
include(FindAxom.cmake)
blt_register_library(NAME axom
 TREAT_INCLUDES_AS_SYSTEM ON
 DEFINES HAVE_AXOM=1
 INCLUDES ${AXOM_INCLUDES}
 LIBRARIES ${AXOM_LIBRARIES})

Then axom is available to be used in the DEPENDS_ON list in the following
blt_add_executable() or blt_add_library() calls.

This is especially helpful for external libraries that are not built with CMake
and don’t provide CMake-friendly imported targets. Our ultimate goal is to use blt_register_library()
to import all external dependencies as first-class imported CMake targets to take full advanced of CMake’s dependency lattice.

MPI, CUDA, and OpenMP are all registered via blt_register_library().
You can see how in blt/thirdparty_builtin/CMakelists.txt.

BLT also supports using blt_register_library() to provide additional options for existing CMake targets.
The implementation doesn’t modify the properties of the existing targets,
it just exposes these options via BLT’s support for DEPENDS_ON.

blt_register_library

A macro to register external libraries and dependencies with BLT.
The named target can be added to the DEPENDS_ON argument of other BLT macros,
like blt_add_library() and blt_add_executable().

You have already seen one use of DEPENDS_ON for a BLT
registered dependency in test_1: gtest

blt_add_executable(NAME test_1
 SOURCES test_1.cpp
 DEPENDS_ON calc_pi gtest)

gtest is the name for the Google Test dependency in BLT registered via
blt_register_library(). Even though Google Test is built-in and uses CMake,
blt_register_library() allows us to easily set defines needed by all dependent
targets.

MPI Example

Our next example, test_2, builds and tests the calc_pi_mpi library,
which uses MPI to parallelize the calculation over the integration intervals.

To enable MPI, we set ENABLE_MPI, MPI_C_COMPILER, and MPI_CXX_COMPILER in our host config file. Here is a snippet with these settings for LLNL’s Surface Cluster:

set(ENABLE_MPI ON CACHE BOOL "")

set(MPI_C_COMPILER "/usr/local/tools/mvapich2-gnu-2.0/bin/mpicc" CACHE PATH "")

set(MPI_CXX_COMPILER "/usr/local/tools/mvapich2-gnu-2.0/bin/mpicc" CACHE PATH "")

set(MPI_Fortran_COMPILER "/usr/local/tools/mvapich2-gnu-2.0/bin/mpif90" CACHE PATH "")

Here, you can see how calc_pi_mpi and test_2 use DEPENDS_ON:

 blt_add_library(NAME calc_pi_mpi
 HEADERS calc_pi_mpi.hpp calc_pi_mpi_exports.h
 SOURCES calc_pi_mpi.cpp
 DEPENDS_ON mpi)

 if(WIN32 AND BUILD_SHARED_LIBS)
 target_compile_definitions(calc_pi_mpi PUBLIC WIN32_SHARED_LIBS)
 endif()

 blt_add_executable(NAME test_2
 SOURCES test_2.cpp
 DEPENDS_ON calc_pi calc_pi_mpi gtest)

For MPI unit tests, you also need to specify the number of MPI Tasks
to launch. We use the NUM_MPI_TASKS argument to blt_add_test() macro.

 blt_add_test(NAME test_2
 COMMAND test_2
 NUM_MPI_TASKS 2) # number of mpi tasks to use

As mentioned in Unit Testing, google test provides a default main()
driver that will execute all unit tests defined in the source. To test MPI code,
we need to create a main that initializes and finalizes MPI in addition to Google
Test. test_2.cpp provides an example driver for MPI with Google Test.

// main driver that allows using mpi w/ google test
int main(int argc, char * argv[])
{
 int result = 0;

 ::testing::InitGoogleTest(&argc, argv);

 MPI_Init(&argc, &argv);

 result = RUN_ALL_TESTS();

 MPI_Finalize();

 return result;
}

Note

While we have tried to ensure that BLT chooses the correct setup information
for MPI, there are several niche cases where the default behavior is
insufficient. We have provided several available override variables:

	BLT_MPI_COMPILE_FLAGS

	BLT_MPI_INCLUDES

	BLT_MPI_LIBRARIES

	BLT_MPI_LINK_FLAGS

BLT also has the variable ENABLE_FIND_MPI which turns off all CMake’s FindMPI
logic and then uses the MPI wrapper directly when you provide them as the default
compilers.

CUDA Example

Finally, test_3 builds and tests the calc_pi_cuda library,
which uses CUDA to parallelize the calculation over the integration intervals.

To enable CUDA, we set ENABLE_CUDA, CMAKE_CUDA_COMPILER, and
CUDA_TOOLKIT_ROOT_DIR in our host config file. Also before enabling the
CUDA language in CMake, you need to set CMAKE_CUDA_HOST_COMPILER in CMake 3.9+
or CUDA_HOST_COMPILER in previous versions. If you do not call
enable_language(CUDA), BLT will set the appropriate host compiler variable
for you and enable the CUDA language.

Here is a snippet with these settings for LLNL’s Surface Cluster:

set(ENABLE_CUDA ON CACHE BOOL "")

set(CUDA_TOOLKIT_ROOT_DIR "/opt/cudatoolkit-8.0" CACHE PATH "")
set(CMAKE_CUDA_COMPILER "/opt/cudatoolkit-8.0/bin/nvcc" CACHE PATH "")
set(CMAKE_CUDA_HOST_COMPILER "${CMAKE_CXX_COMPILER}" CACHE PATH "")
set(CUDA_SEPARABLE_COMPILATION ON CACHE BOOL "")

Here, you can see how calc_pi_cuda and test_3 use DEPENDS_ON:

 # avoid warnings about sm_20 deprecated
 set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS};-arch=sm_30)
	
 blt_add_library(NAME calc_pi_cuda
 HEADERS calc_pi_cuda.hpp calc_pi_cuda_exports.h
 SOURCES calc_pi_cuda.cpp
 DEPENDS_ON cuda)

 if(WIN32 AND BUILD_SHARED_LIBS)
 target_compile_definitions(calc_pi_cuda PUBLIC WIN32_SHARED_LIBS)
 endif()

 blt_add_executable(NAME test_3
 SOURCES test_3.cpp
 DEPENDS_ON calc_pi calc_pi_cuda gtest cuda_runtime)

 blt_add_test(NAME test_3
 COMMAND test_3)

The cuda dependency for calc_pi_cuda is a little special,
along with adding the normal CUDA library and headers to your library or executable,
it also tells BLT that this target’s C/CXX/CUDA source files need to be compiled via
nvcc or cuda-clang. If this is not a requirement, you can use the dependency
cuda_runtime which also adds the CUDA runtime library and headers but will not
compile each source file with nvcc.

Some other useful CUDA flags are:

Enable separable compilation of all CUDA files for given target or all following targets
set(CUDA_SEPARABLE_COMPILIATION ON CACHE BOOL “”)
set(CUDA_ARCH “sm_60” CACHE STRING “”)
set(CMAKE_CUDA_FLAGS “-restrict –arch ${CUDA_ARCH} –std=c++11” CACHE STRING “”)
set(CMAKE_CUDA_LINK_FLAGS “-Xlinker –rpath –Xlinker /path/to/mpi” CACHE STRING “”)
Needed when you have CUDA decorations exposed in libraries
set(CUDA_LINK_WITH_NVCC ON CACHE BOOL “”)

OpenMP

To enable OpenMP, set ENABLE_OPENMP in your host-config file or before loading
SetupBLT.cmake. Once OpenMP is enabled, simply add openmp to your library
executable’s DEPENDS_ON list.

Here is an example of how to add an OpenMP enabled executable:

 blt_add_executable(NAME blt_openmp_smoke
 SOURCES blt_openmp_smoke.cpp
 OUTPUT_DIR ${TEST_OUTPUT_DIRECTORY}
 DEPENDS_ON openmp
 FOLDER blt/tests)

Note

While we have tried to ensure that BLT chooses the correct compile and link flags for
OpenMP, there are several niche cases where the default options are insufficient.
For example, linking with NVCC requires to link in the OpenMP libraries directly instead
of relying on the compile and link flags returned by CMake’s FindOpenMP package. An
example of this is in host-configs/llnl/blueos_3_ppc64le_ib_p9/clang@upstream_link_with_nvcc.cmake.
We provide two variables to override BLT’s OpenMP flag logic:

	BLT_OPENMP_COMPILE_FLAGS

	BLT_OPENMP_LINK_FLAGS

Here is an example of how to add an OpenMP enabled test that sets the amount of threads used:

 blt_add_test(NAME blt_openmp_smoke
 COMMAND blt_openmp_smoke
 NUM_OMP_THREADS 4)

Example Host-configs

Here are the full example host-config files that use gcc 4.9.3 for LLNL’s Surface, Ray and Quartz Clusters.

llnl-surface-chaos_5_x86_64_ib-gcc@4.9.3.cmake

llnl/blueos_3_ppc64le_ib_p9/clang@upstream_nvcc_xlf

llnl/toss_3_x86_64_ib/gcc@4.9.3.cmake

Note

Quartz does not have GPUs, so CUDA is not enabled in the Quartz host-config.

Here is a full example host-config file for an OSX laptop, using a set of dependencies built with spack.

darwin/elcapitan-x86_64/naples-clang@7.3.0.cmake

Building and testing on Surface

Here is how you can use the host-config file to configure a build of the calc_pi project with MPI and CUDA enabled on Surface:

load new cmake b/c default on surface is too old
ml cmake/3.9.2
create build dir
mkdir build
cd build
configure using host-config
cmake -C ../../host-configs/other/llnl-surface-chaos_5_x86_64_ib-gcc@4.9.3.cmake \
 -DBLT_SOURCE_DIR=../../../../blt ..

After building (make), you can run make test on a batch node (where the GPUs reside)
to run the unit tests that are using MPI and CUDA:

bash-4.1$ salloc -A <valid bank>
bash-4.1$ make
bash-4.1$ make test

Running tests...
Test project blt/docs/tutorial/calc_pi/build
 Start 1: test_1
1/8 Test #1: test_1 Passed 0.01 sec
 Start 2: test_2
2/8 Test #2: test_2 Passed 2.79 sec
 Start 3: test_3
3/8 Test #3: test_3 Passed 0.54 sec
 Start 4: blt_gtest_smoke
4/8 Test #4: blt_gtest_smoke Passed 0.01 sec
 Start 5: blt_fruit_smoke
5/8 Test #5: blt_fruit_smoke Passed 0.01 sec
 Start 6: blt_mpi_smoke
6/8 Test #6: blt_mpi_smoke Passed 2.82 sec
 Start 7: blt_cuda_smoke
7/8 Test #7: blt_cuda_smoke Passed 0.48 sec
 Start 8: blt_cuda_runtime_smoke
8/8 Test #8: blt_cuda_runtime_smoke Passed 0.11 sec

100% tests passed, 0 tests failed out of 8

Total Test time (real) = 6.80 sec

Building and testing on Ray

Here is how you can use the host-config file to configure a build of the calc_pi project with MPI and CUDA
enabled on the blue_os Ray cluster:

load new cmake b/c default on ray is too old
ml cmake
create build dir
mkdir build
cd build
configure using host-config
cmake -C ../../host-configs/llnl/blueos_3_ppc64le_ib_p9/clang@upstream_nvcc_xlf.cmake \
 -DBLT_SOURCE_DIR=../../../../blt ..

And here is how to build and test the code on Ray:

bash-4.2$ lalloc 1 -G <valid group>
bash-4.2$ make
bash-4.2$ make test

Running tests...
Test project projects/blt/docs/tutorial/calc_pi/build
 Start 1: test_1
1/7 Test #1: test_1 Passed 0.01 sec
 Start 2: test_2
2/7 Test #2: test_2 Passed 1.24 sec
 Start 3: test_3
3/7 Test #3: test_3 Passed 0.17 sec
 Start 4: blt_gtest_smoke
4/7 Test #4: blt_gtest_smoke Passed 0.01 sec
 Start 5: blt_mpi_smoke
5/7 Test #5: blt_mpi_smoke Passed 0.82 sec
 Start 6: blt_cuda_smoke
6/7 Test #6: blt_cuda_smoke Passed 0.15 sec
 Start 7: blt_cuda_runtime_smoke
7/7 Test #7: blt_cuda_runtime_smoke Passed 0.04 sec

100% tests passed, 0 tests failed out of 7

Total Test time (real) = 2.47 sec

User Tutorial

This tutorial provides instructions for:

	Adding BLT to a CMake project

	Setting up host-config files to handle multiple platform configurations

	Building, linking, and installing libraries and executables

	Setting up unit tests with GTest

	Using external project dependencies

	Creating documentation with Sphinx and Doxygen

The tutorial provides several examples that calculate the value of [image: \pi]
by approximating the integral [image: f(x) = \int_0^14/(1+x^2)] using numerical
integration. The code is adapted from:
https://www.mcs.anl.gov/research/projects/mpi/usingmpi/examples-usingmpi/simplempi/cpi_c.html.

The tutorial requires a C++ compiler and CMake, we recommend using CMake 3.8.0 or newer.
Parts of the tutorial also require MPI, CUDA, Sphinx and Doxygen.

Tutorial Contents

	Setup BLT in your CMake Project
	BLT as a Git Submodule

	Copy BLT into your repository

	Include BLT in your project

	Running CMake

	Example: blank_project

	Host-configs

	Creating Libraries and Executables
	Example 1: Basic executable

	Example 2: One library, one executable

	Object Libraries

	Portable compiler flags

	Unit Testing
	Configuring tests within BLT

	Google Test (C++/C Tests)

	FRUIT (Fortran Tests)

	Adding a BLT unit test

	Running tests and examples

	External Dependencies
	MPI Example

	CUDA Example

	OpenMP

	Example Host-configs

	Building and testing on Surface

	Building and testing on Ray

	Creating Documentation
	Calc Pi Sphinx Example

	Calc Pi Doxygen Example

	Building the Calc Pi Example Documentation

	CMake Recommendations

CMake Recommendations

This section includes several recommendations for how to wield CMake.
Some of them are embodied in BLT, others are broader suggestions for CMake bliss.

Disable in-source builds

BLT Enforces This

In-source builds clutter source code with temporary build files and prevent other out-of-source builds
from being created. Disabling in-source builds avoids clutter and accidental checkins of temporary build files.

Avoid using globs to identify source files

Globs are evaluated at CMake configure time - not build time. This means CMake will not detect new source files
when they are added to the file system unless there are other changes that trigger CMake to reconfigure.

The CMake documentation also warns against this:
https://cmake.org/cmake/help/v3.10/command/file.html?highlight=glob#file

Use arguments instead of options in CMake Macros and Functions

CMAKE_PARSE_ARGUMENTS allows Macros or Functions to support options. Options are enabled by passing them
by name when calling a Macro or Function. Because of this, wrapping an existing Macro or Function in a way
that passes through options requires if tests and multiple copies of the call. For example:

if(OPTION)
 my_function(arg1 arg2 arg3 OPTION)
else()
 my_function(arg1 arg2 arg3)
endif()

Adding more options compounds the logic to achieve these type of calls.

To simplify calling logic, we recommend using an argument instead of an option.

if(OPTION)
 set(arg4_value ON)
endif()

my_function(arg1 arg2 arg3 ${arg4_value})

Prefer explicit paths to locate third-party dependencies

Require passing explicit paths (ex: ZZZ_DIR) for third-party dependency locations.
This avoids surprises with incompatible installs sprinkled in various system locations.
If you are using off-the-shelf FindZZZ logic, also consider adding CMake checks
to verify that FindZZZ logic actually found the dependencies at the location specified.

Emit a configure error if an explicitly identified third-party dependency is not found or an incorrect version is found.

If an explicit path to a dependency is given (ex: ZZZ_DIR) it should be valid or result in a CMake configure error.

In contrast, if you only issue a warning and automatically disable a feature when a third-party dependency is bad,
the warning often goes unnoticed and may not be caught until folks using your software are surprised.
Emitting a configure error stops CMake and draws attention to the fact that something is wrong.
Optional dependencies are still supported by including them only if an explicit path
to the dependency is provided (ex: ZZZ_DIR).

Add headers as source files to targets

BLT Macros Support This

This ensures headers are tracked as dependencies and are included in the projects
created by CMake’s IDE generators, like Xcode or Eclipse.

Always support make install

This allows CMake to do the right thing based on CMAKE_INSTALL_PREFIX,
and also helps support CPack create release packages. This is especially important for libraries.
In addition to targets, header files require an explicit install command.

Here is an example that installs a target and its headers:

#--
Install Targets for example lib
#--
install(FILES ${example_headers} DESTINATION include)
install(TARGETS example
 EXPORT example
 LIBRARY DESTINATION lib
 ARCHIVE DESTINATION lib
)

Setup BLT in your CMake Project

BLT is easy to include in your CMake project whether it is an existing project or
you are starting from scratch. You simply pull it into your project using a CMake
include() command.

include(path/to/blt/SetupBLT.cmake)

You can include the BLT source in your repository or pass the location
of BLT at CMake configure time through the optional BLT_SOURCE_DIR
CMake variable.

There are two standard choices for including the BLT source in your repository:

	Add BLT as a git submodule

	Copy BLT into a subdirectory in your repository

BLT as a Git Submodule

This example adds BLT as a submodule, commits, and pushes the changes to your repository.

cd <your repository>
git submodule add https://github.com/LLNL/blt.git blt
git commit -m "Adding BLT"
git push

Copy BLT into your repository

This example will clone BLT into your repository and remove the unneeded
git files from the clone. It then commits and pushes the changes to your
repository.

cd <your repository>
git clone https://github.com/LLNL/blt.git
rm -rf blt/.git
git commit -m "Adding BLT"
git push

Include BLT in your project

In most projects, including BLT is as simple as including the following CMake
line in your base CMakeLists.txt after your project() call.

include(blt/SetupBLT.cmake)

This enables all of BLT’s features in your project.

However if your project is likely to be used by other projects. The following
is recommended:

if (DEFINED BLT_SOURCE_DIR)
 # Support having a shared BLT outside of the repository if given a BLT_SOURCE_DIR
 if (NOT EXISTS ${BLT_SOURCE_DIR}/SetupBLT.cmake)
 message(FATAL_ERROR "Given BLT_SOURCE_DIR does not contain SetupBLT.cmake")
 endif()
else()
 # Use internal BLT if no BLT_SOURCE_DIR is given
 set(BLT_SOURCE_DIR "${PROJECT_SOURCE_DIR}/cmake/blt" CACHE PATH "")
 if (NOT EXISTS ${BLT_SOURCE_DIR}/SetupBLT.cmake)
 message(FATAL_ERROR
 "The BLT git submodule is not present. "
 "Either run the following two commands in your git repository: \n"
 " git submodule init\n"
 " git submodule update\n"
 "Or add -DBLT_SOURCE_DIR=/path/to/blt to your CMake command.")
 endif()
endif()

Default to C++11 if not set so GTest/GMock can build
if (NOT BLT_CXX_STD)
 set(BLT_CXX_STD "c++11" CACHE STRING "")
endif()

include(${BLT_SOURCE_DIR}/SetupBLT.cmake)

This is a robust way of setting up BLT and supports an optional external BLT source
directory. This allows the use of a common BLT across large projects. There are some
helpful error messages if the BLT submodule is missing as well as the commands to solve
it.

Note

Throughout this tutorial, we pass the path to BLT using BLT_SOURCE_DIR since
our tutorial is part of the blt repository and we want this project to be
automatically tested using a single clone of our repository.

Running CMake

To configure a project with CMake, first create a build directory and cd into it.
Then run cmake with the path to your project.

cd <your project>
mkdir build
cd build
cmake ..

If you are using BLT outside of your project pass the location of BLT as follows:

cd <your project>
mkdir build
cd build
cmake -DBLT_SOURCE_DIR="path/to/blt" ..

Example: blank_project

The blank_project example is provided to show you some of BLT’s built-in
features. It demonstrates the bare minimum required for testing purposes.

Here is the entire CMakeLists.txt file for blank_project:

#--
BLT Tutorial Example: Blank Project.
#--

cmake_minimum_required(VERSION 3.8)
project(blank)

Note: This is specific to running our tests and shouldn't be exported to documentation
if(NOT BLT_SOURCE_DIR)
 set(BLT_SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../../..")
endif()

#--
Setup BLT
#--

_blt_tutorial_include_blt_start
if (DEFINED BLT_SOURCE_DIR)
 # Support having a shared BLT outside of the repository if given a BLT_SOURCE_DIR
 if (NOT EXISTS ${BLT_SOURCE_DIR}/SetupBLT.cmake)
 message(FATAL_ERROR "Given BLT_SOURCE_DIR does not contain SetupBLT.cmake")
 endif()
else()
 # Use internal BLT if no BLT_SOURCE_DIR is given
 set(BLT_SOURCE_DIR "${PROJECT_SOURCE_DIR}/cmake/blt" CACHE PATH "")
 if (NOT EXISTS ${BLT_SOURCE_DIR}/SetupBLT.cmake)
 message(FATAL_ERROR
 "The BLT git submodule is not present. "
 "Either run the following two commands in your git repository: \n"
 " git submodule init\n"
 " git submodule update\n"
 "Or add -DBLT_SOURCE_DIR=/path/to/blt to your CMake command.")
 endif()
endif()

Default to C++11 if not set so GTest/GMock can build
if (NOT BLT_CXX_STD)
 set(BLT_CXX_STD "c++11" CACHE STRING "")
endif()

include(${BLT_SOURCE_DIR}/SetupBLT.cmake)
_blt_tutorial_include_blt_end

BLT also enforces some best practices for building, such as not allowing
in-source builds. This means that BLT prevents you from generating a
project configuration directly in your project.

For example if you run the following commands:

cd <BLT repository>/docs/tutorial/blank_project
cmake -DBLT_SOURCE_DIR=../..

you will get the following error:

CMake Error at blt/SetupBLT.cmake:59 (message):
 In-source builds are not supported. Please remove CMakeCache.txt from the
 'src' dir and configure an out-of-source build in another directory.
Call Stack (most recent call first):
 CMakeLists.txt:55 (include)

-- Configuring incomplete, errors occurred!

To correctly run cmake, create a build directory and run cmake from there:

cd <BLT repository>/docs/blank_project
mkdir build
cd build
cmake -DBLT_SOURCE_DIR=../../.. ..

This will generate a configured Makefile in your build directory to build
blank_project. The generated makefile includes gtest and several built-in
BLT smoke tests, depending on the features that you have enabled in your build.

To build the project, use the following command:

make

As with any other make-based project, you can utilize parallel job tasks
to speed up the build with the following command:

make -j8

Next, run all tests in this project with the following command:

make test

If everything went correctly, you should have the following output:

Running tests...
Test project blt/docs/tutorial/blank_project/build
 Start 1: blt_gtest_smoke
1/1 Test #1: blt_gtest_smoke Passed 0.01 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 0.10 sec

Note that the default options for blank_project only include a single test
blt_gtest_smoke. As we will see later on, BLT includes additional smoke
tests that are activated when BLT is configured with other options enabled,
like Fortran, MPI, OpenMP, and Cuda.

Host-configs

To capture (and revision control) build options, third party library paths, etc.,
we recommend using CMake’s initial-cache file mechanism. This feature allows you
to pass a file to CMake that provides variables to bootstrap the configuration
process.

You can pass initial-cache files to cmake via the -C command line option.

cmake -C config_file.cmake

We call these initial-cache files host-config files since we typically create
a file for each platform or for specific hosts, if necessary.

These files use standard CMake commands. CMake set() commands need to specify
CACHE as follows:

set(CMAKE_VARIABLE_NAME {VALUE} CACHE PATH "")

Here is a snippet from a host-config file that specifies compiler details for
using gcc 4.9.3 on LLNL’s surface cluster.

set(CMAKE_C_COMPILER "/usr/apps/gnu/4.9.3/bin/gcc" CACHE PATH "")
set(CMAKE_CXX_COMPILER "/usr/apps/gnu/4.9.3/bin/g++" CACHE PATH "")

Fortran support
set(ENABLE_FORTRAN ON CACHE BOOL "")
set(CMAKE_Fortran_COMPILER "/usr/apps/gnu/4.9.3/bin/gfortran" CACHE PATH "")

Unit Testing

BLT has a built-in copy of the
Google Test framework (gtest) [https://github.com/google/googletest] for C
and C++ unit tests and the
Fortran Unit Test Framework (FRUIT) [https://sourceforge.net/projects/fortranxunit/]
for Fortran unit tests.

Each Google Test or FRUIT file may contain multiple tests and is compiled into
its own executable that can be run directly or as a make target.

In this section, we give a brief overview of GTest and discuss how to add unit
tests using the blt_add_test() macro.

Configuring tests within BLT

Unit testing in BLT is controlled by the ENABLE_TESTS cmake option and is on
by default.

For additional configuration granularity, BLT provides configuration options
for the individual built-in unit testing libraries. The following additional
options are available when ENABLE_TESTS is on:

	ENABLE_GTEST

	Option to enable gtest (default: ON).

	ENABLE_GMOCK

	Option to control gmock (default: OFF).
Since gmock requires gtest, gtest is also enabled whenever ENABLE_GMOCK is true,
regardless of the value of ENABLE_GTEST.

	ENABLE_FRUIT

	Option to control FRUIT (Default ON). It is only active when ENABLE_FORTRAN is enabled.

Google Test (C++/C Tests)

The contents of a typical Google Test file look like this:

#include "gtest/gtest.h"

#include ... // include headers needed to compile tests in file

// ...

TEST(<test_case_name>, <test_name_1>)
{
 // Test 1 code here...
 // ASSERT_EQ(...);
}

TEST(<test_case_name>, <test_name_2>)
{
 // Test 2 code here...
 // EXPECT_TRUE(...);
}

// Etc.

Each unit test is defined by the Google Test TEST() macro which accepts a
test case name identifier, such as the name of the C++ class being tested,
and a test name, which indicates the functionality being verified by the
test. Within a test, failure of logical assertions (macros prefixed by ASSERT_)
will cause the test to fail immediately, while failures of expected values
(macros prefixed by EXPECT_) will cause the test to fail, but will
continue running code within the test.

Note that the Google Test framework will generate a main() routine for
each test file if it is not explicitly provided. However, sometimes it is
necessary to provide a main() routine that contains operation to run
before or after the unit tests in a file; e.g., initialization code or
pre-/post-processing operations. A main() routine provided in a test
file should be placed at the end of the file in which it resides.

Note that Google Test is initialized before MPI_Init() is called.

Other Google Test features, such as fixtures and mock objects (gmock) may
be used as well.

See the Google Test Primer [https://github.com/google/googletest/blob/master/googletest/docs/Primer.md]
for a discussion of Google Test concepts, how to use them, and a listing of
available assertion macros, etc.

FRUIT (Fortran Tests)

Fortran unit tests using the FRUIT framework are similar in structure to
the Google Test tests for C and C++ described above.

The contents of a typical FRUIT test file look like this:

module <test_case_name>
 use iso_c_binding
 use fruit
 use <your_code_module_name>
 implicit none

contains

subroutine test_name_1
! Test 1 code here...
! call assert_equals(...)
end subroutine test_name_1

subroutine test_name_2
! Test 2 code here...
! call assert_true(...)
end subroutine test_name_2

! Etc.

The tests in a FRUIT test file are placed in a Fortran module named for
the test case name, such as the name of the C++ class whose Fortran interface
is being tested. Each unit test is in its own Fortran subroutine named
for the test name, which indicates the functionality being verified by the
unit test. Within each unit test, logical assertions are defined using
FRUIT methods. Failure of expected values will cause the test
to fail, but other tests will continue to run.

Note that each FRUIT test file defines an executable Fortran program. The
program is defined at the end of the test file and is organized as follows:

program fortran_test
 use fruit
 use <your_component_unit_name>
 implicit none
 logical ok

 ! initialize fruit
 call init_fruit

 ! run tests
 call test_name_1
 call test_name_2

 ! compile summary and finalize fruit
 call fruit_summary
 call fruit_finalize

 call is_all_successful(ok)
 if (.not. ok) then
 call exit(1)
 endif
end program fortran_test

Please refer to the FRUIT documentation [https://sourceforge.net/projects/fortranxunit/] for more information.

Adding a BLT unit test

After writing a unit test, we add it to the project’s build system
by first generating an executable for the test using the
blt_add_executable() macro. We then register the test using the
blt_add_test() macro.

blt_add_test

This macro generates a named unit test from an existing executable
and allows users to pass in command line arguments.

Returning to our running example (see Creating Libraries and Executables),
let’s add a simple test for the calc_pi library,
which has a single function with signature:

double calc_pi(int num_intervals);

We add a simple unit test that invokes calc_pi()
and compares the result to [image: \pi], within a given tolerance (1e-6).
Here is the test code:

#include <gtest/gtest.h>

#include "calc_pi.hpp"

TEST(calc_pi, serial_example)
{
 double PI_REF = 3.141592653589793238462643;
 ASSERT_NEAR(calc_pi(1000),PI_REF,1e-6);
}

To add this test to the build system, we first generate a test executable:

blt_add_executable(NAME test_1
 SOURCES test_1.cpp
 DEPENDS_ON calc_pi gtest)

Note that this test executable depends on two targets: calc_pi and gtest.

We then register this executable as a test:

blt_add_test(NAME test_1
 COMMAND test_1)

Running tests and examples

To run the tests, type the following command in the build directory:

$ make test

This will run all tests through cmake’s ctest tool
and report a summary of passes and failures.
Detailed output on individual tests is suppressed.

If a test fails, you can invoke its executable directly to see the detailed
output of which checks passed or failed. This is especially useful when
you are modifying or adding code and need to understand how unit test details
are working, for example.

Note

You can pass arguments to ctest via the TEST_ARGS parameter, e.g.
make test TEST_ARGS="..."
Useful arguments include:

	-R

	Regular expression filtering of tests.
E.g. -R foo only runs tests whose names contain foo

	-j

	Run tests in parallel, E.g. -j 16 will run tests using 16 processors

	-VV

	(Very verbose) Dump test output to stdout

Portable compiler flags

To simplify the development of code that is portable across different architectures
and compilers, BLT provides the blt_append_custom_compiler_flag() macro,
which allows users to easily place a compiler dependent flag into a CMake variable.

blt_append_custom_compiler_flag

To use this macro, supply a cmake variable in which to append a flag (FLAGS_VAR),
and the appropriate flag for each of our supported compilers.

This macro currently supports the following compilers:

	GNU

	CLANG

	XL (IBM compiler)

	INTEL (Intel compiler)

	MSVC (Microsoft Visual Studio)

	MSVC_INTEL (Intel toolchain in Microsoft Visual Studio)

	PGI

	HCC (AMD GPU)

Here is an example for setting the appropriate flag to treat warnings as errors:

blt_append_custom_compiler_flag(
 FLAGS_VAR BLT_WARNINGS_AS_ERRORS_FLAG
 DEFAULT "-Werror"
 MSVC "/WX"
 XL "qhalt=w"
)

Since values for GNU, CLANG and INTEL are not supplied,
they will get the default value (-Werror)
which is supplied by the macro’s DEFAULT argument.

BLT also provides a simple macro to add compiler flags to a target.
You can append the above compiler flag to an already defined executable,
such as example_1 with the following line:

blt_add_target_compile_flags(TO example_1
 FLAGS BLT_WARNINGS_AS_ERRORS_FLAG)

Here is another example to disable warnings about unknown OpenMP pragmas in the code:

Flag for disabling warnings about omp pragmas in the code
blt_append_custom_compiler_flag(
 FLAGS_VAR DISABLE_OMP_PRAGMA_WARNINGS_FLAG
 DEFAULT "-Wno-unknown-pragmas"
 XL "-qignprag=omp"
 INTEL "-diag-disable 3180"
 MSVC "/wd4068"
)

Note that GNU does not have a way to only disable warnings about openmp pragmas,
so one must disable warnings about all unknown pragmas on this compiler.

Welcome to Calc Pi’s documentation!

This is a tutorial example for BLT (https://github.com/llnl/blt) that creates
C++ libraries that calculate [image: \pi] serially and in parallel using MPI
and CUDA.

These libraries calculate [image: \pi] by approximating the integral
[image: f(x) = \int_0^14/(1+x^2)] using numerical integration.
In the MPI implementation, the intervals are distributed across MPI tasks and
a MPI_AllReduce calculates the final result. In the CUDA implementation, the
intervals are distributed across CUDA blocks and threads and a tree reduction
calculates the final result.

The method is adapted from:
https://www.mcs.anl.gov/research/projects/mpi/usingmpi/examples-usingmpi/simplempi/cpi_c.html

3. LvArray::Array

The LvArray::Array implements a multidimensional array of values. Unlike Kokkos mdspan [https://github.com/kokkos/mdspan/wiki/A-Gentle-Introduction-to-mdspan] or the RAJA View [https://raja.readthedocs.io/en/v0.11.0/feature/view.html] the LvArray::Array owns the allocation it is associated with and supports slicing with operator[] in addition to the standard operator(). Further more a one dimensional LvArray::Array supports operations such as emplace_back and erase with functionality similar to std::vector.

3.1. Template arguments

The LvArray::Array requires five template arguments.

	T: The type of values stored in the array.

	NDIM: The number of dimensionality of the array or the number of indices required to access a value.

	PERMUTATION: A camp::idx_seq which describes the mapping from the multidimensional index space to a linear index. Must be of length NDIM and contain all the values between 0 and NDIM - 1. The way to read a permutation is that the indices go from the slowest on the left to the fastest on the right. Equivalently the left most index has the largest stride whereas the right most index has unit stride.

	INDEX_TYPE: An integral type used in index calculations, the suggested type is std::ptrdiff_t.

	BUFFER_TYPE: A template template parameter specifying the buffer type used for allocation and de-allocation, the LvArray::Array contains a BUFFER_TYPE< T >.

Note

LvArray uses the same permutation conventions as the RAJA::View, in fact it is recommended to use the types defined in RAJA/Permutations.hpp [https://github.com/LLNL/RAJA/blob/v0.11.0/include/RAJA/util/Permutations.hpp].

3.2. Creating and accessing a LvArray::Array

The LvArray::Array has two primary constructors a default constructor which creates an empty array and a constructor that takes the size of each dimension. When using the sized constructor the values of the array are default initialized.

TEST(Array, constructors)
{
 {
 // Create an empty 2D array of integers.
 LvArray::Array< int,
 2,
 camp::idx_seq< 0, 1 >,
 std::ptrdiff_t,
 LvArray::MallocBuffer > array;
 EXPECT_TRUE(array.empty());
 EXPECT_EQ(array.size(), 0);
 EXPECT_EQ(array.size(0), 0);
 EXPECT_EQ(array.size(1), 0);
 }

 {
 // Create a 3D array of std::string of size 3 x 4 x 5.
 LvArray::Array< std::string,
 3,
 camp::idx_seq< 0, 1, 2 >,
 std::ptrdiff_t,
 LvArray::MallocBuffer > array(3, 4, 5);
 EXPECT_FALSE(array.empty());
 EXPECT_EQ(array.size(), 3 * 4 * 5);
 EXPECT_EQ(array.size(0), 3);
 EXPECT_EQ(array.size(1), 4);
 EXPECT_EQ(array.size(2), 5);

 // The values are default initialized.
 std::string const * const values = array.data();
 for(std::ptrdiff_t i = 0; i < array.size(); ++i)
 {
 EXPECT_EQ(values[i], std::string());
 }
 }
}

[Source: examples/exampleArray.cpp]

LvArray::Array supports two indexing methods operator() which takes all of the indices to a value and operator[] which takes a single index at a time and can be chained together.

TEST(Array, accessors)
{
 // Create a 2D array of integers.
 LvArray::Array< int,
 2,
 camp::idx_seq< 0, 1 >,
 std::ptrdiff_t,
 LvArray::MallocBuffer > array(3, 4);

 // Access using operator().
 for(std::ptrdiff_t i = 0; i < array.size(0); ++i)
 {
 for(std::ptrdiff_t j = 0; j < array.size(1); ++j)
 {
 array(i, j) = array.size(1) * i + j;
 }
 }

 // Access using operator[].
 for(std::ptrdiff_t i = 0; i < array.size(0); ++i)
 {
 for(std::ptrdiff_t j = 0; j < array.size(1); ++j)
 {
 EXPECT_EQ(array[i][j], array.size(1) * i + j);
 }
 }
}

[Source: examples/exampleArray.cpp]

The two indexing methods work consistently regardless of how the data is layed out in memory.

TEST(Array, permutations)
{
 {
 // Create a 3D array of doubles in the standard layout.
 LvArray::Array< int,
 3,
 camp::idx_seq< 0, 1, 2 >,
 std::ptrdiff_t,
 LvArray::MallocBuffer > array(3, 4, 5);

 // Index 0 has the largest stride while index 2 has unit stride.
 EXPECT_EQ(array.strides()[0], array.size(2) * array.size(1));
 EXPECT_EQ(array.strides()[1], array.size(2));
 EXPECT_EQ(array.strides()[2], 1);

 int const * const pointer = array.data();
 for(std::ptrdiff_t i = 0; i < array.size(0); ++i)
 {
 for(std::ptrdiff_t j = 0; j < array.size(1); ++j)
 {
 for(std::ptrdiff_t k = 0; k < array.size(2); ++k)
 {
 std::ptrdiff_t const offset = array.size(2) * array.size(1) * i +
 array.size(2) * j + k;
 EXPECT_EQ(&array(i, j, k), pointer + offset);
 }
 }
 }
 }

 {
 // Create a 3D array of doubles in a flipped layout.
 LvArray::Array< int,
 3,
 camp::idx_seq< 2, 1, 0 >,
 std::ptrdiff_t,
 LvArray::MallocBuffer > array(3, 4, 5);

 // Index 0 has the unit stride while index 2 has the largest stride.
 EXPECT_EQ(array.strides()[0], 1);
 EXPECT_EQ(array.strides()[1], array.size(0));
 EXPECT_EQ(array.strides()[2], array.size(0) * array.size(1));

 int const * const pointer = array.data();
 for(std::ptrdiff_t i = 0; i < array.size(0); ++i)
 {
 for(std::ptrdiff_t j = 0; j < array.size(1); ++j)
 {
 for(std::ptrdiff_t k = 0; k < array.size(2); ++k)
 {
 std::ptrdiff_t const offset = i + array.size(0) * j +
 array.size(0) * array.size(1) * k;
 EXPECT_EQ(&array[i][j][k], pointer + offset);
 }
 }
 }
 }
}

[Source: examples/exampleArray.cpp]

3.3. Resizing a LvArray::Array

LvArray::Array supports a multitude of resizing options. You can resize all of the dimensions at once or specify a set of dimensions to resize. These methods default initialize newly created values and destroy any values no longer in the Array.

TEST(Array, resize)
{
 LvArray::Array< int,
 3,
 camp::idx_seq< 0, 1, 2 >,
 std::ptrdiff_t,
 LvArray::MallocBuffer > array;

 // Resize using a pointer
 std::ptrdiff_t const sizes[3] = { 2, 5, 6 };
 array.resize(3, sizes);
 EXPECT_EQ(array.size(), 2 * 5 * 6);
 EXPECT_EQ(array.size(0), 2);
 EXPECT_EQ(array.size(1), 5);
 EXPECT_EQ(array.size(2), 6);

 // Resizing using a variadic parameter pack.
 array.resize(3, 4, 2);
 EXPECT_EQ(array.size(), 3 * 4 * 2);
 EXPECT_EQ(array.size(0), 3);
 EXPECT_EQ(array.size(1), 4);
 EXPECT_EQ(array.size(2), 2);

 // Resize the second and third dimensions
 array.resizeDimension< 1, 2 >(3, 6);
 EXPECT_EQ(array.size(), 3 * 3 * 6);
 EXPECT_EQ(array.size(0), 3);
 EXPECT_EQ(array.size(1), 3);
 EXPECT_EQ(array.size(2), 6);
}

[Source: examples/exampleArray.cpp]

LvArray::Array also has a method resizeWithoutInitializationOrDestruction that is only enabled if the value type of the array T is trivially destructible. This method does not initialize new values or destroy old values and as such it can be much faster for large allocations of trivial types.

It is important to note that unless the array being resized is one dimensional the resize methods above do not preserve the values in the array. That is if you have a two dimensional array A of size [image: M \times N] and you resize it to [image: P \times Q] using any of the methods above then you cannot rely on A(i, j) having the same value it did before the resize.

There is also a method resize which takes a single parameter and will resize the dimension given by getSingleParameterResizeIndex. Unlike the previous methods this will preserve the values in the array. By default the first dimension is resized but you can choose the dimension with setSingleParameterResizeIndex.

TEST(Array, resizeSingleDimension)
{
 LvArray::Array< int,
 2,
 camp::idx_seq< 1, 0 >,
 std::ptrdiff_t,
 LvArray::MallocBuffer > array(5, 6);

 for(std::ptrdiff_t i = 0; i < array.size(0); ++i)
 {
 for(std::ptrdiff_t j = 0; j < array.size(1); ++j)
 {
 array(i, j) = 6 * i + j;
 }
 }

 // Grow the first dimension from 5 to 8.
 array.resize(8);
 for(std::ptrdiff_t i = 0; i < array.size(0); ++i)
 {
 for(std::ptrdiff_t j = 0; j < array.size(1); ++j)
 {
 if(i < 5)
 {
 EXPECT_EQ(array(i, j), 6 * i + j);
 }
 else
 {
 EXPECT_EQ(array(i, j), 0);
 }
 }
 }

 // Shrink the second dimension from 6 to 3;
 array.setSingleParameterResizeIndex(1);
 array.resize(3);
 for(std::ptrdiff_t i = 0; i < array.size(0); ++i)
 {
 for(std::ptrdiff_t j = 0; j < array.size(1); ++j)
 {
 if(i < 5)
 {
 EXPECT_EQ(array(i, j), 6 * i + j);
 }
 else
 {
 EXPECT_EQ(array(i, j), 0);
 }
 }
 }
}

[Source: examples/exampleArray.cpp]

The single dimension resize should only be used when it is necessary to preserve the values as it is a much more complicated operation than the multi-dimension resize methods.

3.4. The one dimensional LvArray::Array

The one dimensional LvArray::Array supports a couple methods that are not available to multidimensional arrays. These methods are emplace_back, emplace, insert, pop_back and erase. They all behave exactly like their std::vector counter part, the only difference being that emplace, insert and erase take an integer specifying the position to perform the operation instead of an iterator.

3.5. Lambda capture and LvArray::ArrayView

LvArray::ArrayView is the parent class and the view class of LvArray::Array. It shares the same template parameters as LvArray::Array except that the PERMUTATION type is replaced by an integer corresponding to the unit stride dimension (the last entry in the permutation).

There are multiple ways to create an LvArray::ArrayView from an LvArray::Array. Because it is the parent class you can just create a reference to a LvArray::ArrayView from an existing LvArray::Array or by using the method toView. LvArray::Array also has a user defined conversion operator to a LvArray::ArrayView with a const value type or you can use the toViewConst method.

The LvArray::ArrayView has a copy constructor, move constructor, copy assignment operator and move assignment operator all of which perform the same operation on the BUFFER_TYPE. So ArrayView(ArrayView const &) calls BUFFER_TYPE< T >(BUFFER_TYPE< T > const &) and ArrayView::operator=(ArrayView &&) calls BUFFER_TYPE< T >::operator=(BUFFER_TYPE< T > &&). With the exception of the StackBuffer all of these operations are shallow copies.

TEST(Array, arrayView)
{
 LvArray::Array< int,
 2,
 camp::idx_seq< 1, 0 >,
 std::ptrdiff_t,
 LvArray::MallocBuffer > array(5, 6);

 // Create a view.
 LvArray::ArrayView< int,
 2,
 0,
 std::ptrdiff_t,
 LvArray::MallocBuffer > const view = array;
 EXPECT_EQ(view.data(), array.data());

 // Create a view with const values.
 LvArray::ArrayView< int const,
 2,
 0,
 std::ptrdiff_t,
 LvArray::MallocBuffer > const viewConst = array.toViewConst();
 EXPECT_EQ(viewConst.data(), array.data());

 // Copy a view.
 LvArray::ArrayView< int,
 2,
 0,
 std::ptrdiff_t,
 LvArray::MallocBuffer > const viewCopy = view;
 EXPECT_EQ(viewCopy.data(), array.data());
}

[Source: examples/exampleArray.cpp]

An LvArray::ArrayView is almost always constructed from an existing LvArray::Array but it does has a default constructor which constructs an uninitialized ArrayView. The only valid use of an uninitialized LvArray::ArrayView is to assign to it from an existing LvArray::ArrayView. This behavior is primarily used when putting an LvArray::ArrayView into a container.

LvArray::ArrayView supports the subset of operations on LvArray::Array that do not require reallocation or resizing. Every method in LvArray::ArrayView is const except the assignment operators. Most methods of are callable on device.

3.6. ArraySlice

Up until now all the examples using operator[] have consumed all of the available indices, i.e. a two dimensional array has always had two immediate applications of operator[] to access a value. But what is the result of a single application of operator[] to a two dimensional array? Well it’s a one dimensional LvArray::ArraySlice! LvArray::ArraySlice shares the same template parameters as LvArray::ArrayView except that it doesn’t need the BUFFER_TYPE parameter. LvArray::ArrayView is a feather weight object that consists only of three pointers: a pointer to the values, a pointer to the dimensions of the array and a pointer to the strides of the dimensions. LvArray::ArraySlice has shallow copy semantics but no assignment operators and every method is const.

Unlike LvArray::Array and LvArray::ArrayView the LvArray::ArraySlice can refer to a non-contiguous set of values. As such it does not have a method data but instead has dataIfContiguous that performs a runtime check and aborts execution if the LvArray::ArraySlice does not refer to a contiguous set of values. Every method is const and callable on device.

TEST(Array, arraySlice)
{
 {
 LvArray::Array< int,
 2,
 camp::idx_seq< 0, 1 >,
 std::ptrdiff_t,
 LvArray::MallocBuffer > array(5, 6);

 // The unit stride dimension of array is 1 so when we slice off
 // the first dimension the unit stride dimension of the slice is 0.
 LvArray::ArraySlice< int,
 1,
 0,
 std::ptrdiff_t > const slice = array[2];
 EXPECT_TRUE(slice.isContiguous());
 EXPECT_EQ(slice.size(), 6);
 EXPECT_EQ(slice.size(0), 6);
 slice[3] = 1;
 }

 {
 LvArray::Array< int,
 3,
 camp::idx_seq< 2, 1, 0 >,
 std::ptrdiff_t,
 LvArray::MallocBuffer > array(3, 5, 6);

 // The unit stride dimension of array is 0 so when we slice off
 // the first dimension the unit stride dimension of the slice is -1.
 LvArray::ArraySlice< int,
 2,
 -1,
 std::ptrdiff_t > const slice = array[2];
 EXPECT_FALSE(slice.isContiguous());
 EXPECT_EQ(slice.size(), 5 * 6);
 EXPECT_EQ(slice.size(0), 5);
 EXPECT_EQ(slice.size(1), 6);
 slice(3, 4) = 1;
 }
}

[Source: examples/exampleArray.cpp]

Note

A LvArray::ArraySlice should not be captured in a device kernel, even if the slice comes from an array that has be moved to the device. This is because LvArray::ArraySlice only contains a pointer to the dimension sizes and strides. Therefore when the slice is memcpy’d to device the size and stride pointers will still point to host memory. This does not apply if you construct the slice manually and pass it device pointers but this is not a common use case.

3.7. Usage with LvArray::ChaiBuffer

When using the LvArray::ChaiBuffer as the buffer type the LvArray::Array can exist in multiple memory spaces. It can be explicitly moved between spaces with the method move and when the RAJA execution context is set the LvArray::ArrayView copy constructor will ensure that the newly constructed view’s allocation is in the associated memory space.

CUDA_TEST(Array, chaiBuffer)
{
 LvArray::Array< int,
 2,
 camp::idx_seq< 1, 0 >,
 std::ptrdiff_t,
 LvArray::ChaiBuffer > array(5, 6);

 // Move the array to the device.
 array.move(LvArray::MemorySpace::cuda);
 int * const devicePointer = array.data();

 RAJA::forall< RAJA::cuda_exec< 32 > >(
 RAJA::TypedRangeSegment< std::ptrdiff_t >(0, array.size()),
 [devicePointer] __device__ (std::ptrdiff_t const i)
 {
 devicePointer[i] = i;
 }
);

 LvArray::ArrayView< int,
 2,
 0,
 std::ptrdiff_t,
 LvArray::ChaiBuffer > const & view = array;

 // Capture the view in a host kernel which moves the data back to the host.
 RAJA::forall< RAJA::loop_exec >(
 RAJA::TypedRangeSegment< std::ptrdiff_t >(0, view.size()),
 [view] (std::ptrdiff_t const i)
 {
 EXPECT_EQ(view.data()[i], i);
 }
);
}

[Source: examples/exampleArray.cpp]

Like the LvArray::ChaiBuffer a new allocation is created the first time the array is moved to a new space. Every time the array is moved between spaces it is touched in the new space unless the value type T is const or the array was moved with the move method and the optional touch parameter was set to false. The data is only copied between memory spaces if the last space the array was touched in is different from the space to move to. The name associated with the Array can be set with setName.

TEST(Array, setName)
{
 LvArray::Array< int,
 2,
 camp::idx_seq< 1, 0 >,
 std::ptrdiff_t,
 LvArray::ChaiBuffer > array(1024, 1024);

 // Move the array to the device.
 array.move(LvArray::MemorySpace::cuda);

 // Provide a name and move the array to the host.
 array.setName("my_array");
 array.move(LvArray::MemorySpace::host);
}

[Source: examples/exampleArray.cpp]

Output

Moved 4.0 MB to the DEVICE: LvArray::Array<int, 2, camp::int_seq<long, 1l, 0l>, long, LvArray::ChaiBuffer>
Moved 4.0 MB to the HOST : LvArray::Array<int, 2, camp::int_seq<long, 1l, 0l>, long, LvArray::ChaiBuffer> my_array

3.8. Interacting with an LvArray::Array of arbitrary dimension.

Often it can be useful to write a template function that can operate on an LvArray::Array with an arbitrary number of dimension. If the order the data is accessed in is not important you can use data() or the iterator interface begin and end. For example you could write a function to sum up the values in an array as follows

template< int NDIM, int USD >
int sum(LvArray::ArraySlice< int const, NDIM, USD, std::ptrdiff_t > const slice)
{
 int value = 0;
 for(int const val : slice)
 {
 value += val;
 }

 return value;
}

[Source: examples/exampleArray.cpp]

However this same approach might not work as intended for floating point arrays because the order of additions and hence the answer would change with the data layout. To calculate the sum consistently you need to iterate over the multidimensional index space of the array. For an array with a fixed number of dimensions you could just nest the appropriate number of for loops. LvArray::forValuesInSlice defined in sliceHelpers.hpp solves this problem, it iterates over the values in a LvArray::ArraySlice in a consistent order regardless of the permutation. Using this sum could be written as

template< int NDIM, int USD >
double sum(LvArray::ArraySlice< double const, NDIM, USD, std::ptrdiff_t > const slice)
{
 double value = 0;
 LvArray::forValuesInSlice(slice, [&value] (double const val)
 {
 value += val;
 });

 return value;
}

[Source: examples/exampleArray.cpp]

sliceHelpers.hpp also provides a function forAllValuesInSliceWithIndices which calls the user provided callback with the indicies to each value in addition to the value. This can be used to easily copy data between arrays with different layouts.

template< int NDIM, int DST_USD, int SRC_USD >
void copy(LvArray::ArraySlice< int, NDIM, DST_USD, std::ptrdiff_t > const dst,
 LvArray::ArraySlice< int const, NDIM, SRC_USD, std::ptrdiff_t > const src)
{
 for(int dim = 0; dim < NDIM; ++dim)
 {
 LVARRAY_ERROR_IF_NE(dst.size(dim), src.size(dim));
 }

 LvArray::forValuesInSliceWithIndices(dst,
 [src] (int & val, auto const ... indices)
 {
 val = src(indices ...);
 }
);
}

[Source: examples/exampleArray.cpp]

Finally you can write a recursive function that operates on an LvArray::ArraySlice. An example of this is the stream output method for LvArray::Array.

template< typename T, int NDIM, int USD, typename INDEX_TYPE >
std::ostream & operator<<(std::ostream & stream,
 ::LvArray::ArraySlice< T, NDIM, USD, INDEX_TYPE > const slice)
{
 stream << "{ ";

 if(slice.size(0) > 0)
 {
 stream << slice[0];
 }

 for(INDEX_TYPE i = 1; i < slice.size(0); ++i)
 {
 stream << ", " << slice[i];
 }

 stream << " }";
 return stream;
}

[Source: src/output.hpp]

3.9. Usage with LVARRAY_BOUNDS_CHECK

When LVARRAY_BOUNDS_CHECK is defined all accesses via operator[] and operator() is checked to make sure the indices are valid. If invalid indices are detected an error message is printed to standard out and the program is aborted. It should be noted that access via operator() is able to provide a more useful error message upon an invalid access because it has access to all of the indices whereas operator[] only has access to a single index at a time. size(int dim), linearIndex, emplace and insert will also check that their arguments are in bounds.

TEST(Array, boundsCheck)
{
#if defined(ARRAY_USE_BOUNDS_CHECK)
 LvArray::Array< int, 3, camp::idx_seq< 0, 1, 2 >, std::ptrdiff_t, LvArray::MallocBuffer > x(3, 4, 5);

 // Out of bounds access aborts the program.
 EXPECT_DEATH_IF_SUPPORTED(x(2, 3, 4), "");
 EXPECT_DEATH_IF_SUPPORTED(x(-1, 4, 6), "");
 EXPECT_DEATH_IF_SUPPORTED(x[0][10][2], "");

 // Out of bounds emplace
 LvArray::Array< int, 1, camp::idx_seq< 0 >, std::ptrdiff_t, LvArray::MallocBuffer > x(10);
 EXPECT_DEATH_IF_SUPPORTED(x.emplace(-1, 5));
#endif
}

[Source: examples/exampleArray.cpp]

3.10. Guidelines

In general you should opt to pass around the most restrictive array possible. If a function takes in an array and only needs to read and write the values then it should take in an LvArray::ArraySlice. If it needs to read the values and captures the array in a kernel then it should take in an LvArray::ArrayView< T const, ... >. Only when a function needs to resize or reallocate the array should it accept an LvArray::Array.

Our benchmarks have shown no significant performance difference between using operator() and nested applications of operator[], if you do see a difference let us know!

3.11. Doxygen

	LvArray::Array

	LvArray::ArrayView

	LvArray::ArraySlice

5. LvArray::ArrayOfArrays

The LvArray::ArrayOfArrays provides functionality similar to a std::vector< std::vector< T > > but with just three allocations. The primary purpose is to reduce the number of memory transfers when moving between memory spaces but it also comes with the added benefit of reduced memory fragmentation.

5.1. Template arguments

The LvArray::ArrayOfArrays requires three template arguments.

	T: The type of values stored in the inner arrays.

	INDEX_TYPE: An integral type used in index calculations, the suggested type is std::ptrdiff_t.

	BUFFER_TYPE: A template template parameter specifying the buffer type used for allocation and de-allocation, the LvArray::ArrayOfArrays contains a BUFFER_TYPE< T > along with two BUFFER_TYPE< INDEX_TYPE >.

5.2. Usage

LvArray::ArrayOfArrays has a single constructor which takes two optional parameters; the number of inner arrays and the capacity to allocate for each inner array. Both values default to zero.

Given an ArrayOfArrays< T, ... > array, an equivalent std::vector< std::vector< T > > vector, a non negative integer n, integer i such that 0 <= i < vector.size(), integer j such that 0 <= j < vector[i].size(), two iterators first and last and a variadic pack of parameters ... args then following are equivalent:

	Getting information about the outer array or a specific inner array

	LvArray::ArrayOfArrays< T, ... >

	std::vector< std::vector< T > >

	array.size()

	vector.size()

	array.capacity()

	vector.capacity()

	array.sizeOfArray(i)

	vector[i].size()

	array.capacityOfArray(i)

	vector[i].capacity()

	Modifying the outer array

	LvArray::ArrayOfArrays< T, ... >

	std::vector< std::vector< T > >

	array.reserve(n)

	vector.reserve(n)

	array.resize(n)

	vector.resize(n)

	array.appendArray(n)

	vector.push_back(std::vector< T >(n))

	array.appendArray(first, last)

	vector.push_back(std::vector< T >(first, last))

	array.insertArray(i, first, last)

	vector.insert(vector.begin() + i, std::vector< T >(first, last))

	array.eraseArray(i)

	vector.erase(vector.first() + i)

	Modifying an inner array

	LvArray::ArrayOfArrays< T, ... >

	std::vector< std::vector< T > >

	array.resizeArray(i, n, args ...)

	vector[i].resize(n, T(args ...))

	array.clearArray(i)

	vector[i].clear()

	array.emplaceBack(i, args ...)

	vector[i].emplace_back(args ...)

	array.appendToArray(i, first, last)

	vector[i].insert(vector[i].end(), first, last)

	array.emplace(i, j , args ...)

	vector[i].emplace(j, args ...)`

	array.insertIntoArray(i, j , first, last)

	vector[i].insert(vector[i].begin() + j, first, last)

	eraseFromArray(i, j, n)

	vector[i].erase(vector[i].begin() + j, vector[i].begin() + j + n).

	Accessing the data

	LvArray::ArrayOfArrays< T, ... >

	std::vector< std::vector< T > >

	array(i, j)

	vector[i][j]

	array[i][j]

	vector[i][j]

It is worth noting that operator[] returns a one dimensional LvArray::ArraySlice.

TEST(ArrayOfArrays, construction)
{
 // Create an empty ArrayOfArrays.
 LvArray::ArrayOfArrays< std::string, std::ptrdiff_t, LvArray::MallocBuffer > arrayOfArrays;
 EXPECT_EQ(arrayOfArrays.size(), 0);

 // Append an array of length 2.
 arrayOfArrays.appendArray(2);
 EXPECT_EQ(arrayOfArrays.size(), 1);
 EXPECT_EQ(arrayOfArrays.sizeOfArray(0), 2);
 EXPECT_EQ(arrayOfArrays.capacityOfArray(0), 2);
 arrayOfArrays(0, 0) = "First array, first entry.";
 arrayOfArrays(0, 1) = "First array, second entry.";

 // Append another array of length 3.
 arrayOfArrays.appendArray(3);
 EXPECT_EQ(arrayOfArrays.size(), 2);
 EXPECT_EQ(arrayOfArrays.sizeOfArray(1), 3);
 EXPECT_EQ(arrayOfArrays.capacityOfArray(1), 3);
 arrayOfArrays(1, 0) = "Second array, first entry.";
 arrayOfArrays(1, 2) = "Second array, third entry.";

 EXPECT_EQ(arrayOfArrays[0][1], "First array, second entry.");
 EXPECT_EQ(arrayOfArrays[1][2], "Second array, third entry.");

 // Values are default initialized.
 EXPECT_EQ(arrayOfArrays[1][1], std::string());
}

TEST(ArrayOfArrays, modification)
{
 LvArray::ArrayOfArrays< std::string, std::ptrdiff_t, LvArray::MallocBuffer > arrayOfArrays;

 // Append an array.
 arrayOfArrays.appendArray(3);
 arrayOfArrays(0, 0) = "First array, first entry.";
 arrayOfArrays(0, 1) = "First array, second entry.";
 arrayOfArrays(0, 2) = "First array, third entry.";

 // Insert a new array at the beginning.
 std::array< std::string, 2 > newFirstArray = { "New first array, first entry.",
 "New first array, second entry." };
 arrayOfArrays.insertArray(0, newFirstArray.begin(), newFirstArray.end());

 EXPECT_EQ(arrayOfArrays.size(), 2);
 EXPECT_EQ(arrayOfArrays.sizeOfArray(0), 2);
 EXPECT_EQ(arrayOfArrays.sizeOfArray(1), 3);

 EXPECT_EQ(arrayOfArrays(0, 1), "New first array, second entry.");
 EXPECT_EQ(arrayOfArrays[1][1], "First array, second entry.");

 // Erase the values from what is now the second array.
 arrayOfArrays.clearArray(1);
 EXPECT_EQ(arrayOfArrays.sizeOfArray(1), 0);

 // Append a value to the end of each array.
 arrayOfArrays.emplaceBack(1, "Second array, first entry.");
 arrayOfArrays.emplaceBack(0, "New first array, third entry.");

 EXPECT_EQ(arrayOfArrays.sizeOfArray(0), 3);
 EXPECT_EQ(arrayOfArrays.sizeOfArray(1), 1);

 EXPECT_EQ(arrayOfArrays[1][0], "Second array, first entry.");
 EXPECT_EQ(arrayOfArrays(0, 2), "New first array, third entry.");
}

[Source: examples/exampleArrayOfArrays.cpp]

5.3. LvArray::ArrayOfArraysView

LvArray::ArrayOfArraysView is the view counterpart to LvArray::ArrayOfArrays. The LvArray::ArrayOfArraysView shares the three template parameters of LvArray::ArrayOfArraysView but it has an additional boolean parameter CONST_SIZES which specifies if the view can change the sizes of the inner arrays. If CONST_SIZES is true the sizes buffer has type BUFFER_TYPE< INDEX_TYPE const > otherwise it has type BUFFER_TYPE< std::remove_const_t< INDEX_TYPE > >.

The LvArray::ArrayOfArraysView doesn’t have a default constructor, it must always be created from an existing LvArray::ArrayOfArrays. From a LvArray::ArrayOfArrays< T, INDEX_TYPE, BUFFER_TYPE > you can get three different view types.

	toView() returns a LvArray::ArrayOfArraysView< T, INDEX_TYPE const, false, BUFFER_TYPE > which can modify existing values and change the size of the inner arrays as long as their size doesn’t exceed their capacity. -

	toViewConstSizes() returns a LvArray::ArrayOfArraysView< T, INDEX_TYPE const, true, BUFFER_TYPE > which can modify existing values but cannot change the size of the inner arrays.

	toViewConst() returns a LvArray::ArrayOfArraysView< T const, INDEX_TYPE const, true, BUFFER_TYPE > which provides read only access.

TEST(ArrayOfArrays, view)
{
 // Create an ArrayOfArrays with 10 inner arrays each with capacity 9.
 LvArray::ArrayOfArrays< int, std::ptrdiff_t, LvArray::MallocBuffer > arrayOfArrays(10, 9);

 {
 // Then create a view.
 LvArray::ArrayOfArraysView< int,
 std::ptrdiff_t const,
 false,
 LvArray::MallocBuffer > const view = arrayOfArrays.toView();
 EXPECT_EQ(view.size(), 10);
 EXPECT_EQ(view.capacityOfArray(7), 9);

 // Modify every inner array in parallel
 RAJA::forall< RAJA::omp_parallel_for_exec >(
 RAJA::TypedRangeSegment< std::ptrdiff_t >(0, view.size()),
 [view] (std::ptrdiff_t const i)
 {
 for(std::ptrdiff_t j = 0; j < i; ++j)
 {
 view.emplaceBack(i, 10 * i + j);
 }
 }
);

 EXPECT_EQ(view.sizeOfArray(9), view.capacityOfArray(9));

 // The last array is at capacity. Therefore any attempt at increasing its size through
 // a view is invalid and may lead to undefined behavior!
 // view.emplaceBack(9, 0);
 }

 {
 // Create a view which cannot modify the sizes of the inner arrays.
 LvArray::ArrayOfArraysView< int,
 std::ptrdiff_t const,
 true,
 LvArray::MallocBuffer > const viewConstSizes = arrayOfArrays.toViewConstSizes();
 for(std::ptrdiff_t i = 0; i < viewConstSizes.size(); ++i)
 {
 for(int & value : viewConstSizes[i])
 {
 value *= 2;
 }

 // This would be a compilation error
 // viewConstSizes.emplaceBack(i, 0);
 }
 }

 {
 // Create a view which has read only access.
 LvArray::ArrayOfArraysView< int const,
 std::ptrdiff_t const,
 true,
 LvArray::MallocBuffer > const viewConst = arrayOfArrays.toViewConst();

 for(std::ptrdiff_t i = 0; i < viewConst.size(); ++i)
 {
 for(std::ptrdiff_t j = 0; j < viewConst.sizeOfArray(i); ++j)
 {
 EXPECT_EQ(viewConst(i, j), 2 * (10 * i + j));

 // This would be a compilation error
 // viewConst(i, j) = 0;
 }
 }
 }

 // Verify that all the modifications are present in the parent ArrayOfArrays.
 EXPECT_EQ(arrayOfArrays.size(), 10);
 for(std::ptrdiff_t i = 0; i < arrayOfArrays.size(); ++i)
 {
 EXPECT_EQ(arrayOfArrays.sizeOfArray(i), i);
 for(std::ptrdiff_t j = 0; j < arrayOfArrays.sizeOfArray(i); ++j)
 {
 EXPECT_EQ(arrayOfArrays(i, j), 2 * (10 * i + j));
 }
 }
}

[Source: examples/exampleArrayOfArrays.cpp]

LvArray::ArrayView also has a method emplaceBackAtomic which is allows multiple threads to append to a single inner array in a thread safe manner.

TEST(ArrayOfArrays, atomic)
{
 // Create an ArrayOfArrays with 1 array with a capacity of 100.
 LvArray::ArrayOfArrays< int, std::ptrdiff_t, LvArray::MallocBuffer > arrayOfArrays(1, 100);
 EXPECT_EQ(arrayOfArrays.sizeOfArray(0), 0);

 // Then create a view.
 LvArray::ArrayOfArraysView< int,
 std::ptrdiff_t const,
 false,
 LvArray::MallocBuffer > const view = arrayOfArrays.toView();

 // Append to the single inner array in parallel
 RAJA::forall< RAJA::omp_parallel_for_exec >(
 RAJA::TypedRangeSegment< std::ptrdiff_t >(0, view.capacityOfArray(0)),
 [view] (std::ptrdiff_t const i)
 {
 view.emplaceBackAtomic< RAJA::builtin_atomic >(0, i);
 }
);

 EXPECT_EQ(arrayOfArrays.sizeOfArray(0), 100);

 // Sort the entries in the array since they were appended in an arbitrary order
 LvArray::sortedArrayManipulation::makeSorted(arrayOfArrays[0].begin(), arrayOfArrays[0].end());

 for(std::ptrdiff_t i = 0; i < arrayOfArrays.sizeOfArray(0); ++i)
 {
 EXPECT_EQ(arrayOfArrays(0, i), i);
 }
}

[Source: examples/exampleArrayOfArrays.cpp]

5.4. Data structure

In order to use the LvArray::ArrayOfArrays efficiently it is important to understand the underlying data structure. A LvArray::ArrayOfArrays< T, INDEX_TYPE, BUFFER_TYPE > array contains three buffers:

	BUFFER_TYPE< T > values: Contains the values of each inner array.

	BUFFER_TYPE< INDEX_TYPE > sizes: Of length array.size(), sizes[i] contains the size of inner array i.

	BUFFER_TYPE< INDEX_TYPE > offsets: Of length array.size() + 1, inner array i begins at values[offsets[i]] and has capacity offsets[i + 1] - offsets[i].

Given M = offsets[array.size()] which is the sum of the capacities of the inner arrays then

	array.appendArray(n) is O(n) because it entails appending a new entry to sizes and offsets and then appending the n new values to values.

	array.insertArray(i, first, last) is O(array.size() + M + std::distance(first, last). It involves inserting an entry into sizes and offsets which is O(array.size()), making room in values for the new array which is O(M) and finally copying over the new values which is O(std::distance(first, last)).

	array.eraseArray(i) is O(array.size() + M). It involves removing an entry from sizes and offsets which is O(array.size()) and then it involves shifting the entries in values down which is O(M).

	The methods which modify an inner array have the same complexity as their std::vector counterparts if the capacity of the inner array won’t be exceeded by the operation. Otherwise they have an added cost of O(M) because new space will have to be made in values. So for example array.emplaceBack(i, args ...) is O(1) if array.sizeOfArray(i) < array.capacityOfArray(i) and O(M) otherwise.

LvArray::ArrayOfArrays also supports two methods that don’t have an std::vector< std::vector > counterpart. The first is compress which shrinks the capacity of each inner array to match it’s size. This ensures that the inner arrays are contiguous in memory with no extra space between them.

TEST(ArrayOfArrays, compress)
{
 // Create an ArrayOfArrays with three inner arrays each with capacity 5.
 LvArray::ArrayOfArrays< int, std::ptrdiff_t, LvArray::MallocBuffer > arrayOfArrays(3, 5);
 EXPECT_EQ(arrayOfArrays.sizeOfArray(1), 0);
 EXPECT_EQ(arrayOfArrays.capacityOfArray(1), 5);

 // Append values to the inner arrays.
 std::array< int, 5 > values = { 0, 1, 2, 3, 4 };
 arrayOfArrays.appendToArray(0, values.begin(), values.begin() + 3);
 arrayOfArrays.appendToArray(1, values.begin(), values.begin() + 4);
 arrayOfArrays.appendToArray(2, values.begin(), values.begin() + 5);

 EXPECT_EQ(arrayOfArrays.sizeOfArray(0), 3);
 EXPECT_EQ(arrayOfArrays.capacityOfArray(0), 5);

 // Since the first array has some extra capacity it is not contiguous in memory
 // with the second array.
 EXPECT_NE(&arrayOfArrays(0, 2) + 1, &arrayOfArrays(1, 0));

 // Compress the ArrayOfArrays. This doesn't change the sizes or values of the
 // inner arrays, only their capacities.
 arrayOfArrays.compress();

 EXPECT_EQ(arrayOfArrays.sizeOfArray(0), 3);
 EXPECT_EQ(arrayOfArrays.capacityOfArray(0), 3);

 // The values are preserved.
 EXPECT_EQ(arrayOfArrays(2, 4), 4);

 // And the inner arrays are now contiguous.
 EXPECT_EQ(&arrayOfArrays(0, 2) + 1, &arrayOfArrays(1, 0));
}

[Source: examples/exampleArrayOfArrays.cpp]

The second is resizeFromCapacities which takes in a number of inner arrays and the capacity of each inner array. It clears the ArrayOfArrays and reconstructs it with the given number of empty inner arrays each with the provided capacity. It also takes a RAJA execution policy as a template parameter which specifies how to compute the offsets array from the capacities. Currently only host execution policies are supported.

TEST(ArrayOfArrays, resizeFromCapacities)
{
 // Create an ArrayOfArrays with two inner arrays
 LvArray::ArrayOfArrays< int, std::ptrdiff_t, LvArray::MallocBuffer > arrayOfArrays(2);

 // Append values to the inner arrays.
 std::array< int, 5 > values = { 0, 1, 2, 3, 4 };
 arrayOfArrays.appendToArray(0, values.begin(), values.begin() + 3);
 arrayOfArrays.appendToArray(1, values.begin(), values.begin() + 4);

 EXPECT_EQ(arrayOfArrays.sizeOfArray(0), 3);

 // Resize the ArrayOfArrays from a new list of capacities.
 std::array< std::ptrdiff_t, 3 > newCapacities = { 3, 5, 2 };
 arrayOfArrays.resizeFromCapacities< RAJA::loop_exec >(newCapacities.size(), newCapacities.data());

 // This will clear any existing arrays.
 EXPECT_EQ(arrayOfArrays.size(), 3);
 EXPECT_EQ(arrayOfArrays.sizeOfArray(1), 0);
 EXPECT_EQ(arrayOfArrays.capacityOfArray(1), newCapacities[1]);
}

[Source: examples/exampleArrayOfArrays.cpp]

5.5. Usage with LvArray::ChaiBuffer

The three types of LvArray::ArrayOfArrayView obtainable from an LvArray::ArrayOfArrays all act differently when moved to a new memory space.

	LvArray::ArrayOfArraysView< T, INDEX_TYPE const, false, LvArray::ChaiBuffer >, obtained by calling toView(). When it is moved to a new space the values are touched as well as the sizes. The offsets are not touched.

	LvArray::ArrayOfArraysView< T, INDEX_TYPE const, true, LvArray::ChaiBuffer >, obtained by calling toViewConstSizes(). When it is moved to a new space the values are touched but the sizes and offsets aren’t.

	LvArray::ArrayOfArraysView< T const, INDEX_TYPE const, true, LvArray::ChaiBuffer >, obtained by calling toViewConst(). None of the buffers are touched in the new space.

Calling the explicit move method with the touch parameter set to true on a view type has the behavior described above. However calling move(MemorySpace::host) on an LvArray::ArrayOfArrays will also touch the offsets (if moving to the GPU the offsets aren’t touched). This is the only way to touch the offsets so if an LvArray::ArrayOfArrays was previously on the device then it must be explicitly moved and touched on the host before any modification to the offsets can safely take place.

CUDA_TEST(ArrayOfArrays, ChaiBuffer)
{
 LvArray::ArrayOfArrays< int, std::ptrdiff_t, LvArray::ChaiBuffer > arrayOfArrays(10, 9);

 {
 // Create a view.
 LvArray::ArrayOfArraysView< int,
 std::ptrdiff_t const,
 false,
 LvArray::ChaiBuffer > const view = arrayOfArrays.toView();

 // Capture the view on device. This will copy the values, sizes and offsets.
 // The values and sizes will be touched.
 RAJA::forall< RAJA::cuda_exec< 32 > >(
 RAJA::TypedRangeSegment< std::ptrdiff_t >(0, view.size()),
 [view] __device__ (std::ptrdiff_t const i)
 {
 for(std::ptrdiff_t j = 0; j < i; ++j)
 {
 view.emplace(i, 0, 10 * i + j);
 }
 }
);
 }

 {
 // Create a view which cannot modify the sizes of the inner arrays.
 LvArray::ArrayOfArraysView< int,
 std::ptrdiff_t const,
 true,
 LvArray::ChaiBuffer > const viewConstSizes = arrayOfArrays.toViewConstSizes();

 // Capture the view on the host. This will copy back the values and sizes since they were previously touched
 // on device. It will only touch the values on host.
 RAJA::forall< RAJA::loop_exec >(
 RAJA::TypedRangeSegment< std::ptrdiff_t >(0, viewConstSizes.size()),
 [viewConstSizes] (std::ptrdiff_t const i)
 {
 for(int & value : viewConstSizes[i])
 {
 value *= 2;
 }
 }
);
 }

 {
 // Create a view which has read only access.
 LvArray::ArrayOfArraysView< int const,
 std::ptrdiff_t const,
 true,
 LvArray::ChaiBuffer > const viewConst = arrayOfArrays.toViewConst();

 // Capture the view on device. Since the values were previously touched on host it will copy them over.
 // Both the sizes and offsets are current on device so they are not copied over. Nothing is touched.
 RAJA::forall< RAJA::loop_exec >(
 RAJA::TypedRangeSegment< std::ptrdiff_t >(0, viewConst.size()),
 [viewConst] (std::ptrdiff_t const i)
 {
 for(std::ptrdiff_t j = 0; j < viewConst.sizeOfArray(i); ++j)
 {
 LVARRAY_ERROR_IF_NE(viewConst(i, j), 2 * (10 * i + i - j - 1));
 }
 }
);
 }

 // This won't copy any data since everything is current on host. It will however touch the values,
 // sizes and offsets.
 arrayOfArrays.move(LvArray::MemorySpace::host);

 // Verify that all the modifications are present in the parent ArrayOfArrays.
 EXPECT_EQ(arrayOfArrays.size(), 10);
 for(std::ptrdiff_t i = 0; i < arrayOfArrays.size(); ++i)
 {
 EXPECT_EQ(arrayOfArrays.sizeOfArray(i), i);
 for(std::ptrdiff_t j = 0; j < arrayOfArrays.sizeOfArray(i); ++j)
 {
 EXPECT_EQ(arrayOfArrays(i, j), 2 * (10 * i + i - j - 1));
 }
 }
}

[Source: examples/exampleArrayOfArrays.cpp]

5.6. Usage with LVARRAY_BOUNDS_CHECK

When LVARRAY_BOUNDS_CHECK is defined access via operator[] and operator() is checked. If an invalid access is detected the program is aborted. Methods such as sizeOfArray, insertArray and emplace are also checked.

TEST(ArrayOfArrays, boundsCheck)
{
#if defined(LVARRAY_BOUNDS_CHECK)
 LvArray::ArrayOfArrays< int, std::ptrdiff_t, LvArray::MallocBuffer > arrayOfArrays;

 // Append an array.
 std::array< int, 5 > values = { 0, 1, 2, 3, 4 };
 arrayOfArrays.appendArray(values.begin(), values.end());

 EXPECT_EQ(arrayOfArrays.size(), 1);
 EXPECT_EQ(arrayOfArrays.sizeOfArray(0), 5);

 // Out of bounds access aborts the program.
 EXPECT_DEATH_IF_SUPPORTED(arrayOfArrays(0, -1), "");
 EXPECT_DEATH_IF_SUPPORTED(arrayOfArrays[0][6], "");
 EXPECT_DEATH_IF_SUPPORTED(arrayOfArrays[1][5], "");

 EXPECT_DEATH_IF_SUPPORTED(arrayOfArrays.capacityOfArray(5), "");
 EXPECT_DEATH_IF_SUPPORTED(arrayOfArrays.insertArray(5, values.begin(), values.end()), "");
 EXPECT_DEATH_IF_SUPPORTED(arrayOfArrays.emplace(0, 44, 4), "");
 EXPECT_DEATH_IF_SUPPORTED(arrayOfArrays.emplace(1, 44, 4), "");
#endif
}

[Source: examples/exampleArrayOfArrays.cpp]

5.7. Guidelines

Like with the LvArray::Array it is a good idea to pass around the most restrictive LvArray::ArrayOfArrays object possible. If a function only reads the values of an array it should accept an LvArray::ArrayOfArraysView< T const, INDEX_TYPE const, true, BUFFER_TYPE >. If it only reads and writes to the values of the inner arrays it should accept an LvArray::ArrayOfArraysView< T, INDEX_TYPE const, true, BUFFER_TYPE >. If it will modify the size of the inner arrays and can guarantee that their capacity won’t be exceeded it should accept a LvArray::ArrayOfArraysView< T, INDEX_TYPE const, false, BUFFER_TYPE >. Only when the function needs to modify the outer array or can’t guarantee that the capacity of an inner array won’t be exceeded should it accept an LvArray::ArrayOfArrays.

Examining the computational complexities listed above resizing the inner arrays of an LvArray::ArrayOfArrays can be as fast as the equivalent operations on a std::vector< std::vector< T > > only if the capacity of the inner arrays is not exceeded. Whenever possible preallocate space for the inner arrays. The following examples demonstrate the impact this can have.

One use case for the LvArray::ArrayOfArrays is to represent the node-to-element map of a computational mesh. Usually this is constructed from a provided element-to-node map which is a map from an element index to a list of node indices that make up the element. For a structured mesh or an unstructured mesh made up of a single element type this map can be represented as a two dimensional LvArray::Array since every element has the same number of nodes. However the inverse node-to-element map cannot be easily represented this way since in general not all nodes are a part of the same number of elements. In a two dimensional structured mesh an interior node is part of four elements while the four corner nodes are only part of a single element.

This is an example of how to construct the node-to-element map represented as a std::vector< std::vector > from the element-to-node map.

void NaiveNodeToElemMapConstruction::
 vector(ArrayView< INDEX_TYPE const, 2, 1, INDEX_TYPE, DEFAULT_BUFFER > const & elementToNodeMap,
 std::vector< std::vector< INDEX_TYPE > > & nodeToElementMap,
 INDEX_TYPE const numNodes)
{
 nodeToElementMap.resize(numNodes);

 for(INDEX_TYPE elementIndex = 0; elementIndex < elementToNodeMap.size(0); ++elementIndex)
 {
 for(INDEX_TYPE const nodeIndex : elementToNodeMap[elementIndex])
 {
 nodeToElementMap[nodeIndex].emplace_back(elementIndex);
 }
 }
}

[Source: benchmarks/benchmarkArrayOfArraysNodeToElementMapConstructionKernels.cpp]

For a mesh with N nodes this construction has complexity O(N) since there are N calls to std::vector::emplace_back each of which is O(1). The same approach works when the node-to-element map is a LvArray::ArrayOfArrays however the complexity is much higher.

void NaiveNodeToElemMapConstruction::
 naive(ArrayView< INDEX_TYPE const, 2, 1, INDEX_TYPE, DEFAULT_BUFFER > const & elementToNodeMap,
 ArrayOfArrays< INDEX_TYPE, INDEX_TYPE, DEFAULT_BUFFER > & nodeToElementMap,
 INDEX_TYPE const numNodes)
{
 nodeToElementMap.resize(numNodes);

 for(INDEX_TYPE elementIndex = 0; elementIndex < elementToNodeMap.size(0); ++elementIndex)
 {
 for(INDEX_TYPE const nodeIndex : elementToNodeMap[elementIndex])
 {
 nodeToElementMap.emplaceBack(nodeIndex, elementIndex);
 }
 }
}

[Source: benchmarks/benchmarkArrayOfArraysNodeToElementMapConstructionKernels.cpp]

Since nothing is done to preallocate space for each inner array every call to LvArray::ArrayOfArrays::emplaceBack has complexity O(M) where M is the sum of the capacities of the inner arrays. M is proportional to the number of nodes in the mesh N so the entire algorithm runs in O(N * N).

This can be sped up considerably with some preallocation.

template< typename POLICY >
void NodeToElemMapConstruction< POLICY >::
overAllocation(ArrayView< INDEX_TYPE const, 2, 1, INDEX_TYPE, DEFAULT_BUFFER > const & elementToNodeMap,
 ArrayOfArrays< INDEX_TYPE, INDEX_TYPE, DEFAULT_BUFFER > & nodeToElementMap,
 INDEX_TYPE const numNodes,
 INDEX_TYPE const maxNodeElements)
{
 using ATOMIC_POLICY = typename RAJAHelper< POLICY >::AtomicPolicy;

 // Resize the node to element map allocating space for each inner array.
 nodeToElementMap.resize(numNodes, maxNodeElements);

 // Create an ArrayOfArraysView
 ArrayOfArraysView< INDEX_TYPE, INDEX_TYPE const, false, DEFAULT_BUFFER > const nodeToElementMapView =
 nodeToElementMap.toView();

 // Launch a RAJA kernel that populates the ArrayOfArraysView.
 RAJA::forall< POLICY >(
 RAJA::TypedRangeSegment< INDEX_TYPE >(0, elementToNodeMap.size(0)),
 [elementToNodeMap, nodeToElementMapView] (INDEX_TYPE const elementIndex)
 {
 for(INDEX_TYPE const nodeIndex : elementToNodeMap[elementIndex])
 {
 nodeToElementMapView.emplaceBackAtomic< ATOMIC_POLICY >(nodeIndex, elementIndex);
 }
 }
);
}

[Source: benchmarks/benchmarkArrayOfArraysNodeToElementMapConstructionKernels.cpp]

Since this method guarantees that the capacity of each inner arrays won’t be exceeded the complexity is reduced back down to O(N). In addition the loop appending to the inner arrays can be parallelized.

One problem with this approach is that it may allocate significantly more memory than is necessary to store the map since most of the inner arrays may not have the maximal length. Another potential issue is that the array is not compressed since some inner arrays will have a capacity that exceeds their size. Precomputing the size of each inner array (the number of elements each node is a part of) and using resizeFromCapacities solves both of these problems and is almost as fast as over allocating.

template< typename POLICY >
void NodeToElemMapConstruction< POLICY >::
resizeFromCapacities(ArrayView< INDEX_TYPE const, 2, 1, INDEX_TYPE, DEFAULT_BUFFER > const & elementToNodeMap,
 ArrayOfArrays< INDEX_TYPE, INDEX_TYPE, DEFAULT_BUFFER > & nodeToElementMap,
 INDEX_TYPE const numNodes)
{
 using ATOMIC_POLICY = typename RAJAHelper< POLICY >::AtomicPolicy;

 // Create an Array containing the size of each inner array.
 Array< INDEX_TYPE, 1, RAJA::PERM_I, INDEX_TYPE, DEFAULT_BUFFER > elementsPerNode(numNodes);

 // Calculate the size of each inner array.
 RAJA::forall< POLICY >(
 RAJA::TypedRangeSegment< INDEX_TYPE >(0, elementToNodeMap.size(0)),
 [elementToNodeMap, &elementsPerNode] (INDEX_TYPE const elementIndex)
 {
 for(INDEX_TYPE const nodeIndex : elementToNodeMap[elementIndex])
 {
 RAJA::atomicInc< ATOMIC_POLICY >(&elementsPerNode[nodeIndex]);
 }
 }
);

 // Resize the node to element map with the inner array sizes.
 nodeToElementMap.resizeFromCapacities< POLICY >(elementsPerNode.size(), elementsPerNode.data());

 // Create an ArrayOfArraysView
 ArrayOfArraysView< INDEX_TYPE, INDEX_TYPE const, false, DEFAULT_BUFFER > const nodeToElementMapView =
 nodeToElementMap.toView();

 // Launch a RAJA kernel that populates the ArrayOfArraysView.
 RAJA::forall< POLICY >(
 RAJA::TypedRangeSegment< INDEX_TYPE >(0, elementToNodeMap.size(0)),
 [elementToNodeMap, nodeToElementMapView] (INDEX_TYPE const elementIndex)
 {
 for(INDEX_TYPE const nodeIndex : elementToNodeMap[elementIndex])
 {
 nodeToElementMapView.emplaceBackAtomic< ATOMIC_POLICY >(nodeIndex, elementIndex);
 }
 });
}

[Source: benchmarks/benchmarkArrayOfArraysNodeToElementMapConstructionKernels.cpp]

The following timings are from a clang 10 release build on LLNL’s Quartz system run with a 200 x 200 x 200 element structured mesh. The reported time is the best of ten iterations.

	Function

	RAJA Policy

	Time

	vector

	N/A

	0.99s

	overAllocation

	loop_exec

	0.49s

	resizeFromCapacities

	loop_exec

	0.58s

	overAllocation

	omp_parallel_for_exec

	0.11s

	resizeFromCapacities

	omp_parallel_for_exec

	0.17s

The naive method is much to slow to run on this size mesh. However on a 30 x 30 x 30 mesh it takes 1.28 seconds.

5.8. Doxygen

	LvArray::ArrayOfArrays

	LvArray::ArrayOfArraysView

6. LvArray::ArrayOfSets

The LvArray::ArrayOfSets is very similar to the LvArray::ArrayOfArrays except that the values of the inner arrays are sorted an unique like the LvArray::SortedArray. If you are familiar with both of these classes the functionality of the LvArray::ArrayOfSets should be pretty straightforward.

6.1. Template arguments

The LvArray::ArrayOfArrays requires three template arguments.

	T: The type of values stored in the inner arrays.

	INDEX_TYPE: An integral type used in index calculations, the suggested type is std::ptrdiff_t.

	BUFFER_TYPE: A template template parameter specifying the buffer type used for allocation and de-allocation, the LvArray::ArrayOfArrays contains a BUFFER_TYPE< T > along with two BUFFER_TYPE< INDEX_TYPE >.

6.2. Usage

All of the functionality for modifying the outer array from LvArray::ArrayOfArrays is present in the LvArray::ArrayOfSets although it might go by a different name. For example instead of appendArray there is appendSet. However like LvArray::SortedArray the only options for modifying the inner sets are through either insertIntoSet` or ``removeFromSet.

TEST(ArrayOfSets, examples)
{
 LvArray::ArrayOfSets< std::string, std::ptrdiff_t, LvArray::MallocBuffer > arrayOfSets;

 // Append a set with capacity 2.
 arrayOfSets.appendSet(2);
 arrayOfSets.insertIntoSet(0, "oh");
 arrayOfSets.insertIntoSet(0, "my");

 // Insert a set at the beginning with capacity 3.
 arrayOfSets.insertSet(0, 3);
 arrayOfSets.insertIntoSet(0, "lions");
 arrayOfSets.insertIntoSet(0, "tigers");
 arrayOfSets.insertIntoSet(0, "bears");

 // "tigers" is already in the set.
 EXPECT_FALSE(arrayOfSets.insertIntoSet(0, "tigers"));

 EXPECT_EQ(arrayOfSets(0, 0), "bears");
 EXPECT_EQ(arrayOfSets(0, 1), "lions");
 EXPECT_EQ(arrayOfSets(0, 2), "tigers");

 EXPECT_EQ(arrayOfSets[1][0], "my");
 EXPECT_EQ(arrayOfSets[1][1], "oh");
}

[Source: examples/exampleArrayOfSets.cpp]

LvArray::ArrayOfSets also has a method assimilate which takes an rvalue-reference to an LvArray::ArrayOfArrays and converts it to a LvArray::ArrayOfSets. LvArray::ArrayOfArrays also has a similar method.

TEST(ArrayOfSets, assimilate)
{
 LvArray::ArrayOfSets< int, std::ptrdiff_t, LvArray::MallocBuffer > arrayOfSets;

 // Create an ArrayOfArrays and populate the inner arrays with sorted unique values.
 LvArray::ArrayOfArrays< int, std::ptrdiff_t, LvArray::MallocBuffer > arrayOfArrays(3);

 // The first array is empty, the second is {0} and the third is {0, 1}.
 arrayOfArrays.emplaceBack(1, 0);
 arrayOfArrays.emplaceBack(2, 0);
 arrayOfArrays.emplaceBack(2, 1);

 // Assimilate arrayOfArrays into arrayOfSets.
 arrayOfSets.assimilate(std::move(arrayOfArrays),
 LvArray::sortedArrayManipulation::Description::SORTED_UNIQUE);

 // After being assimilated arrayOfArrays is empty.
 EXPECT_EQ(arrayOfArrays.size(), 0);

 // arrayOfSets now contains the values.
 EXPECT_EQ(arrayOfSets.size(), 3);
 EXPECT_EQ(arrayOfSets.sizeOfSet(0), 0);
 EXPECT_EQ(arrayOfSets.sizeOfSet(1), 1);
 EXPECT_EQ(arrayOfSets.sizeOfSet(2), 2);
 EXPECT_EQ(arrayOfSets(1, 0), 0);
 EXPECT_EQ(arrayOfSets(2, 0), 0);
 EXPECT_EQ(arrayOfSets(2, 1), 1);

 // Resize arrayOfArrays and populate it the inner arrays with values that are neither sorted nor unique.
 arrayOfArrays.resize(2);

 // The first array is {4, -1} and the second is {4, 4}.
 arrayOfArrays.emplaceBack(0, 3);
 arrayOfArrays.emplaceBack(0, -1);
 arrayOfArrays.emplaceBack(1, 4);
 arrayOfArrays.emplaceBack(1, 4);

 // Assimilate the arrayOfArrays yet again.
 arrayOfSets.assimilate(std::move(arrayOfArrays),
 LvArray::sortedArrayManipulation::Description::UNSORTED_WITH_DUPLICATES);

 EXPECT_EQ(arrayOfSets.size(), 2);
 EXPECT_EQ(arrayOfSets.sizeOfSet(0), 2);
 EXPECT_EQ(arrayOfSets.sizeOfSet(1), 1);
 EXPECT_EQ(arrayOfSets(0, 0), -1);
 EXPECT_EQ(arrayOfSets(0, 1), 3);
 EXPECT_EQ(arrayOfSets(1, 0), 4);
}

[Source: examples/exampleArrayOfSets.cpp]

6.3. LvArray::ArrayOfSetsView

The LvArray::ArrayOfSetsView is the view counterpart to LvArray::ArrayOfSets. Functionally it is very similar to the LvArray::ArrayOfArraysView in that it cannot modify the outer array but it can modify the inner sets as long as their capacities aren’t exceeded. Unlike LvArray::ArrayOfArraysView however it doesn’t have the CONST_SIZES template parameter. This is because if you can’t change the size of the inner arrays then you also can’t modify their values. Specifically an LvArray::ArrayOfSetsView< T, INDEX_TYPE, BUFFER_TYPE > contains the following buffers:

	BUFFER_TYPE< T > values: Contains the values of each inner set.

	BUFFER-TYPE< std::conditional_t< std::is_const< T >::value, INDEX_TYPE const, INDEX_TYPE > >: Of length array.size(), sizes[i] contains the size of the inner set i.

	BUFFER_TYPE< INDEX_TYPE > offsets: Of length array.size() + 1, inner set i begins at values[offsets[i]] and has capacity offsets[i + 1] - offsets[i].

From an LvArray::ArrayOfSets< T, INDEX_TYPE, BUFFER_TYPE > you can get three view types by calling the following methods

	toView() returns an LvArray::ArrayOfSetsView< T, INDEX_TYPE const, BUFFER_TYPE >.

	toViewConst() returns an LvArray::ArrayOfSetsView< T const, INDEX_TYPE const, BUFFER_TYPE >.

	toArrayOfArraysView() returns an LvArray::ArrayOfArraysView< T const, INDEX_TYPE const, true, BUFFER_TYPE >.

6.4. Usage with LvArray::ChaiBuffer

The two types of LvArray::ArrayOfSetsView obtainable from an LvArray::ArrayOfSets act differently when moved to a new memory space.

	LvArray::ArrayOfSetsView< T, INDEX_TYPE const, LvArray::ChaiBuffer >, obtained by calling toView(). When it is moved to a new space the values are touched as well as the sizes. The offsets are not touched.

	LvArray::ArrayOfSetsView< T const, INDEX_TYPE const, LvArray::ChaiBuffer >, obtained by calling toViewConst(). None of the buffers are touched in the new space.

Calling the explicit move method with the touch parameter set to true on a view type has the behavior described above. However calling move(MemorySpace::host) on an LvArray::ArrayOfSets will also touch the offsets (if moving to the GPU the offsets aren’t touched). This is the only way to touch the offsets so if an LvArray::ArrayOfSets was previously on the device then it must be explicitly moved and touched on the host before any modification to the offsets can safely take place.

6.5. Usage with LVARRAY_BOUNDS_CHECK

When LVARRAY_BOUNDS_CHECK is defined access via operator[] and operator() is checked. If an invalid access is detected the program is aborted. Methods such as sizeOfArray, insertArray and emplace are also checked. The values passed to insertIntoSet and removeFromSet are also checked to ensure they are sorted and contain no duplicates.

6.6. Guidelines

Like LvArray::SortedArray batch insertion and removal from an inner set is much faster than inserting or removing each value individually.

All the tips for efficiently constructing an LvArray::ArrayOfArrays apply to constructing an LvArray::ArrayOfSets. The main difference is that LvArray::ArrayOfSets doesn’t support concurrent modification of an inner set. Often if the sorted-unique properties of the inner sets aren’t used during construction it can be faster to first construct a LvArray::ArrayOfArrays where each inner array can contain duplicates and doesn’t have to be sorted and then create the LvArray::ArrayOfSets via a call to assimilate.

6.7. Doxygen

	LvArray::ArrayOfSets

	LvArray::ArrayOfSetsView

4. LvArray::SortedArray

The LvArray::SortedArray functions similarly to a std::set except that unlike a std::set the values are stored contiguously in memory like a std::vector. Like the std::set the cost of seeing if a LvArray::SortedArray a contains a value is [image: O(log(N))] however the const of inserting or removing a value is [image: O(N)] where N = a.size().

4.1. Template arguments

The LvArray::SortedArray requires three template arguments.

	T: The type of values stored in the set.

	INDEX_TYPE: An integral type used in index calculations, the suggested type is std::ptrdiff_t.

	BUFFER_TYPE: A template template parameter specifying the buffer type used for allocation and de-allocation, the LvArray::SortedArray contains a BUFFER_TYPE< T >.

Note

Unlike std::set, LvArray::SortedArray does not yet support a custom comparator, it us currently hard coded to operator< to sort values from least to greatest.

4.2. Creating and accessing a LvArray::SortedArray

The LvArray::SortedArray has a single default constructor which creates an empty set. The only way to modify the set is through the methods insert and remove. These methods are similar to the std::set methods of the same name except that when inserting or removing multiple values at once the values need to be sorted and unique. LvArray::SortedArray also has an operator[] and data method that provide read only access to the values.

TEST(SortedArray, construction)
{
 // Construct an empty set.
 LvArray::SortedArray< std::string, std::ptrdiff_t, LvArray::MallocBuffer > set;
 EXPECT_TRUE(set.empty());

 // Insert two objects one at a time.
 EXPECT_TRUE(set.insert("zebra"));
 EXPECT_TRUE(set.insert("aardvark"));

 // "zebra" is already in the set so it won't be inserted again.
 EXPECT_FALSE(set.insert("zebra"));

 // Query the contents of the set.
 EXPECT_EQ(set.size(), 2);
 EXPECT_TRUE(set.contains("zebra"));
 EXPECT_FALSE(set.contains("whale"));

 // Insert two objects at once.
 std::string const moreAnimals[2] = { "cat", "dog" };
 EXPECT_EQ(set.insert(moreAnimals, moreAnimals + 2), 2);

 // Remove a single object.
 set.remove("aardvark");

 EXPECT_EQ(set.size(), 3);
 EXPECT_EQ(set[0], "cat");
 EXPECT_EQ(set[1], "dog");
 EXPECT_EQ(set[2], "zebra");
}

[Source: examples/exampleSortedArray.cpp]

4.3. LvArray::SortedArrayView

LvArray::SortedArrayView is the view class of LvArray::SortedArray and it shares all the same template parameters. To construct a LvArray::SortedArrayView you must call toView() on an existing LvArray::SortedArray or create a copy of an existing LvArray::SortedArrayView. The LvArray::SortedArrayView is not allowed to insert or remove values. As such the return type of LvArray::SortedArray< T, ... >::toView() is an LvArray::SortedArrayView< T const, ... >

Note

Unlike LvArray::ArrayView the LvArray::SortedArrayView does not yet support default construction.

4.4. Usage with LvArray::ChaiBuffer

When using the LvArray::ChaiBuffer as the buffer type the LvArray::SortedArray can exist in multiple memory spaces. It can be explicitly moved between spaces with the method move. Because the SortedArrayView cannot modify the values the data is never touched when moving to device, even if the optional touch parameter is set to false.

It is worth noting that after a LvArray::SortedArray is moved to the device it must be explicitly moved back to the host by calling move(MemorySpace::host) before it can be safely modified. This won’t actually trigger a memory copy since the values weren’t touched on device, its purpose is to let CHAI know that the values were touched on the host so that the next time it is moved to device it will copy the values back over.

CUDA_TEST(SortedArray, ChaiBuffer)
{
 // Construct an empty set consisting of the even numbers { 0, 2, 4 }.
 LvArray::SortedArray< int, std::ptrdiff_t, LvArray::ChaiBuffer > set;
 int const values[4] = { 0, 2, 4 };
 EXPECT_EQ(set.insert(values, values + 3), 3);
 EXPECT_EQ(set.size(), 3);

 // Create a view and capture it on device, this will copy the data to the device.
 RAJA::forall< RAJA::cuda_exec< 32 > >(
 RAJA::TypedRangeSegment< std::ptrdiff_t >(0, set.size()),
 [view = set.toView()] __device__ (std::ptrdiff_t const i)
 {
 LVARRAY_ERROR_IF_NE(view[i], 2 * i);
 LVARRAY_ERROR_IF(view.contains(2 * i + 1), "The set should only contain odd numbers!");
 }
);

 // Move the set back to the CPU and modify it.
 set.move(LvArray::MemorySpace::host);
 set.insert(6);

 // Verify that the modification is seen on device.
 RAJA::forall< RAJA::cuda_exec< 32 > >(
 RAJA::TypedRangeSegment< std::ptrdiff_t >(0, 1),
 [view = set.toView()] __device__ (std::ptrdiff_t const)
 {
 LVARRAY_ERROR_IF(!view.contains(6), "The set should contain 6!");
 }
);
}

[Source: examples/exampleSortedArray.cpp]

4.5. Usage with LVARRAY_BOUNDS_CHECK

Like LvArray::Array when LVARRAY_BOUNDS_CHECK is defined access via operator[] is checked for invalid access. If an out of bounds access is detected the program is aborted. In addition calls to insert and remove multiple values will error out if the values to insert or remove aren’t sorted and unique.

TEST(SortedArray, boundsCheck)
{
 // Create a set containing {2, 4}
 LvArray::SortedArray< int, std::ptrdiff_t, LvArray::MallocBuffer > set;
 set.insert(4);
 set.insert(2);

 // Invalid access.
 EXPECT_DEATH_IF_SUPPORTED(set[5], "");

 // Attempt to insert unsorted values.
 int const unsortedInsert[2] = { 4, 0 };
 EXPECT_DEATH_IF_SUPPORTED(set.insert(unsortedInsert, unsortedInsert + 2), "");

 // Attempt to insert nonUnique values.
 int const notUnique[2] = { 5, 5 };
 EXPECT_DEATH_IF_SUPPORTED(set.insert(notUnique, notUnique + 2), "");

 // Attempt to remove unsorted values.
 int const unsortedRemove[2] = { 4, 2 };
 EXPECT_DEATH_IF_SUPPORTED(set.remove(unsortedRemove, unsortedRemove + 2), "");
}

[Source: examples/exampleSortedArray.cpp]

4.6. Guidelines

Batch insertion and removal is much faster than inserting or removing each value individually. For example calling a.insert(5) has complexity O(a.size()) but calling a.insert(first, last) only has complexity O(a.size() + std::distance(first, last)). The function LvArray::sortedArrayManipulation::makeSortedUnique can help with this as it takes a range, sorts it and removes any duplicate values. When possible it is often faster to append values to a temporary container, sort the values, remove duplicates and then perform the operation.

TEST(SortedArray, fastConstruction)
{
 LvArray::SortedArray< int, std::ptrdiff_t, LvArray::MallocBuffer > set;

 // Create a temporary list of 100 random numbers between 0 and 99.
 std::vector< int > temporarySpace(100);
 std::mt19937 gen;
 std::uniform_int_distribution< int > dis(0, 99);
 for(int i = 0; i < 100; ++i)
 {
 temporarySpace[i] = dis(gen);
 }

 // Sort the random numbers and move any duplicates to the end.
 std::ptrdiff_t const numUniqueValues = LvArray::sortedArrayManipulation::makeSortedUnique(temporarySpace.begin(),
 temporarySpace.end());

 // Insert into the set.
 set.insert(temporarySpace.begin(), temporarySpace.begin() + numUniqueValues);
}

[Source: examples/exampleSortedArray.cpp]

4.7. Doxygen

	LvArray::SortedArray

	LvArray::SortedArrayView

7. LvArray::SparsityPattern and LvArray::CRSMatrix

LvArray::SparsityPattern represents just the sparsity pattern of a matrix while the LvArray::CRSMatrix represents a sparse matrix. Both use a slightly modified version of the compressed row storage [https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)] format. The modifications to the standard format are as follows:

	The columns of each row are sorted.

	Each row can have a capacity in addition to a size which means that the rows aren’t necessarily adjacent in memory.

7.1. Template arguments

The LvArray::SparsityPattern has three template arguments

	COL_TYPE: The integral type used to enumerate the columns of the matrix.

	INDEX_TYPE: An integral type used in index calculations, the suggested type is std::ptrdiff_t.

	BUFFER_TYPE: A template template parameter specifying the buffer type used for allocation and de-allocation, the LvArray::SparsityPattern contains a BUFFER_TYPE< COL_TYPE > along with two BUFFER_TYPE< INDEX_TYPE >.

The LvArray::CRSMatrix adds an additional template argument T which is the type of the entries in the matrix. It also has an addition member of type BUFER_TYPE< T >.

7.2. Usage

The LvArray::SparsityPattern is just a LvArray::ArrayOfSets by a different name. The only functional difference is that it doesn’t support inserting or removing rows from the matrix (inserting or removing inner sets). Both the LvArray::SparsityPattern and LvArray::CRSMatrix support insertNonZero and insertNonZeros for inserting entries into a row as well as removeNonZero and removeNonZeros for removing entries from a row. LvArray::CRSMatrix also supports various addToRow methods which will add to existing entries in a specific row.

It is worth noting that neither LvArray::SparsityPattern nor LvArray::CRSMatrix have an operator() or operator[]. Instead they both support getColumns which returns a LvArray::ArraySlice< COL_TYPE const, 1, 0, INDEX_TYPE > with the columns of the row and LvArray::CRSMatrix supports getEntries which returns a LvArray::ArraySlice< T, 1, 0, INDEX_TYPE > with the entries of the row.

TEST(CRSMatrix, examples)
{
 // Create a matrix with three rows and three columns.
 LvArray::CRSMatrix< double, int, std::ptrdiff_t, LvArray::MallocBuffer > matrix(2, 3);
 EXPECT_EQ(matrix.numRows(), 2);
 EXPECT_EQ(matrix.numColumns(), 3);

 // Insert two entries into the first row.
 int const row0Columns[2] = { 0, 2 };
 double const row0Values[2] = { 4, 3 };
 matrix.insertNonZeros(0, row0Columns, row0Values, 2);
 EXPECT_EQ(matrix.numNonZeros(0), 2);

 // Insert three entries into the second row.
 int const row1Columns[3] = { 0, 1, 2 };
 double const row1Values[3] = { 55, -1, 4 };
 matrix.insertNonZeros(1, row1Columns, row1Values, 3);
 EXPECT_EQ(matrix.numNonZeros(1), 3);

 // The entire matrix has five non zero entries.
 EXPECT_EQ(matrix.numNonZeros(), 5);

 // Row 0 does not have an entry for column 1.
 EXPECT_TRUE(matrix.empty(0, 1));

 // Row 1 does have an entry for column 1.
 EXPECT_FALSE(matrix.empty(1, 1));

 LvArray::ArraySlice< int const, 1, 0, std::ptrdiff_t > columns = matrix.getColumns(0);
 LvArray::ArraySlice< double, 1, 0, std::ptrdiff_t > entries = matrix.getEntries(0);

 // Check the entries of the matrix.
 EXPECT_EQ(columns.size(), 2);
 EXPECT_EQ(columns[0], row0Columns[0]);
 EXPECT_EQ(entries[0], row0Values[0]);

 EXPECT_EQ(columns[1], row0Columns[1]);
 entries[1] += 10;
 EXPECT_EQ(entries[1], 10 + row0Values[1]);
}

[Source: examples/exampleSparsityPatternAndCRSMatrix.cpp]

Third party packages such as MKL or cuSparse expect the rows of the CRS matrix to be adjacent in memory. Specifically they don’t accept a pointer that gives the size of each row they only accept an offsets pointer and calculate the sizes from that. To make an LvArray::CRSMatrix conform to this layout you can call compress which will set the capacity of each row equal to its size making the rows adjacent in memory.

TEST(CRSMatrix, compress)
{
 // Create a matrix with two rows and four columns where each row has capacity 3.
 LvArray::CRSMatrix< double, int, std::ptrdiff_t, LvArray::MallocBuffer > matrix(2, 4, 3);

 // Insert two entries into the first row.
 int const row0Columns[2] = { 0, 2 };
 double const row0Values[2] = { 4, 3 };
 matrix.insertNonZeros(0, row0Columns, row0Values, 2);
 EXPECT_EQ(matrix.numNonZeros(0), 2);
 EXPECT_EQ(matrix.nonZeroCapacity(0), 3);

 // Insert two entries into the second row.
 int const row1Columns[3] = { 0, 1 };
 double const row1Values[3] = { 55, -1 };
 matrix.insertNonZeros(1, row1Columns, row1Values, 2);
 EXPECT_EQ(matrix.numNonZeros(1), 2);
 EXPECT_EQ(matrix.nonZeroCapacity(1), 3);

 // The rows are not adjacent in memory.
 EXPECT_NE(&matrix.getColumns(0)[0] + matrix.numNonZeros(0), &matrix.getColumns(1)[0]);
 EXPECT_NE(&matrix.getEntries(0)[0] + matrix.numNonZeros(0), &matrix.getEntries(1)[0]);

 // After compression the rows are adjacent in memroy.
 matrix.compress();
 EXPECT_EQ(&matrix.getColumns(0)[0] + matrix.numNonZeros(0), &matrix.getColumns(1)[0]);
 EXPECT_EQ(&matrix.getEntries(0)[0] + matrix.numNonZeros(0), &matrix.getEntries(1)[0]);
 EXPECT_EQ(matrix.numNonZeros(0), matrix.nonZeroCapacity(0));
 EXPECT_EQ(matrix.numNonZeros(1), matrix.nonZeroCapacity(1));

 // The entries in the matrix are unchanged.
 EXPECT_EQ(matrix.getColumns(0)[0], row0Columns[0]);
 EXPECT_EQ(matrix.getEntries(0)[0], row0Values[0]);
 EXPECT_EQ(matrix.getColumns(0)[1], row0Columns[1]);
 EXPECT_EQ(matrix.getEntries(0)[1], row0Values[1]);

 EXPECT_EQ(matrix.getColumns(1)[0], row1Columns[0]);
 EXPECT_EQ(matrix.getEntries(1)[0], row1Values[0]);
 EXPECT_EQ(matrix.getColumns(1)[1], row1Columns[1]);
 EXPECT_EQ(matrix.getEntries(1)[1], row1Values[1]);
}

[Source: examples/exampleSparsityPatternAndCRSMatrix.cpp]

LvArray::CRSMatrix also has an assimilate method which takes an r-values reference to a LvArray::SparsityPattern and converts it into a LvArray::CRSMatrix. It takes a RAJA execution policy as a template parameter.

TEST(CRSMatrix, assimilate)
{
 // Create a sparsity pattern with two rows and four columns where each row has capacity 3.
 LvArray::SparsityPattern< int, std::ptrdiff_t, LvArray::MallocBuffer > sparsity(2, 4, 3);

 // Insert two entries into the first row.
 int const row0Columns[2] = { 0, 2 };
 sparsity.insertNonZeros(0, row0Columns, row0Columns + 2);

 // Insert two entries into the second row.
 int const row1Columns[3] = { 0, 1 };
 sparsity.insertNonZeros(1, row1Columns, row1Columns + 2);

 // Create a matrix with the sparsity pattern
 LvArray::CRSMatrix< double, int, std::ptrdiff_t, LvArray::MallocBuffer > matrix;
 matrix.assimilate< RAJA::loop_exec >(std::move(sparsity));

 // The sparsity is empty after being assimilated.
 EXPECT_EQ(sparsity.numRows(), 0);
 EXPECT_EQ(sparsity.numColumns(), 0);

 // The matrix has the same shape as the sparsity pattern.
 EXPECT_EQ(matrix.numRows(), 2);
 EXPECT_EQ(matrix.numColumns(), 4);

 EXPECT_EQ(matrix.numNonZeros(0), 2);
 EXPECT_EQ(matrix.nonZeroCapacity(0), 3);

 EXPECT_EQ(matrix.numNonZeros(1), 2);
 EXPECT_EQ(matrix.nonZeroCapacity(1), 3);

 // The entries in the matrix are zero initialized.
 EXPECT_EQ(matrix.getColumns(0)[0], row0Columns[0]);
 EXPECT_EQ(matrix.getEntries(0)[0], 0);
 EXPECT_EQ(matrix.getColumns(0)[1], row0Columns[1]);
 EXPECT_EQ(matrix.getEntries(0)[1], 0);

 EXPECT_EQ(matrix.getColumns(1)[0], row1Columns[0]);
 EXPECT_EQ(matrix.getEntries(1)[0], 0);
 EXPECT_EQ(matrix.getColumns(1)[1], row1Columns[1]);
 EXPECT_EQ(matrix.getEntries(1)[1], 0);
}

[Source: examples/exampleSparsityPatternAndCRSMatrix.cpp]

7.3. LvArray::CRSMatrixView

The LvArray::SparsityPatternView and LvArray::CRSMatrixView are the view counterparts to LvArray::SparsityPattern and LvArray::CRSMatrix. They both have the same template arguments as their counterparts. The LvArray::SparsityPatternView behaves exactly like an LvArray::ArrayOfSetsView. From a LvArray::CRSMatrix< T, COL_TYPE, INDEX_TYPE, BUFFER_TYPE > there are four view types you can create

	toView() returns a LvArray::CRSMatrixView< T, COL_TYPE, INDEX_TYPE const, BUFFER_TYPE > which can modify the entries as well as insert and remove columns from the rows as long as the size of each row doesn’t exceed its capacity.

	toViewConstSizes() returns a LvArray::CRSMatrixView< T, COL_TYPE const, INDEX_TYPE const, BUFFER_TYPE > which can modify existing values but cannot add or remove columns from the rows.

	toViewConst() returns a LvArray::CRSMatrixView< T const, COL_TYPE const, INDEX_TYPE const, BUFFER_TYPE > which provides read only access to both the columns and values of the rows.

	toSparsityPatternView() returns a LvArray::SparsityPatternView< COL_TYPE const, INDEX_TYPE const, BUFFER_TYPE > which provides read only access to the columns of the rows.

TEST(CRSMatrix, views)
{
 // Create a 100x100 tri-diagonal sparsity pattern.
 LvArray::SparsityPattern< int, std::ptrdiff_t, LvArray::MallocBuffer > sparsity(100, 100, 3);

 // Since enough space has been preallocated in each row we can insert into the sparsity
 // pattern in parallel.
 LvArray::SparsityPatternView< int,
 std::ptrdiff_t const,
 LvArray::MallocBuffer > const sparsityView = sparsity.toView();

 RAJA::forall< RAJA::omp_parallel_for_exec >(
 RAJA::TypedRangeSegment< std::ptrdiff_t >(0, sparsityView.numRows()),
 [sparsityView] (std::ptrdiff_t const row)
 {
 int const columns[3] = { int(row - 1), int(row), int(row + 1) };
 int const begin = row == 0 ? 1 : 0;
 int const end = row == sparsityView.numRows() - 1 ? 2 : 3;
 sparsityView.insertNonZeros(row, columns + begin, columns + end);
 }
);

 // Create a matrix from the sparsity pattern
 LvArray::CRSMatrix< double, int, std::ptrdiff_t, LvArray::MallocBuffer > matrix;
 matrix.assimilate< RAJA::omp_parallel_for_exec >(std::move(sparsity));

 // Assemble into the matrix.
 LvArray::CRSMatrixView< double,
 int const,
 std::ptrdiff_t const,
 LvArray::MallocBuffer > const matrixView = matrix.toViewConstSizes();
 RAJA::forall< RAJA::omp_parallel_for_exec >(
 RAJA::TypedRangeSegment< std::ptrdiff_t >(0, matrixView.numRows()),
 [matrixView] (std::ptrdiff_t const row)
 {
 // Some silly assembly where each diagonal entry (r, r) has a contribution to the row above (r-1, r)
 // The current row (r, r-1), (r, r), (r, r+1) and the row below (r+1, r).
 int const columns[3] = { int(row - 1), int(row), int(row + 1) };
 double const contribution[3] = { double(row), double(row), double(row) };

 // Contribution to the row above
 if(row > 0)
 {
 matrixView.addToRow< RAJA::builtin_atomic >(row - 1, columns + 1, contribution, 1);
 }

 // Contribution to the current row
 int const begin = row == 0 ? 1 : 0;
 int const end = row == matrixView.numRows() - 1 ? 2 : 3;
 matrixView.addToRow< RAJA::builtin_atomic >(row, columns + begin, contribution, end - begin);

 // Contribution to the row below
 if(row < matrixView.numRows() - 1)
 {
 matrixView.addToRow< RAJA::builtin_atomic >(row + 1, columns + 1, contribution, 1);
 }
 }
);

 // Check every row except for the first and the last.
 for(std::ptrdiff_t row = 1; row < matrix.numRows() - 1; ++row)
 {
 EXPECT_EQ(matrix.numNonZeros(row), 3);

 LvArray::ArraySlice< int const, 1, 0, std::ptrdiff_t > const rowColumns = matrix.getColumns(row);
 LvArray::ArraySlice< double const, 1, 0, std::ptrdiff_t > const rowEntries = matrix.getEntries(row);

 for(std::ptrdiff_t i = 0; i < matrix.numNonZeros(row); ++i)
 {
 // The first first entry is the sum of the contributions of the row above and the current row.
 EXPECT_EQ(rowColumns[0], row - 1);
 EXPECT_EQ(rowEntries[0], row + row - 1);

 // The second entry is the from the current row alone.
 EXPECT_EQ(rowColumns[1], row);
 EXPECT_EQ(rowEntries[1], row);

 // The third entry is the sum of the contributions of the row below and the current row.
 EXPECT_EQ(rowColumns[2], row + 1);
 EXPECT_EQ(rowEntries[2], row + row + 1);
 }
 }

 // Check the first row.
 EXPECT_EQ(matrix.numNonZeros(0), 2);
 EXPECT_EQ(matrix.getColumns(0)[0], 0);
 EXPECT_EQ(matrix.getEntries(0)[0], 0);
 EXPECT_EQ(matrix.getColumns(0)[1], 1);
 EXPECT_EQ(matrix.getEntries(0)[1], 1);

 // Check the last row.
 EXPECT_EQ(matrix.numNonZeros(matrix.numRows() - 1), 2);
 EXPECT_EQ(matrix.getColumns(matrix.numRows() - 1)[0], matrix.numRows() - 2);
 EXPECT_EQ(matrix.getEntries(matrix.numRows() - 1)[0], matrix.numRows() - 1 + matrix.numRows() - 2);
 EXPECT_EQ(matrix.getColumns(matrix.numRows() - 1)[1], matrix.numRows() - 1);
 EXPECT_EQ(matrix.getEntries(matrix.numRows() - 1)[1], matrix.numRows() - 1);
}

[Source: examples/exampleSparsityPatternAndCRSMatrix.cpp]

7.4. Usage with LvArray::ChaiBuffer

The three types of LvArray::CRSMatrixView obtainable from an LvArray::CRSMatrixs all act differently when moved to a new memory space.

	LvArray::CRSMatrixsView< T, COL_TYPE, INDEX_TYPE const, LvArray::ChaiBuffer >, obtained by calling toView(). When it is moved to a new space the values, columns and sizes are all touched. The offsets are not touched.

	LvArray::CRSMatrixsView< T, COL_TYPE const, INDEX_TYPE const, LvArray::ChaiBuffer >, obtained by calling toViewConstSizes(). When it is moved to a new space the values are touched but the columns, sizes and offsets aren’t.

	LvArray::CRSMatrixsView< T const, COL_TYPE const, INDEX_TYPE const, LvArray::ChaiBuffer >, obtained by calling toViewConst(). None of the buffers are touched in the new space.

Calling the explicit move method with the touch parameter set to true on a view type has the behavior described above. However calling move(MemorySpace::host) on an LvArray::CRSMatrix or LvArray::SparsityPattern will also touch the offsets (if moving to the GPU the offsets aren’t touched). This is the only way to touch the offsets so if an LvArray::CRSMatrix was previously on the device then it must be explicitly moved and touched on the host before any modification to the offsets can safely take place.

7.5. Usage with LVARRAY_BOUNDS_CHECK

When LVARRAY_BOUNDS_CHECK is defined access all row and column access is checked. Methods which expect a sorted unique set of columns check that the columns are indeed sorted and unique. In addition if addToRow checks that all the given columns are present in the row.

7.6. Guidelines

As with all the LvArray containers it is important to pass around the most restrictive form. A function should only accept a LvArray::CRSMatrix if it needs to resize the matrix or might bust the capacity of a row. If a function only needs to be able to modify existing entries it should accept a LvArray::CRSMatrixView< T, COL_TYPE const, INDEX_TYPE const, BUFFER_TYPE >. If a function only needs to examine the sparsity pattern of the matrix it should accept a LvArray::SparsityPatternView< COL_TYPE const, INDEX_TYPE const, BUFFER_TYPE >.

Like the LvArray::ArrayOfArrays and LvArray::ArrayOfSets when constructing an LvArray::SparsityPattern or LvArray::CRSMatrix it is important to preallocate space for each row in order to achieve decent performance.

A common pattern with sparse matrices is that the sparsity pattern need only be assembled once but the matrix is used multiple times with different values. For example when using the finite element method on an unstructured mesh you can generate the sparsity pattern once at the beginning of the simulation and then each time step you repopulate the entries of the matrix. When this is the case it is usually best to do the sparsity generation with a LvArray::SparsityPattern and then assimilate that into a LvArray::CRSMatrix. Once you have a matrix with the proper sparsity pattern create a LvArray::CRSMatrixView< T, COL_TYPE const, INDEX_TYPE const, BUFFER_TYPE > via toViewConstSizes() and you can then assemble into the matrix in parallel with the addToRow methods. Finally before beginning the next iteration you can zero out the entries in the matrix by calling setValues.

7.7. Doxygen

	LvArray::SparsityPattern

	LvArray::SparsityPatternView

	LvArray::CRSMatrix

	LvArray::CRSMatrixView

12. Benchmarking (Coming soon)

Coming soon: documentation for the benchmarks.

2. Buffer Classes

The buffer classes are the backbone of every LvArray class. A buffer class is responsible for allocating, reallocating and de-allocating a chunk of memory as well as moving it between memory spaces. A buffer is not responsible for managing the lifetime of the objects in their allocation. In general buffer classes have shallow copy semantics and do not de-allocate their allocations upon destruction. Buffer classes implement the copy and move constructors as well as the copy and move assignment operators. They also have a default constructor that leaves them in an uninitialized state. In general it is only safe to assign to an uninitialized buffer although different buffer implementations may allow other operations. To construct an initialized buffer pass a dummy boolean argument, this value of the parameter is not important and it only exists to differentiate it from the default constructor. Once created an initialized buffer must be free’d, either directly or though one of its copies. There are currently three buffer implementations: LvArray::MallocBuffer, LvArray::ChaiBuffer and LvArray::StackBuffer.

2.1. LvArray::MallocBuffer

As you might have guessed LvArray::MallocBuffer uses malloc and free to handle its allocation. Copying a LvArray::MallocBuffer does not copy the allocation. The allocation of a LvArray::MallocBuffer lives exclusively on the host and as such it will abort the program if you try to move it to or touch it in any space other than MemorySpace::host.

TEST(MallocBuffer, copy)
{
 constexpr std::ptrdiff_t size = 55;
 LvArray::MallocBuffer< int > buffer(true);
 buffer.reallocate(0, LvArray::MemorySpace::host, size);

 for(int i = 0; i < size; ++i)
 {
 buffer[i] = i;
 }

 for(int i = 0; i < size; ++i)
 {
 EXPECT_EQ(buffer[i], i);
 }

 // MallocBuffer has shallow copy semantics.
 LvArray::MallocBuffer< int > copy = buffer;
 EXPECT_EQ(copy.data(), buffer.data());

 // Must be manually free'd.
 buffer.free();
}

TEST(MallocBuffer, nonPOD)
{
 constexpr std::ptrdiff_t size = 4;
 LvArray::MallocBuffer< std::string > buffer(true);
 buffer.reallocate(0, LvArray::MemorySpace::host, size);

 // Buffers don't initialize data so placement new must be used.
 for(int i = 0; i < size; ++i)
 {
 new (buffer.data() + i) std::string(std::to_string(i));
 }

 for(int i = 0; i < size; ++i)
 {
 EXPECT_EQ(buffer[i], std::to_string(i));
 }

 // Buffers don't destroy the objects in free.
 // The using statement is needed to explicitly call the destructor
 using std::string;
 for(int i = 0; i < size; ++i)
 {
 buffer[i].~string();
 }

 buffer.free();
}

[Source: examples/exampleBuffers.cpp]

2.2. LvArray::ChaiBuffer

LvArray::ChaiBuffer uses CHAI [https://github.com/LLNL/CHAI] to manage an allocation which can exist on both the host and device, it functions similarly to the chai::ManagedArray. Like the LvArray::MallocBuffer copying a LvArray::ChaiBuffer via the assignment operators or the move constructor do not copy the allocation. The unique feature of the LvArray::ChaBuffer is that when it is copy constructed if the CHAI execution space is set it will move its allocation to the appropriate space creating an allocation there if it did not already exist.

CUDA_TEST(ChaiBuffer, captureOnDevice)
{
 constexpr std::ptrdiff_t size = 55;
 LvArray::ChaiBuffer< int > buffer(true);
 buffer.reallocate(0, LvArray::MemorySpace::host, size);

 for(int i = 0; i < size; ++i)
 {
 buffer[i] = i;
 }

 // Capture buffer in a device kernel which creates an allocation on device
 // and copies the data there.
 RAJA::forall< RAJA::cuda_exec< 32 > >(
 RAJA::TypedRangeSegment< std::ptrdiff_t >(0, size),
 [buffer] __device__ (std::ptrdiff_t const i)
 {
 buffer[i] += i;
 });

 // Capture buffer in a host kernel moving the data back to the host allocation.
 RAJA::forall< RAJA::loop_exec >(
 RAJA::TypedRangeSegment< std::ptrdiff_t >(0, size),
 [buffer] (std::ptrdiff_t const i)
 {
 EXPECT_EQ(buffer[i], 2 * i);
 });

 buffer.free();
}

[Source: examples/exampleBuffers.cpp]

In order to prevent unnecessary memory motion if the type contained in the LvArray::ChaiBuffer is const then the data is not touched in any space it is moved to.

CUDA_TEST(ChaiBuffer, captureOnDeviceConst)
{
 constexpr std::ptrdiff_t size = 55;
 LvArray::ChaiBuffer< int > buffer(true);
 buffer.reallocate(0, LvArray::MemorySpace::host, size);

 for(int i = 0; i < size; ++i)
 {
 buffer[i] = i;
 }

 // Create a const buffer and capture it in a device kernel which
 // creates an allocation on device and copies the data there.
 LvArray::ChaiBuffer< int const > const constBuffer(buffer);
 RAJA::forall< RAJA::cuda_exec< 32 > >(
 RAJA::TypedRangeSegment< std::ptrdiff_t >(0, size),
 [constBuffer] __device__ (std::ptrdiff_t const i)
 {
 const_cast< int & >(constBuffer[i]) += i;
 });

 // Capture buffer in a host kernel moving the data back to the host allocation.
 // If constBuffer didn't contain "int const" then this check would fail because
 // the data would be copied back from device.
 RAJA::forall< RAJA::loop_exec >(
 RAJA::TypedRangeSegment< std::ptrdiff_t >(0, size),
 [buffer] (std::ptrdiff_t const i)
 {
 EXPECT_EQ(buffer[i], i);
 });

 buffer.free();
}

[Source: examples/exampleBuffers.cpp]

LvArray::ChaiBuffer supports explicit movement and touching as well via the methods move and registerTouch.

Whenever a LvArray::ChaiBuffer is moved between memory spaces it will print the size of the allocation, the type of the buffer and the name. Both the name and the type can be set with the setName method. If this behavior is not desired it can be disabled with chai::ArrayManager::getInstance()->disableCallbacks().

TEST(ChaiBuffer, setName)
{
 LvArray::ChaiBuffer< int > buffer(true);
 buffer.reallocate(0, LvArray::MemorySpace::host, 1024);

 // Move to the device.
 buffer.move(LvArray::MemorySpace::cuda, true);

 // Give buffer a name and move back to the host.
 buffer.setName("my_buffer");
 buffer.move(LvArray::MemorySpace::host, true);

 // Rename buffer and override the default type.
 buffer.setName< double >("my_buffer_with_a_nonsensical_type");
 buffer.move(LvArray::MemorySpace::cuda, true);
}

[Source: examples/exampleBuffers.cpp]

Output

Moved 4.0 KB to the DEVICE: LvArray::ChaiBuffer<int>
Moved 4.0 KB to the HOST : LvArray::ChaiBuffer<int> my_buffer
Moved 4.0 KB to the DEVICE: double my_buffer_with_a_nonsensical_type

2.3. LvArray::StackBuffer

The LvArray::StackBuffer is unique among the buffer classes because it wraps a c-array of objects whose size is fixed at compile time. It is so named because if you declare a LvArray::StackBuffer on the stack its allocation will also live on the stack. Unlike the other buffer classes by nature copying a LvArray::StackBuffer is a deep copy, furthermore a LvArray::StackBuffer can only contain trivially destructible types, so no putting a std::string in one. If you try to grow the allocation beyond the fixed size it will abort the program.

TEST(StackBuffer, example)
{
 constexpr std::ptrdiff_t size = 55;
 LvArray::StackBuffer< int, 55 > buffer(true);

 static_assert(buffer.capacity() == size, "Capacity is fixed at compile time.");

 for(std::ptrdiff_t i = 0; i < size; ++i)
 {
 buffer[i] = i;
 }

 for(std::ptrdiff_t i = 0; i < size; ++i)
 {
 EXPECT_EQ(buffer[i], i);
 }

 EXPECT_DEATH_IF_SUPPORTED(buffer.reallocate(size, LvArray::MemorySpace::host, 2 * size), "");

 // Not necessary with the StackBuffer but it's good practice.
 buffer.free();
}

[Source: examples/exampleBuffers.cpp]

2.4. Doxygen

	LvArray::MallocBuffer

	LvArray::ChaiBuffer

	LvArray::StackBuffer

1. Build Guide

LvArray uses a CMake based build system augmented with BLT [https://github.com/LLNL/blt]. If you’re not familiar with CMake, RAJA has a good introduction [https://raja.readthedocs.io/en/main/getting_started.html#getting-started-label]. LvArray has a dependency on RAJA and as such requires that the RAJA_DIR CMake variable defined and points to a RAJA installation.

1.1. CMake Options

In addition to the standard CMake and BLT options LvArray supports the following options.

	
	Adding additional targets

	The following variables add additional build targets but do not alter the usage or functionality of LvArray.

	
	ENABLE_TESTSdefault ON

	Build the unit tests which can be run with make test. The unit tests take a long time to build with the IMB XL and Intel compilers.

	
	ENABLE_EXAMPLESdefault ON

	Build the examples, ENABLE_TESTS must also be ON.

	
	ENABLE_BENCHMARKSdefault ON

	Build the benchmarks, ENABLE_TESTS must also be ON.

	
	DISABLE_UNIT_TESTSdefault OFF

	Use with ENABLE_TESTS=ON to disable building the unit tests but still allow the examples and benchmarks.

	
	ENABLE_DOCSdefault ON

	Build the documentation.

	
	Third party libraries

	LvArray has a hard dependency on RAJA along with multiple optional dependencies. Of the following variables only RAJA_DIR is mandatory.

	
	RAJA_DIR

	The path to the RAJA installation.

	
	ENABLE_UMPIREdefault OFF

	If Umpire is enabled. Currently no part of LvArray uses Umpire but it is required when using CHAI.

	
	UMPIRE_DIR

	The path to the Umpire installation, must be specified when Umpire is enabled.

	
	ENABLE_CHAIdefault OFF

	If CHAI is enabled, CHAI also requires Umpire. Enabling CHAI allows the usage of the LvArray::ChaiBuffer.

	
	CHAI_DIR

	The path to the CHAI installation, must be specified when CHAI is enabled.

	
	ENABLE_CALIPERdefault OFF

	If caliper is enabled. Currently caliper is only used to time the benchmarks.

	
	CALIPER_DIR

	The path to the caliper installation, must be specified when caliper is enabled.

	
	ENABLE_ADDR2LINEdefault ON

	If addr2line is enabled. This is used in LvArray::system::stackTrace to attempt to provide file and line locations for the stack frames.

	
	ADDR2LINE_EXECdefault /usr/bin/addr2line

	The path to the addr2line executable.

	
	Debug options

	The following options don’t change the usage of LvArray but they are intended to make debugging easier.

	
	LVARRAY_BOUNDS_CHECKdefault ON iff in a CMake Debug build.

	Enables bounds checks on container access along with checks for other invalid operations.

	
	ENABLE_TOTALVIEW_OUTPUTdefault OFF

	Makes it easier to inspect the LvArray::Array in TotalView. This functionality is highly dependent on the version of TotalView used.

1.2. Using LvArray Your Application

Once LvArray has been installed if your application uses CMake importing LvArray is as simple as defining LVARRAY_DIR as the path to LvArray install directory and then adding find_package(LVARRAY). This will export a lvarray target that can then be used by target_link_libraries and the like.

1.3. Host Configs

Host config files are a convenient way to group CMake options for a specific configuration together. There are a set of example host configs in the host-configs directory. Once you’ve created a host config file you can use scripts/config-build.py to create the build directory and run CMake for you. An example usage would be python ./scripts/config-build.py --hc host-configs/LLNL/quartz-clang@10.0.0.cmake.

> python scripts/config-build.py --help
usage: config-build.py [-h] [-bp BUILDPATH] [-ip INSTALLPATH]
 [-bt {Release,Debug,RelWithDebInfo,MinSizeRel}] [-e]
 [-x] [-ecc] -hc HOSTCONFIG

Configure cmake build. Unrecognized arguments are passed on to CMake.

optional arguments:
 -h, --help show this help message and exit
 -bp BUILDPATH, --buildpath BUILDPATH
 specify path for build directory. If not specified,
 will create in current directory.
 -ip INSTALLPATH, --installpath INSTALLPATH
 specify path for installation directory. If not
 specified, will create in current directory.
 -bt {Release,Debug,RelWithDebInfo,MinSizeRel}, --buildtype {Release,Debug,RelWithDebInfo,MinSizeRel}
 build type.
 -e, --eclipse create an eclipse project file.
 -x, --xcode create an xcode project.
 -ecc, --exportcompilercommands
 generate a compilation database. Can be used by the
 clang tools such as clang-modernize. Will create a
 file called 'compile_commands.json' in build
 directory.
 -hc HOSTCONFIG, --hostconfig HOSTCONFIG
 select a specific host-config file to initalize
 CMake's cache

1.4. Submodule usage

LvArray can also be used as a submodule. In this case the configuration is largely the same except that LvArray expects the parent project to have imported the third party libraries. For example if ENABLE_UMPIRE is ON then LvArray will depend on umpire but it will make no attempt to find these library (UMPIRE_DIR is unused).

1.5. Spack and Uberenv Builds

LvArray has an associated Spack [https://github.com/spack/spack] package. For those unfamiliar with Spack the most important thing to understand is the spec syntax [https://spack.readthedocs.io/en/latest/basic_usage.html#specs-dependencies]. For those interested the LvArray package implementation is here [https://github.com/corbett5/spack/blob/feature/corbett/lvarray/var/spack/repos/builtin/packages/lvarray/package.py] the important part of which is reproduced below.

class Lvarray(CMakePackage, CudaPackage):
 """LvArray portable HPC containers."""

 homepage = "https://github.com/GEOSX/lvarray"
 git = "https://github.com/GEOSX/LvArray.git"

 version('develop', branch='develop', submodules='True')
 version('tribol', branch='temp/feature/corbett/tribol', submodules='True')

 variant('shared', default=True, description='Build Shared Libs')
 variant('umpire', default=False, description='Build Umpire support')
 variant('chai', default=False, description='Build Chai support')
 variant('caliper', default=False, description='Build Caliper support')
 variant('tests', default=True, description='Build tests')
 variant('benchmarks', default=False, description='Build benchmarks')
 variant('examples', default=False, description='Build examples')
 variant('docs', default=False, description='Build docs')
 variant('addr2line', default=True,
 description='Build support for addr2line.')

 depends_on('cmake@3.8:', type='build')
 depends_on('cmake@3.9:', when='+cuda', type='build')

 depends_on('raja')
 depends_on('raja+cuda', when='+cuda')

 depends_on('umpire', when='+umpire')
 depends_on('umpire+cuda', when='+umpire+cuda')

 depends_on('chai+raja', when='+chai')
 depends_on('chai+raja+cuda', when='+chai+cuda')

 depends_on('caliper', when='+caliper')

 depends_on('doxygen@1.8.13:', when='+docs', type='build')
 depends_on('py-sphinx@1.6.3:', when='+docs', type='build')

LvArray also has an uberenv based build which simplifies building LvArray’s dependencies along with optionally LvArray using spack.

> ./scripts/uberenv/uberenv.py --help
Usage: uberenv.py [options]

Options:
 -h, --help show this help message and exit
 --install Install `package_name`, not just its dependencies.
 --prefix=PREFIX destination directory
 --spec=SPEC spack compiler spec
 --mirror=MIRROR spack mirror directory
 --create-mirror Create spack mirror
 --upstream=UPSTREAM add an external spack instance as upstream
 --spack-config-dir=SPACK_CONFIG_DIR
 dir with spack settings files (compilers.yaml,
 packages.yaml, etc)
 --package-name=PACKAGE_NAME
 override the default package name
 --package-final-phase=PACKAGE_FINAL_PHASE
 override the default phase after which spack should
 stop
 --package-source-dir=PACKAGE_SOURCE_DIR
 override the default source dir spack should use
 --project-json=PROJECT_JSON
 uberenv project settings json file
 -k Ignore SSL Errors
 --pull Pull if spack repo already exists
 --clean Force uninstall of packages specified in project.json
 --run_tests Invoke build tests during spack install
 --macos-sdk-env-setup
 Set several env vars to select OSX SDK settings.This
 was necessary for older versions of macOS but can
 cause issues with macOS versions >= 10.13. so it is
 disabled by default.

Two simple examples are provided below.

quartz2498 > ./scripts/uberenv/uberenv.py --install --spec="@develop %clang@10.0.1"

This will build RAJA (LvArray’s only hard dependency) and LvArray and install them in ./uberenv_libs/linux-rhel7-ppc64le-clang@10.0.1. By default libraries are built in the RelWithDebInfo CMake configuration.

quartz2498 > ./scripts/uberenv/uberenv.py --spec="@develop %gcc@8.3.1 ^raja@0.12.1 build_type=Release"

This will install RAJA in the same location but it will be built in the Release configuration and instead of building and installing LvArray a host-config will be generated and placed in the current directory. This can be useful for developing or debugging.

Currently uberenv only works on the LLNL toss_3_x86_64_ib and blueos_3_ppc64le_ib_p9 systems. Further more only certain compilers are supported. On the TOSS systems clang@10.0.1, gcc@8.3.1 and intel@19.1.2 are supported. On BlueOS clang-upstream-2019.08.15 (clang@9.0.0), clang-ibm-10.0.1-gcc-8.3.1 (clang@10.0.1), gcc@8.3.1 and xl-2020.09.17-cuda-11.0.2 (xl@16.1.1) are supported. Adding support for more compilers is as simple as adding them to the appropriate compilers.yaml file.

Adding support for a new system is easy too, you just need to create a directory with a compilers.yaml which specifies the available compilers and a packages.yaml for system packages and then pass this directory to uberenv with the --spack-config-dir option.

For reference two more complicated specs are shown below

lassen709 > ./scripts/uberenv/uberenv.py --install --run_tests --spec="@develop+umpire+chai+caliper+cuda %clang@10.0.1 cuda_arch=70 ^cuda@11.0.2 ^raja@0.12.1~examples~exercises cuda_arch=70 ^umpire@4.0.1~examples cuda_arch=70 ^chai@master~benchmarks~examples cuda_arch=70 ^caliper@2.4~adiak~mpi~dyninst~callpath~papi~libpfm~gotcha~sampler~sosflow"

This will use clang@10.0.1 and cuda@11.0.2 to build and install RAJA v0.12.1 without examples or exercises, Umpire v4.0.1 without examples, the master branch of CHAI without benchmarks or examples, and caliper v2.4 without a bunch of options. Finally it will build and install LvArray after running the unit tests and verifying that they pass. Note that each package that depends on cuda gets the cuda_arch=70 variable.

quartz2498 > ./scripts/uberenv/uberenv.py --spec="@tribol+umpire %intel@19.1.2 ^raja@0.12.1 build_type=Release ^umpire@4.0.1 build_type=Release"

This will use intel@19.1.2 to build and install RAJA V0.12.1 in release and Umpire v4.0.1 in release. Finally it will generate a host config that can be used to build LvArray.

10. Development Aids (Coming soon)

Coming soon: documentation for

	LvArray::arrayManipulation

	LvArray::sortedArrayManipulation

	LvArray::bufferManipulation

	Creating a new buffer type

10.1. Debugging helpers

10.1.1. TotalView

10.1.2. GDB

LvArray comes with a collection of custom GDB pretty printers [https://sourceware.org/gdb/onlinedocs/gdb/Pretty-Printing.html]
for buffer and array classes that simplify inspection of data in a debug session by adding extra member(s) to the object display
that “views” the data in a convenient format recognizable by GDB and IDEs. This eliminates the need for users of these classes
to understand the particular class structure and spend time obtaining and casting the actual data pointer to the right type.

Note

In order to allow GDB to load the pretty printer script (scripts/gdb-printers.py), the following lines must be added to .gdbinit
(with the proper path substituted):

add-auto-load-safe-path /path/to/LvArray/
directory /path/to/LvArray/

The first line allows GDB to load python scripts located under LvArray source tree.
The second line adds LvArray source tree to the source path used by GDB to lookup file names, which allows it to find the
pretty printer script by relative path (which is how it is referenced from the compiled binary).
The .gdbinit file may be located under the user’s home directory or current working directory where GDB is invoked.

The following pretty printers are available:

	For buffer types (StackBuffer, MallocBuffer and ChaiBuffer) the extra member gdb_view is a C-array of the appropriate type
and size equal to the buffer size.

	For multidimensional arrays and slices (ArraySlice, ArrayView and Array) the extra member gdb_view is a multidimensional
C-array with the sizes equal to current runtime size of the array or slice. This only works correctly for arrays with default
(unpermuted) layout.

	For ArrayOfArrays (and consequently all of its descendants) each contained sub-array is added as a separate child that is
again a C-array of size equal to that of the sub-array.

Example below demonstrates the difference between pretty printer output and raw output:

(gdb) p dofNumber
$1 = const geosx::arrayView1d & of size [10] = {gdb_view = {0, 5, 10, 15, 20, 25, 30, 35, 40, 45}}
(gdb) p /r dofNumber
$2 = (const geosx::arrayView1d &) @0x7ffcda2a8ab0: {static NDIM = 1, static USD = 0, m_dims = {data = {10}}, m_strides = {data = {1}}, m_dataBuffer = {static hasShallowCopy = <optimized out>, m_pointer = 0x55bec1de4860, m_capacity = 10, m_pointerRecord = 0x55bec1dfa5c0}, m_singleParameterResizeIndex = 0}

This is how the variable is viewed in a debugging session in CLion IDE:

dofNumber = {const geosx::arrayView1d &}
 gdb_view = {const long long [10]}
 [0] = {const long long} 0
 [1] = {const long long} 5
 [2] = {const long long} 10
 [3] = {const long long} 15
 [4] = {const long long} 20
 [5] = {const long long} 25
 [6] = {const long long} 30
 [7] = {const long long} 35
 [8] = {const long long} 40
 [9] = {const long long} 45
 NDIM = {const int} 1
 USD = {const int} 0
 m_dims = {LvArray::typeManipulation::CArray<long, 1>}
 m_strides = {LvArray::typeManipulation::CArray<long, 1>}
 m_dataBuffer = {LvArray::ChaiBuffer<long long const>}
 m_singleParameterResizeIndex = {int} 0

Warning

GDB printers are for host-only data. Attempting to display an array or buffer whose active pointer is a device pointer may have
a range of outcomes, from incorrect data being displayed, to debugger crashes. The printer script is yet to be tested with cuda-gdb.

9. Extra Goodies (Coming soon)

Comming soon: documentation for the following

	SFINAE template helpers

	string utilities

	stack trace

	macros

	sorting

	printers

	portable basic math functions

LvArray

LvArray is a collection of container classes designed for performance portability in that they are usable on the host and device and provide performance similar to direct pointer manipulation. It consists of six main template classes:

	LvArray::Array: A multidimensional array.

	LvArray::SortedArray: A sorted unique collection of values stored in a contiguous allocation.

	LvArray::ArrayOfArrays: Provides functionality similar to std::vector< std::vector< T > > except all the values are stored in one allocation.

	LvArray::ArrayOfSets: Provides functionality similar to std::vector< std::set< T > > except all the values are stored in one allocation.

	LvArray::SparsityPattern: A compressed row storage sparsity pattern, or equivalently a boolean CRS matrix.

	LvArray::CRSMatrix: A compressed row storage matrix.

These template classes all take three common template arguments:

	The type of the value stored in the container.

	The integral type used for indexing calculations, the recommended type is std::ptrdiff_t.

	The buffer type to use for allocation and de-allocation.

Like the standard template library containers the destructors destroy all the values in the container and release any acquired resources. Similarly the copy constructors and copy assignment operators perform a deep copy of the source container. In general the move constructors and move assignment operators perform a shallow copy and invalidate the source container.

The LvArray containers were designed specifically to integrate with RAJA [https://github.com/LLNL/RAJA] although they would also work with other kernel launching abstractions or native device code. In RAJA, variables are passed to device kernels by lambda capture. When using CUDA a __device__ or __host__ __device__ lambda can only capture variables by value, which means the lambda’s closure object contains a copy of each captured variable created by copy construction. As mentioned above the copy constructor for the LvArray containers always perform a deep copy. So when a container gets captured by value in a lambda any modifications to it or the values it contains won’t be reflected in the source container. Even if this works for your use case it is not optimal because it requires a new allocation each time the container gets captured and each time the closure object gets copied. To remedy this each LvArray container has an associated view class. Unlike the containers the views do not own their resources and in general have shallow copy semantics. This makes them suitable to be captured by value in a lambda. Furthermore almost every view method is const which means the lambda does not need to be made mutable.

Note

Not all buffer types support shallow copying. When using a container with such a buffer the move constructor and move assignment operator will create a deep copy of the source. Similarly the view copy constructor, copy assignment operator, move constructor and move assignment operator will all be deep copies.

	1. Build Guide

	2. Buffer Classes

	3. LvArray::Array

	4. LvArray::SortedArray

	5. LvArray::ArrayOfArrays

	6. LvArray::ArrayOfSets

	7. LvArray::SparsityPattern and LvArray::CRSMatrix

	8. LvArray::tensorOps

	9. Extra Goodies (Coming soon)

	10. Development Aids (Coming soon)

	11. Testing

	12. Benchmarking (Coming soon)

	13. pylvarray — LvArray in Python

	14. Indices and tables

Doxygen

Doxygen

8. LvArray::tensorOps

LvArray::tensorOps is a collection of free template functions which perform common linear algebra operations on compile time sized matrices and vectors. All of the functions work on device.

8.1. Object Representation

The LvArray::tensorOps methods currently operate on four different types of object; scalars, vectors, matrices, and symmetric matrices.

Vectors are represented by either a one dimensional c-array or a one dimensional LvArray::Array object. Examples of acceptable vector types are

	double[4]

	int[55]

	LvArray::Array< float, 1, camp::idx_seq< 0 >, std::ptrdiff_t, LvArray::MallocBuffer >

	LvArray::ArrayView< long, 1, 0, std::ptrdiff_t, LvArray::MallocBuffer >

	LvArray::ArraySlice< double, 1, 0, std::ptrdiff_t >

	LvArray::ArraySlice< double, 1, -1, std::ptrdiff_t >

Matrices are represented by either a two dimensional c-array or a two dimensional LvArray::Array object. Examples of acceptable matrix types

	double[3][3]

	int[5][2]

	LvArray::Array< float, 2, camp::idx_seq< 0, 1 >, std::ptrdiff_t, LvArray::MallocBuffer >

	LvArray::ArrayView< long, 2, 0, std::ptrdiff_t, LvArray::MallocBuffer >:

	LvArray::ArraySlice< double, 2, 1, std::ptrdiff_t >

	LvArray::ArraySlice< double, 2, 0, std::ptrdiff_t >

	LvArray::ArraySlice< double, 2, -1, std::ptrdiff_t >

Symmetric matrices are represented in Voigt notation [https://en.wikipedia.org/wiki/Voigt_notation] as a vector. This means that a [image: 2 \times 2] symmetric matrix is represented as vector of length three as [image: [a_{00}, a_{11}, a_{01}]] and that a [image: 3 \times 3] symmetric matrix is represented as vector of length six as [image: [a_{00}, a_{11}, a_{22}, a_{12}, a_{02}, a_{01}]]. One consequence of this is that you can use the vector methods to for example add one symmetric matrix to another.

8.2. Common operations

	Variables

	[image: \alpha]: A scalar.

	[image: x]: A vector in [image: \mathbb{R}^m \times \mathbb{R}^1].

	[image: y]: A vector in [image: \mathbb{R}^m \times \mathbb{R}^1].

	[image: z]: A vector in [image: \mathbb{R}^m \times \mathbb{R}^1].

	[image: \mathbf{A}]: A matrix in [image: \mathbb{R}^m \times \mathbb{R}^n].

	[image: \mathbf{B}]: A matrix in [image: \mathbb{R}^m \times \mathbb{R}^n].

	Operation

	Function

	[image: x \leftarrow y]

	tensorOps::copy< m >(x, y)

	[image: \mathbf{A} \leftarrow \mathbf{B}]

	tensorOps::copy< m, n >(A, B)

	[image: x \leftarrow \alpha x]

	tensorOps::scale< m >(x, alpha)

	[image: \mathbf{A} \leftarrow \alpha \mathbf{A}]

	tensorOps::scale< m, n >(A, alpha)

	[image: x \leftarrow \alpha y]

	tensorOps::scaledCopy< m >(x, y, alpha)

	[image: \mathbf{A} \leftarrow \alpha \mathbf{B}]

	tensorOps::scaledCopy< m, n >(A, B, alpha)

	[image: x \leftarrow x + y]

	tensorOps::add< m >(x, y)

	[image: \mathbf{A} \leftarrow \mathbf{A} + \mathbf{B}]

	tensorOps::add< m, n >(A, B, alpha)

	[image: x \leftarrow x - y]

	tensorOps::subtract< m >(x, y)

	[image: x \leftarrow x + \alpha y]

	tensorOps::scaledAdd< m >(x, y, alpha)

	[image: x \leftarrow y \circ z]

	tensorOps::hadamardProduct< m >(x, y, z)

There is also a function fill that will set all the entries of the object to a specific value. For a vector it is called as tensorOps::fill< n >(x) and for a matrix as tensorOps::fill< m, n >(A).

8.3. Vector operations

	Variables

	[image: \alpha]: A scalar.

	[image: x]: A vector in [image: \mathbb{R}^m \times \mathbb{R}^1].

	[image: y]: A vector in [image: \mathbb{R}^m \times \mathbb{R}^1].

	[image: z]: A vector in [image: \mathbb{R}^m \times \mathbb{R}^1].

	Operation

	Function

	[image: |x|_\infty]

	tensorOps::maxAbsoluteEntry< m >(x)

	[image: |x|_2^2]

	tensorOps::l2NormSquared< m >(x)

	[image: |x|_2]

	tensorOps::l2Norm< m >(x)

	[image: x \leftarrow \hat{x}]

	tensorOps::normalize< m >(x)

	[image: x^T y]

	tensorOps::AiBi(x, y)

If [image: x], [image: y] and [image: z] are all in [image: \mathbb{R}^3 \times \mathbb{R}^1] then you can perform the operation [image: x \leftarrow y \times z] as tensorOps::crossProduct(x, y, z).

8.4. Matrix vector operations

	Variables

	[image: x]: A vector in [image: \mathbb{R}^m \times \mathbb{R}^1].

	[image: y]: A vector in [image: \mathbb{R}^n \times \mathbb{R}^1].

	[image: \mathbf{A}]: A matrix in [image: \mathbb{R}^m \times \mathbb{R}^n].

	Operation

	Function

	[image: \mathbf{A} \leftarrow x y^T]

	tensorOps::Rij_eq_AiBj< m, n >(A, x, y)

	[image: \mathbf{A} \leftarrow \mathbf{A} + x y^T]

	tensorOps::Rij_add_AiBj< m, n >(A, x, y)

	[image: x \leftarrow \mathbf{A} y]

	tensorOps::Ri_eq_AijBj< m, n >(x, A, y)

	[image: x \leftarrow x + \mathbf{A} y]

	tensorOps::Ri_add_AijBj< m, n >(x, A, y)

	[image: y \leftarrow \mathbf{A}^T x]

	tensorOps::Ri_eq_AjiBj< n, m >(y, A, x)

	[image: y \leftarrow y + \mathbf{A}^T x]

	tensorOps::Ri_add_AjiBj< n, m >(y, A, x)

8.5. Matrix operations

	Variables

	[image: \mathbf{A}]: A matrix in [image: \mathbb{R}^m \times \mathbb{R}^n].

	[image: \mathbf{B}]: A matrix in [image: \mathbb{R}^m \times \mathbb{R}^p].

	[image: \mathbf{C}]: A matrix in [image: \mathbb{R}^p \times \mathbb{R}^n].

	[image: \mathbf{D}]: A matrix in [image: \mathbb{R}^n \times \mathbb{R}^m].

	[image: \mathbf{E}]: A matrix in [image: \mathbb{R}^m \times \mathbb{R}^m].

	Operation Function

	

	[image: \mathbf{A} \leftarrow \mathbf{D}^T]

	tensorOps::transpose< m, n >(A, D)

	[image: \mathbf{A} \leftarrow \mathbf{B} \mathbf{C}]

	tensorOps::Rij_eq_AikBkj< m, n, p >(A, B, C)

	[image: \mathbf{A} \leftarrow \mathbf{A} + \mathbf{B} \mathbf{C}]

	tensorOps::Rij_add_AikBkj< m, n, p >(A, B, C)

	[image: \mathbf{B} \leftarrow \mathbf{A} \mathbf{C}^T]

	tensorOps::Rij_eq_AikBjk< m, p, n >(B, A, C)

	[image: \mathbf{B} \leftarrow \mathbf{B} + \mathbf{A} \mathbf{C}^T]

	tensorOps::Rij_add_AikBjk< m, p, n >(B, A, C)

	[image: \mathbf{E} \leftarrow \mathbf{E} + \mathbf{A} \mathbf{A}^T]

	tensorOps::Rij_add_AikAjk< m, n >(E, A)

	[image: \mathbf{C} \leftarrow \mathbf{B}^T \mathbf{A}]

	tensorOps::Rij_eq_AkiBkj< p, n, m >(C, B, A)

	[image: \mathbf{C} \leftarrow \mathbf{C} + \mathbf{B}^T \mathbf{A}]

	tensorOps::Rij_add_AkiBkj< p, n, m >(C, B, A)

8.6. Square matrix operations

	Variables

	[image: \alpha]: A scalar.

	[image: \mathbf{A}]: A matrix in [image: \mathbb{R}^m \times \mathbb{R}^m].

	[image: \mathbf{B}]: A matrix in [image: \mathbb{R}^m \times \mathbb{R}^m].

	Operation

	Function

	[image: \mathbf{A} \leftarrow \mathbf{A}^T]

	tensorOps::transpose< m >(A)

	[image: \mathbf{A} \leftarrow \mathbf{A} + \alpha \mathbf{I}]

	tensorOps::tensorOps::addIdentity< m >(A, alpha)

	[image: tr(\mathbf{A})]

	tensorOps::trace< m >(A)

	[image: |\mathbf{A}|]

	tensorOps::determinant< m >(A)

	[image: \mathbf{A} \leftarrow \mathbf{B}^-1]

	tensorOps::invert< m >(A, B)

	[image: \mathbf{A} \leftarrow \mathbf{A}^-1]

	tensorOps::invert< m >(A)

Note

Apart from tensorOps::determinant and tensorOps::invert are only implemented for matrices of size [image: 2 \times 2] and [image: 3 \times 3].

8.7. Symmetric matrix operations

	Variables

	[image: \alpha]: A scalar.

	[image: x]: A vector in [image: \mathbb{R}^m \times \mathbb{R}^1].

	[image: y]: A vector in [image: \mathbb{R}^m \times \mathbb{R}^1].

	[image: \mathbf{A}]: A matrix in [image: \mathbb{R}^m \times \mathbb{R}^m].

	[image: \mathbf{B}]: A matrix in [image: \mathbb{R}^m \times \mathbb{R}^m].

	[image: \mathbf{S}]: A symmetric matrix in [image: \mathbb{R}^m \times \mathbb{R}^m].

	[image: \mathbf{Q}]: A symmetric matrix in [image: \mathbb{R}^m \times \mathbb{R}^m].

	Operation

	Function

	[image: \mathbf{S} \leftarrow \mathbf{S} + \alpha \mathbf{I}]

	tensorOps::symAddIdentity< m >(S, alpha)

	[image: tr(\mathbf{S})]

	tensorOps::symTrace< m >(S)

	[image: x \leftarrow \mathbf{S} y]

	tensorOps::Ri_eq_symAijBj< m >(x, S ,y)

	[image: x \leftarrow x + \mathbf{S} y]

	tensorOps::Ri_add_symAijBj< m >(x, S ,y)

	[image: \mathbf{A} \leftarrow \mathbf{S} \mathbf{B}^T]

	tensorOps::Rij_eq_symAikBjk< m >(A, S, B)

	[image: \mathbf{S} \leftarrow \mathbf{A} \mathbf{Q} \mathbf{A}^T]

	tensorOps::Rij_eq_AikSymBklAjl< m >(S, A, Q)

	[image: |\mathbf{S}|]

	tensorOps::symDeterminant< m >(S)

	[image: \mathbf{S} \leftarrow \mathbf{Q}^-1]

	tensorOps::symInvert< m >(S, Q)

	[image: \mathbf{S} \leftarrow \mathbf{S}^-1]

	tensorOps::symInvert< m >(S)

	[image: x \leftarrow \mathbf{S} \mathbf{A}^T = diag(x) \mathbf{A}^T]

	tensorOps::symEigenvalues< M >(x, S)

	[image: x, \mathbf{A} \leftarrow \mathbf{S} \mathbf{A}^T = diag(x) \mathbf{A}^T]

	tensorOps::symEigenvectors< M >(x, S)

There are also two function tensorOps::denseToSymmetric and tensorOps::symmetricToDense which convert between dense and symmetric matrix representation.

Note

Apart from tensorOps::symAddIdentity and tensorOps::symTrace the symmetric matrix operations are only implemented for matrices of size [image: 2 \times 2] and [image: 3 \times 3].

8.8. Examples

TEST(tensorOps, AiBi)
{
 double const x[3] = { 0, 1, 2 };
 double const y[3] = { 1, 2, 3 };

 // Works with c-arrays
 EXPECT_EQ(LvArray::tensorOps::AiBi< 3 >(x, y), 8);

 LvArray::Array< double,
 1,
 camp::idx_seq< 0 >,
 std::ptrdiff_t,
 LvArray::MallocBuffer > xArray(3);

 xArray(0) = 0;
 xArray(1) = 1;
 xArray(2) = 2;

 // Works with LvArray::Array.
 EXPECT_EQ(LvArray::tensorOps::AiBi< 3 >(xArray, y), 8);

 // Works with LvArray::ArrayView.
 EXPECT_EQ(LvArray::tensorOps::AiBi< 3 >(xArray.toView(), y), 8);
 EXPECT_EQ(LvArray::tensorOps::AiBi< 3 >(xArray.toViewConst(), y), 8);

 // Create a 2D array with fortran layout.
 LvArray::Array< double,
 2,
 camp::idx_seq< 1, 0 >,
 std::ptrdiff_t,
 LvArray::MallocBuffer > yArray(1, 3);

 yArray(0, 0) = 1;
 yArray(0, 1) = 2;
 yArray(0, 2) = 3;

 // Works with non contiguous slices.
 EXPECT_EQ(LvArray::tensorOps::AiBi< 3 >(x, yArray[0]), 8);
 EXPECT_EQ(LvArray::tensorOps::AiBi< 3 >(xArray, yArray[0]), 8);
}

[Source: examples/exampleTensorOps.cpp]

You can mix and match the data types of the objects and also call the tensorOps methods on device.

CUDA_TEST(tensorOps, device)
{
 // Create an array of 5 3x3 symmetric matrices.
 LvArray::Array< int,
 2,
 camp::idx_seq< 1, 0 >,
 std::ptrdiff_t,
 LvArray::ChaiBuffer > symmetricMatrices(5, 6);

 int offset = 0;
 for(int & value : symmetricMatrices)
 {
 value = offset++;
 }

 LvArray::ArrayView< int const,
 2,
 0,
 std::ptrdiff_t,
 LvArray::ChaiBuffer > symmetricMatricesView = symmetricMatrices.toViewConst();

 // The tensorOps methods work on device.
 RAJA::forall< RAJA::cuda_exec< 32 > >(
 RAJA::TypedRangeSegment< std::ptrdiff_t >(0, symmetricMatricesView.size(0)),
 [symmetricMatricesView] __device__ (std::ptrdiff_t const i)
 {
 double result[3];
 float x[3] = { 1.3f, 2.2f, 5.3f };

 // You can mix value types.
 LvArray::tensorOps::Ri_eq_symAijBj< 3 >(result, symmetricMatricesView[i], x);

 LVARRAY_ERROR_IF_NE(result[0], x[0] * symmetricMatricesView(i, 0) +
 x[1] * symmetricMatricesView(i, 5) +
 x[2] * symmetricMatricesView(i, 4));
 }
);
}

[Source: examples/exampleTensorOps.cpp]

8.9. Bounds checking

Whatever the argument type the number of dimensions is checked at compile time. For example if you pass a double[3][3] or a three dimensional LvArray::ArraySlice to LvArray::tensorOps::crossProduct you will get a compilation error since that function is only implemented for vectors. When passing a c-array as an argument the size of the array is checked at compile time. For example if you pass int[2][3] to LvArray::tensorOps::addIdentity you will get a compilation error because that function only operates on square matrices. However when passing an LvArray::Array* object the size is only checked at runtime if LVARRAY_BOUNDS_CHECK is defined.

TEST(tensorOps, boundsCheck)
{
 double x[3] = { 0, 1, 2 };
 LvArray::tensorOps::normalize< 3 >(x);

 // This would fail to compile since x is not length 4.
 // LvArray::tensorOps::normalize< 4 >(x);

 LvArray::Array< double,
 1,
 camp::idx_seq< 0 >,
 std::ptrdiff_t,
 LvArray::MallocBuffer > xArray(8);

 xArray(0) = 10;

#if defined(LVARRAY_BOUNDS_CHECK)
 // This will fail at runtime.
 EXPECT_DEATH_IF_SUPPORTED(LvArray::tensorOps::normalize< 3 >(xArray), "");
#endif

 int matrix[2][2] = { { 1, 0 }, { 0, 1 } };
 LvArray::tensorOps::normalize< 2 >(matrix[0]);

 // This would fail to compile since normalize expects a vector
 // LvArray::tensorOps::normalize< 4 >(matrix);

 LvArray::Array< double,
 2,
 camp::idx_seq< 0, 1 >,
 std::ptrdiff_t,
 LvArray::MallocBuffer > matrixArray(2, 2);

 matrixArray(0, 0) = 1;
 matrixArray(0, 1) = 1;

 LvArray::tensorOps::normalize< 2 >(matrixArray[0]);

 // This will also fail to compile
 // LvArray::tensorOps::normalize< 2 >(matrixArray);
}

[Source: examples/exampleTensorOps.cpp]

8.10. Doxygen

	LvArray::tensorOps

11. Testing

Testing is a crucial component of writing quality software and the nature LvArray lends itself nicely to unit tests.

11.1. Building and Running the Tests

Tests are built by default, to disable the tests set the CMake variable ENABLE_TESTS to OFF. The tests are output in the tests folder of the build directory.

To run all the tests run make test in the build directory. To run a specific set of tests that match the regular expression REGEX run ctest -V -R REGEX, to run just testCRSMatrix run ./tests/testCRSMatrix. LvArray uses Google Test [https://github.com/google/googletest/tree/306f3754a71d6d1ac644681d3544d06744914228] for the testing framework and each test accepts a number of command line arguments.

 > ./tests/testCRSMatrix --help
 This program contains tests written using Google Test. You can use the
 following command line flags to control its behavior:

 Test Selection:
 --gtest_list_tests
 List the names of all tests instead of running them. The name of
 TEST(Foo, Bar) is "Foo.Bar".
 --gtest_filter=POSTIVE_PATTERNS[-NEGATIVE_PATTERNS]
 Run only the tests whose name matches one of the positive patterns but
 none of the negative patterns. '?' matches any single character; '*'
 matches any substring; ':' separates two patterns.
 --gtest_also_run_disabled_tests
 Run all disabled tests too.

 Test Execution:
 --gtest_repeat=[COUNT]
 Run the tests repeatedly; use a negative count to repeat forever.
 --gtest_shuffle
 Randomize tests' orders on every iteration.
 --gtest_random_seed=[NUMBER]
 Random number seed to use for shuffling test orders (between 1 and
 99999, or 0 to use a seed based on the current time).

 Test Output:
 --gtest_color=(yes|no|auto)
 Enable/disable colored output. The default is auto.
 --gtest_print_time=0
 Don't print the elapsed time of each test.
 --gtest_output=(json|xml)[:DIRECTORY_PATH/|:FILE_PATH]
 Generate a JSON or XML report in the given directory or with the given
 file name. FILE_PATH defaults to test_detail.xml.
 --gtest_stream_result_to=HOST:PORT
 Stream test results to the given server.

 Assertion Behavior:
 --gtest_death_test_style=(fast|threadsafe)
 Set the default death test style.
 --gtest_break_on_failure
 Turn assertion failures into debugger break-points.
 --gtest_throw_on_failure
 Turn assertion failures into C++ exceptions for use by an external
 test framework.
 --gtest_catch_exceptions=0
 Do not report exceptions as test failures. Instead, allow them
 to crash the program or throw a pop-up (on Windows).

Except for --gtest_list_tests, you can alternatively set the corresponding
environment variable of a flag (all letters in upper-case). For example, to
disable colored text output, you can either specify --gtest_color=no or set
the GTEST_COLOR environment variable to no.

For more information, please read the Google Test documentation at
https://github.com/google/googletest/. If you find a bug in Google Test
(not one in your own code or tests), please report it to
<googletestframework@googlegroups.com>.

The most useful of these is gtest_filter which lets you run a subset of tests in the file, this can be very useful when running a test through a debugger.

11.2. Test structure

The source for all the tests are all located in the unitTests directory, each tests consists of a cpp file whose name begins with test followed by the name of the class or namespace that is tested. For example the tests for CRSMatrix and CRSMatrixView are in unitTests/testCRSMatrix.cpp and the tests for sortedArrayManipulation are in unitTests/testSortedArrayManipulation.cpp.

Note

The tests for LvArray::Array, LvArray::ArrayView and LvArray::tensorOps are spread across multiple cpp files in order to speed up compilation on multithreaded systems.

11.3. Adding a New Test

Any time new functionality is added it should be tested. Before writing any test code it is highly recommended you familiarize yourself with the Google Test framework, see the Google Test primer [https://github.com/google/googletest/blob/306f3754a71d6d1ac644681d3544d06744914228/googletest/docs/primer.md] and Google Test advanced [https://github.com/google/googletest/blob/306f3754a71d6d1ac644681d3544d06744914228/googletest/docs/advanced.md] documentation.

As an example say you add a new class Foo

class Foo
{
public:
 Foo(int const x):
 m_x(x)
 {}

 int get() const
 { return m_x; }

 void set(int const x)
 { m_x = x; }

private:
 int m_x;
};

[Source: examples/Foo.hpp]

You’ll also want to create a file unitTests/testFoo.cpp and add it to unitTests/CMakeLists.txt. A basic set of tests might look something like this

TEST(Foo, get)
{
 Foo foo(5);
 EXPECT_EQ(foo.get(), 5);
}

TEST(Foo, set)
{
 Foo foo(3);
 EXPECT_EQ(foo.get(), 3);
 foo.set(8);
 EXPECT_EQ(foo.get(), 8);
}

[Source: examples/exampleTestFoo.cpp]

Note

These tests aren’t very thorough. They don’t test any of the implicit constructors and operators that the compiler defines such as the copy constructor and the move assignment operator and get and set are only tested with a single value.

Now you decide you want to generalize Foo to support types other than int so you define the template class FooTemplate

template< typename T >
class FooTemplate
{
public:
 FooTemplate(T const & x):
 m_x(x)
 {}

 T const & get() const
 { return m_x; }

 void set(T const & x)
 { m_x = x; }

private:
 T m_x;
};

[Source: examples/Foo.hpp]

Naturally you should test more than just a single instantiation of FooTemplate so you modify your tests as such

TEST(FooTemplate, get)
{
 {
 FooTemplate< int > foo(5);
 EXPECT_EQ(foo.get(), 5);
 }

 {
 FooTemplate< double > foo(5);
 EXPECT_EQ(foo.get(), 5);
 }
}

TEST(FooTemplate, set)
{
 {
 FooTemplate< int > foo(3);
 EXPECT_EQ(foo.get(), 3);
 foo.set(8);
 EXPECT_EQ(foo.get(), 8);
 }

 {
 FooTemplate< double > foo(3);
 EXPECT_EQ(foo.get(), 3);
 foo.set(8);
 EXPECT_EQ(foo.get(), 8);
 }
}

[Source: examples/exampleTestFoo.cpp]

In this example the code duplication isn’t too bad because the tests are simple and only two instantiations are being tested. But using this style to write the tests for LvArray::Array which has five different template arguments would be unmaintainable. Luckily Google Test has an excellent solution: typed tests [https://github.com/google/googletest/blob/306f3754a71d6d1ac644681d3544d06744914228/googletest/docs/advanced.md#typed-tests]. Using typed tests the tests can be restructured as

template< typename T >
class FooTemplateTest : public ::testing::Test
{
public:
 void get()
 {
 FooTemplate< T > foo(5);
 EXPECT_EQ(foo.get(), 5);
 }

 void set()
 {
 FooTemplate< T > foo(3);
 EXPECT_EQ(foo.get(), 3);
 foo.set(8);
 EXPECT_EQ(foo.get(), 8);
 }
};

using FooTemplateTestTypes = ::testing::Types<
 int
 , double
 >;

TYPED_TEST_SUITE(FooTemplateTest, FooTemplateTestTypes,);

TYPED_TEST(FooTemplateTest, get)
{
 this->get();
}

TYPED_TEST(FooTemplateTest, set)
{
 this->set();
}

[Source: examples/exampleTestFoo.cpp]

The benefits of using typed tests are many. In addition to the reduction in code duplication it makes it easy to run the tests associated with a single instantiation via gtest_filter and it lets you quickly add and remove types. Almost every test in LvArray is built using typed tests.

Note

When modifying a typed tests the compilation errors can be particularly painful to parse because usually an error in one instantiation means there will be errors in every instantiation. To decrease the verbosity you can simply limit the types used to instantiate the tests. For instance in the example above instead of testing both int and double comment out the , double and fix the int instantiation first.

One of the limitations of typed tests is that the class that gtest instantiates can only have a single template parameter and that parameter must be a type (not a value or a template). To get around this the type you pass in can be a std::pair or std::tuple when you need more than one type. For example the class CRSMatrixViewTest is defined as

template< typename CRS_MATRIX_POLICY_PAIR >
class CRSMatrixViewTest : public CRSMatrixTest< typename CRS_MATRIX_POLICY_PAIR::first_type >

[Source: unitTests/testCRSMatrix.cpp]

where CRS_MATRIX_POLICY_PAIR is intended to be a std::pair where the first type is the CRSMatrix type to test and the second type is the RAJA policy to use. It is instantiated as follows

using CRSMatrixViewTestTypes = ::testing::Types<
 std::pair< CRSMatrix< int, int, std::ptrdiff_t, MallocBuffer >, serialPolicy >

[Source: unitTests/testCRSMatrix.cpp]

Another hurdle in writing typed tests is writing them in such a way that they compile for all the types. For example FooTemplate< std::string > is a perfectly valid instantiation but FooTemplateTest< std::string > is not because FooTemplate< std::string > foo(3) is invalid. You get an error like the following

../examples/exampleTestFoo.cpp:85:22: error: no matching constructor for initialization of 'FooTemplate<std::basic_string<char> >'
 FooTemplate< T > foo(5);
 ^ ~

However instantiating with std::string is very important for many LvArray classes because it behaves very differently from the built in types. For that reason unitTests/testUtils.hpp defines a class TestString which wraps a std::string and Tensor which wraps a double[3] both of which have constructors from integers.

11.4. Best practices

	Whenever possible use typed tests.

	Whenever possible do not write CUDA (or OpenMP) specific tests. Instead write tests a typed test that is templated on the RAJA policy and use a typed test to instantiate it with the appropriate policies.

	When linking to gtest it is not necessary to include the main function in the executable because if it is not there gtest will link in its own main. However you should include main in each test file to ease debugging. Furthermore if the executable needs some setup or cleanup such as initializing MPI it should be done in main. Note that while it is certainly possible to write tests which take command line arguments it is discouraged because then ./tests/testThatTakesCommandLineArguments no longer works.

	For commonly called functions define a macro which first calls SCOPED_TRACE and then the the function. This helps illuminate exactly where errors are occurring.

	Prefer the EXPECT_ family of macros to the ASSERT_ family.

	Use the most specific EXPECT_ macro applicable. So don’t do EXPECT_TRUE(bar() == 5) instead use EXPECT_EQ(bar(), 5)

13. pylvarray — LvArray in Python

Many of the LvArray classes can be accessed and manipulated from Python.
However, they cannot be created from Python.

Warning

The pylvarray module provides plenty of opportunites to crash Python.
See the Segmentation Faults section below.

Only Python 3 is supported.

13.1. Module Constants

13.1.1. Space Constants

The following constants are used to set the space in which an LvArray object lives.
The object pylvarray.GPU will only be defined if it is a
valid space for the current system.

	
pylvarray.CPU

	

	
pylvarray.GPU

	

13.1.2. Permissions Constants

The following constants are used to set permissions for an array instance.

	
pylvarray.READ_ONLY

	No modification of the underlying data is allowed.

	
pylvarray.MODIFIABLE

	Allows Numpy views to be modified, but the object itself cannot be resized
(or otherwise have its buffer reallocated, such as by inserting new elements).

	
pylvarray.RESIZEABLE

	Allows Numpy views to be modified, and the object
to be resized.

13.2. Module Classes

All of the objects documented below have an attribute, dtype,
which returns the numpy.dtype of the object’s data, and therefore
the datatype of any Numpy view of the object.

13.2.1. Array and SortedArray

	
class pylvarray.Array

	Represents an LvArray::Array, a multidimensional array.

	
get_single_parameter_resize_index()

	

	
set_single_parameter_resize_index(dim)

	Set the dimension resized by a call to resize().

	
resize(new_size)

	Resize the array in the default dimension to new_size.

	
resize_all(new_dims)

	Resize all the dimensions of the array in-place, discarding values.

	
to_numpy()

	Return a Numpy view of the array.

	
set_access_level(new_level)

	Set read/modify/resize permissions for the instance.

	
get_access_level()

	Return the read/modify/resize permissions for the instance.

	
class pylvarray.SortedArray

	Represents an LvArray::SortedArray, a one-dimensional sorted array.

	
to_numpy()

	Return a read-only Numpy view of the array.

	
set_access_level(new_level)

	Set read/modify/resize permissions for the instance.

	
get_access_level()

	Return the read/modify/resize permissions for the instance.

	
insert(values)

	Insert one or more values into the array.
The object passed in will be converted to a 1D numpy array of the same dtype
as the underlying instance, raising an exception if the conversion cannot be made safely.

	
remove(values)

	Remove one or more values from the array.
The object passed in will be converted to a 1D numpy array of the same dtype
as the underlying instance, raising an exception if the conversion cannot be made safely.

13.2.2. ArrayOfArrays and ArrayOfSets

	
class pylvarray.ArrayOfArrays

	Represents an LvArray::ArrayOfArrays, a two-dimensional ragged array.

Supports Python’s sequence protocol [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence],
with the addition of deleting subarrays with del arr[i] syntax.
An array fetched with [] is returned as a Numpy view.
The built-in len() function will return the number of arrays in the instance.
Iterating over an instance will yield a Numpy view of each array.

	
set_access_level(new_level)

	Set read/modify/resize permissions for the instance.

	
get_access_level()

	Return the read/modify/resize permissions for the instance.

	
insert(index, values)

	Insert a new array consisting of values at the given index.

	
insert_into(index, subindex, values)

	Insert values into the subarray given by index at position subindex.
values will be converted to a 1D numpy array of the same dtype
as the underlying instance, raising an exception if the conversion cannot be made safely.

	
erase_from(index, subindex)

	Remove the value at subindex in the subarray index.

Conceptually equivalent to del array_of_sets[index][subindex].

	
class pylvarray.ArrayOfSets

	Represents an LvArray::ArrayOfSets, a collection of sets.

Behaves very similarly to the ArrayOfArrays, with differences
outlined below.

	
set_access_level(new_level)

	Set read/modify/resize permissions for the instance.

	
get_access_level()

	Return the read/modify/resize permissions for the instance.

	
insert(position, capacity=0)

	Insert a new set with a given capacity at position.

	
insert_into(set_index, values)

	Insert values into a specific set.

values will be converted to a 1D numpy array of the same dtype
as the underlying instance, raising an exception if the conversion cannot be made safely.

	
erase_from(set_index, values)

	Remove values from a specific set.

values will be converted to a 1D numpy array of the same dtype
as the underlying instance, raising an exception if the conversion cannot be made safely.

13.2.3. CRSMatrix

	
class pylvarray.CRSMatrix

	Represents an LvArray::CRSMatrix, a sparse matrix.

	
to_scipy()

	Return a scipy.sparse.csr_matrix representing the matrix.

Note that many methods of scipy.sparse.csr_matrix will,
without raising an exception, generate deep copies of the
LvArray::CRSMatrix’s data. For instance, assigning a new
value to an element in the csr_matrix may or may not modify the
CRSMatrix data. Other csr_matrix methods will raise
exceptions—for instance, when resizing. It is therefore in your
best interest to be very careful about what methods and operations
you perform on the crs_matrix. To be safe, do not attempt to modify
the matrix at all.

	
set_access_level(new_level)

	Set read/modify/resize permissions for the instance.

	
get_access_level()

	Return the read/modify/resize permissions for the instance.

	
num_rows()

	Return the number of rows in the matrix.

	
num_columns()

	Return the number of columns in the matrix.

	
get_entries(row)

	Return a Numpy array representing the entries in the given row.

	
resize(num_rows, num_cols, initial_row_capacity=0)

	Set the dimensions of the matrix, and the row capacity for
any newly-created rows.

	
compress()

	Compress the matrix.

	
insert_nonzeros(row, columns, entries)

	Insert new nonzero entries to the matrix.

columns and entries should be iterables of equal length; both
will be converted to Numpy arrays and a TypeError will be raised
if the conversion cannot be made safely.

	
remove_nonzeros(row, columns)

	Remove nonzero entries from the matrix.

columns should be an iterable identifying the columns of
the given row to remove nonzero entries from. It will be
converted to a Numpy array and a TypeError will be raised
if the conversion cannot be made safely.

	
add_to_row(row, columns, values)

	Add values to already-existing entries in a row.

columns and values should be iterables of equal length; both
will be converted to Numpy arrays and a TypeError will be raised
if the conversion cannot be made safely.

13.3. Segmentation Faults

Improper use of this module and associated programs can easily cause Python to crash.
There are two main causes of crashes.

13.3.1. Stale Numpy Views

The pylvarray classes provide various ways to get Numpy views of
their data. However, those views are only valid as long as the
LvArray object’s buffer is not reallocated. The buffer may be reallocated
by invoking methods (the ones that require
the RESIZEABLE permission) or by calls into a C++ program with access
to the underlying C++ LvArray object.

view = my_array.to_numpy()
my_array.resize(1000)
print(view) # segfault

13.3.2. Destroyed LvArray C++ objects

As mentioned earlier, the classes defined in this
module cannot be created in Python; some external C++
program/library must create an LvArray object in C++, then create a
pylvarray view of it. However, the Python view will only be
valid as long as the underlying LvArray C++ object is kept around. If
that is destroyed, the Python object will be left holding an invalid
pointer and subsequent attempts to use the Python object will cause
undefined behavior. The only way to avoid this is to know under what
circumstances the external C++ program/library will destroy
LvArray objects. To be safe, however, do not hold onto pylvarray
object references after calling functions that have access to the underlying
LvArray objects.

14. Indices and tables

	Index

	Module Index

	Search Page

Triaxial Driver

When calibrating solid material parameters to experimental data, it can be a hassle to launch a full finite element simulation to mimic experimental loading conditions. Instead, GEOSX provides a TriaxialDriver allowing the user to run loading tests on a single material point. This makes it easy to understand the material response and fit it to lab data. The driver itself is launched like any other GEOSX simulation, but with a particular XML structure:

./bin/geosx -i myTest.xml

XML Structure

A typical XML file to run the triaxial driver will have the following key elements. We present the whole file first, before digging into the individual blocks.

<Problem>

 <!-- Triaxial driver is added as an executable Task-->
 <Tasks>
 <TriaxialDriver
 name="triaxialDriver"
 material="sand"
 mode="triaxial"
 strainFunction="strainFunction"
 stressFunction="stressFunction"
 steps="40"
 output="results.txt"
 logLevel="1" />
 </Tasks>

 <!-- This Task is added to the Event queue as a SoloEvent-->
 <Events
 maxTime="1">
 <SoloEvent
 name="triaxialDriver"
 target="/Tasks/triaxialDriver"/>
 </Events>

 <!-- The driver calls the material "sand" which is defined here-->
 <Constitutive>
 <ExtendedDruckerPrager
 name="sand"
 defaultDensity="2700"
 defaultBulkModulus="500"
 defaultShearModulus="300"
 defaultCohesion="0.0"
 defaultInitialFrictionAngle="15"
 defaultResidualFrictionAngle="23"
 defaultDilationRatio="1.0"
 defaultHardening="0.001"
 />
 </Constitutive>

 <!-- The axial/radial loading conditions are defined by time-dependent functions-->
 <Functions>
 <TableFunction
 name="strainFunction"
 inputVarNames="{ time }"
 coordinates="{ 0.0, 3.0, 4.0, 7.0, 8.0 }"
 values="{ 0, -0.003, -0.002, -0.005, -0.004 }"/>
 <TableFunction
 name="stressFunction"
 inputVarNames="{ time }"
 coordinates="{ 0.0, 8.0 }"
 values="{ -1.0, -1.0 }"/>
 </Functions>

 <!-- A mesh is not actually used, but GEOSX throws an error without one. Will fix this soon-->
 <Mesh>
 <InternalMesh
 name="mesh1"
 elementTypes="{ C3D8 }"
 xCoords="{ 0, 1 }"
 yCoords="{ 0, 1 }"
 zCoords="{ 0, 1 }"
 nx="{ 1 }"
 ny="{ 1 }"
 nz="{ 1 }"
 cellBlockNames="{ cellBlock01 }"/>
 </Mesh>

</Problem>

The first thing to note is that the XML structure is identical to a standard GEOSX input deck. In fact, once the constitutive block is calibrated, one could start adding solver and discretization blocks to the same file to create a proper field simulation. This makes it easy to go back and forth between calibration and simulation.

The TriaxialDriver is added as a Task, a particular type of executable event often used for simple actions. It is added as a SoloEvent to the event queue. This leads to a trivial event queue, since all we do is launch the driver and then quit.

Note

Internally, the triaxial driver uses a simple form of time-stepping to advance through the loading steps, allowing for both rate-dependent and rate-independent models to be tested. This timestepping is handled independently from the more complicated time-stepping pattern used by physics Solvers and coordinated by the EventManager. In particular, in the XML file above, the maxTime parameter in the Events block is an event manager control, controlling when/if certain events occur. Once launched, the triaxial driver internally determines its own max time and timestep size using a combination of the strain function’s time coordinates and the requested number of loadsteps. It is therefore helpful to think of the driver as an instantaneous event (from the event manager’s point of view), but one which has a separate, internal clock.

The key parameters for the TriaxialDriver are:

	Name

	Type

	Default

	Description

	baseline

	path

	none

	Baseline file

	logLevel

	integer

	0

	Log level

	material

	string

	required

	Solid material to test

	mode

	string

	required

	Test mode [triaxial, volumetric, oedometer]

	name

	string

	required

	A name is required for any non-unique nodes

	output

	string

	none

	Output file

	steps

	integer

	required

	Number of load steps to take

	strainFunction

	string

	required

	Function controlling strain loading (role depends on test mode)

	stressFunction

	string

	required

	Function controlling stress loading (role depends on test mode)

Note

GEOSX uses the engineering sign convention where compressive stresses and strains are negative.
This is one of the most frequent issues users make when calibrating material parameters, as
stress- and strain-like quantities often need to be negative to make physical sense. You may note in the
XML above, for example, that stressFunction and strainFunction have negative values for
a compressive test.

Test Modes

The most complicated part of the driver is understanding how the stress and strain functions are applied in different testing modes. The driver mimics laboratory core tests, with loading controlled in the
axial and radial directions. These conditions may be either strain-controlled or stress-controlled. The following table describes the available test modes in detail:

	mode

	axial loading

	radial loading

	initial stress

	triaxial

	axial strain controlled
with strainFunction

	radial stress controlled
with stressFunction

	isotropic stress using
stressFunction(t=tmin)

	volumetric

	axial strain controlled
with strainFunction

	radial strain =
axial strain

	isotropic stress using
stressFunction(t=tmin)

	oedometer

	axial strain controlled
with strainFunction

	zero radial strain

	isotropic stress using
stressFunction(t=tmin)

To set the initial stress state, the stressFunction is evaluated at t=tmin (usually t=0, though conceivably a user may put in a time-function with a non-zero starting point). This scalar value is used to set the material to an isotropic initial stress state. In the volumetric and oedometer tests, the remainder of the stressFunction time history is ignored, as they are strain-controlled tests. By setting the initial stress this way, it makes it easy to start the test from a well-defined confining pressure.

Output Format

The output key is used to identify a file to which the results of the simulation are written. If this key is omitted, or the user specifies output="none", file output will be suppressed. The file is a simple ASCII format with a brief header followed by test data:

column 1 = time
column 2 = axial_strain
column 3 = radial_strain_1
column 4 = radial_strain_2
column 5 = axial_stress
column 6 = radial_stress_1
column 7 = radial_stress_2
column 8 = newton_iter
column 9 = residual_norm
0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00 0.0000e+00 0.0000e+00
1.6000e-01 -1.6000e-04 4.0000e-05 4.0000e-05 -1.1200e+00 -1.0000e+00 -1.0000e+00 2.0000e+00 0.0000e+00
3.2000e-01 -3.2000e-04 8.0000e-05 8.0000e-05 -1.2400e+00 -1.0000e+00 -1.0000e+00 2.0000e+00 0.0000e+00
...

This file can be readily plotted using any number of plotting tools. Each row corresponds to one timestep of the driver, starting from initial conditions in the first row.

We note that the file contains two columns for radial strain and two columns for radial stress. For an isotropic material, the stresses and strains along the two radial axes will usually be identical. We choose to output this way, however, to accommodate both anisotropic materials and true-triaxial loading conditions. In these cases, the stresses and strains in the radial directions could potentially differ.

These columns can be added and subtracted to produce other quantities of interest, like mean stress or deviatoric stress. For example, we can plot the output of our “sand” XML to produce the following stress / strain curves:

[image: stress/strain figure]
Figure: Stress/strain behavior resulting from the sand model XML above.

In this plot, we have reversed the sign convention to be consistent with typical experimental plots. Note also that the strainFunction above includes two unloading cycles, allowing us to observe both plastic loading and elastic unloading.

Model Convergence

The last two columns of the output file contain information about the convergence behavior of the material driver. In triaxial mode, the mixed nature of the stress/strain control requires using a Newton solver to converge the solution. This last column reports the number of Newton iterations and final residual norm. Large values here would be indicative of the material model struggling (or failing) to converge. Convergence failures can result from several reasons, including:

	Inappropriate material parameter settings

	Overly large timesteps

	Infeasible loading conditions (i.e. trying to load a material to a physically-unreachable stress point)

	Poor model implementation

We generally spend a lot of time vetting the material model implementations (#4). When you first encounter a problem, it is therefore good to explore the other three scenarios first. If you find something unusual in the model implementation or are just really stuck, please submit an issue on our issue tracker so we can help resolve any bugs.

Unit Testing

The development team also uses the Triaxial Driver to perform unit testing on the various material models within GEOSX. The optional argument baseline can be used to point to a previous output file that has been validated (e.g. against analytical or experimental benchmarks). If such a file is specified, the driver will perform a loading run and then compare the new results against the baseline. In this way, any regressions in the material models can be quickly identified.

Developers of new models are encouraged to add their own baselines to src/coreComponents/constitutive/unitTests. Adding additional tests is straightforward:

	Create a new xml file for your test in src/coreComponents/constitutive/unitTests. There are several examples is this directory already to use as a template. We suggest using the naming convention testTriaxial_myTest.xml, so that all triaxial tests will be grouped together alphabetically. Set the output file to testTriaxial_myTest.txt, and run your test. Validate the results however is appropriate.

	This output file will now become your new baseline. Replace the output key with baseline so that the driver can read in your file as a baseline for comparison. Make sure there is no remaining output key, or set output=none, to suppress further file output. While you can certainly write a new output for debugging purposes, during our automated unit tests we prefer to suppress file output. Re-run the triaxial driver to confirm that the comparison test passes.

	Modify src/coreComponents/constitutive/unitTests/CMakeLists.txt to enable your new test in the unit test suite. In particular, you will need to add your new XML file to the existing list in the gtest_triaxial_xmls variable:

set(gtest_triaxial_xmls
 testTriaxial_elasticIsotropic.xml
 testTriaxial_druckerPragerExtended.xml
 testTriaxial_myTest.xml
)

	Run make in your build directory to make sure the CMake syntax is correct

	Run ctest -V -R Triax to run the triaxial unit tests. Confirm your test is included and passes properly.

If you run into troubles, do not hesitate to contact the development team for help.

Data Repository

The GEOSX “Data Repository” is intended to provide the building blocks for the code structure within GEOSX.
The “Data Repository” provides a general capability to store arbitrary data and objects in a hierarchical
structure, similar to a standard file system.

The components/classes of the data structure that a developer will require some knowledge of are:

	MappedVector
	Description

	Element access

	API documentation

	Group
	Implementation Details

	Interface Functions

	Wrapper
	Description

	Attributes

	Default Values

	API documentation

	ObjectCatalog
	Implementation Details

	Usage

	Name

	Type

	Default

	Description

	defaultDensity

	real64

	required

	Default Material Density

	defaultRecompressionIndex

	real64

	0.002

	Recompresion Index

	defaultRefPressure

	real64

	-1

	Reference Pressure

	defaultRefStrainVol

	real64

	0

	Reference Volumetric Strain

	defaultShearModulus

	real64

	-1

	Elastic Shear Modulus Parameter

	name

	string

	required

	A name is required for any non-unique nodes

	useLinear

	integer

	0

	Flag to use linear elasticity

	Name

	Type

	Description

	density

	real64_array2d

	Material Density

	oldStress

	real64_array3d

	Previous Material Stress

	recompressionIndex

	real64_array

	Recompression Index Field

	refPressure

	real64

	Reference Pressure Field

	refStrainVol

	real64

	Reference Volumetric Strain

	shearModulus

	real64_array

	Elastic Shear Modulus

	stress

	real64_array3d

	Current Material Stress

	Name

	Type

	Default

	Description

	defaultCslSlope

	real64

	1

	Slope of the critical state line

	defaultDensity

	real64

	required

	Default Material Density

	defaultPreConsolidationPressure

	real64

	-1.5

	Initial preconsolidation pressure

	defaultRecompressionIndex

	real64

	0.002

	Recompresion Index

	defaultRefPressure

	real64

	-1

	Reference Pressure

	defaultRefStrainVol

	real64

	0

	Reference Volumetric Strain

	defaultShapeParameter

	real64

	1

	Shape parameter for the yield surface

	defaultShearModulus

	real64

	-1

	Elastic Shear Modulus Parameter

	defaultVirginCompressionIndex

	real64

	0.005

	Virgin compression index

	name

	string

	required

	A name is required for any non-unique nodes

	useLinear

	integer

	0

	Flag to use linear elasticity

	Name

	Type

	Description

	cslSlope

	real64_array

	Slope of the critical state line

	density

	real64_array2d

	Material Density

	oldPreConsolidationPressure

	real64_array2d

	Old preconsolidation pressure

	oldStress

	real64_array3d

	Previous Material Stress

	preConsolidationPressure

	real64_array2d

	New preconsolidation pressure

	recompressionIndex

	real64_array

	Recompression Index Field

	refPressure

	real64

	Reference Pressure Field

	refStrainVol

	real64

	Reference Volumetric Strain

	shapeParameter

	real64_array

	Shape parameter for the yield surface

	shearModulus

	real64_array

	Elastic Shear Modulus

	stress

	real64_array3d

	Current Material Stress

	virginCompressionIndex

	real64_array

	Virgin compression index

	Name

	Type

	Default

	Description

	BiotCoefficient

	real64

	1

	Biot’s coefficient

	compressibility

	real64

	0

	Pore volume compressibilty

	defaultCslSlope

	real64

	1

	Slope of the critical state line

	defaultDensity

	real64

	required

	Default Material Density

	defaultPreConsolidationPressure

	real64

	-1.5

	Initial preconsolidation pressure

	defaultRecompressionIndex

	real64

	0.002

	Recompresion Index

	defaultRefPressure

	real64

	-1

	Reference Pressure

	defaultRefStrainVol

	real64

	0

	Reference Volumetric Strain

	defaultShapeParameter

	real64

	1

	Shape parameter for the yield surface

	defaultShearModulus

	real64

	-1

	Elastic Shear Modulus Parameter

	defaultVirginCompressionIndex

	real64

	0.005

	Virgin compression index

	name

	string

	required

	A name is required for any non-unique nodes

	referencePressure

	real64

	0

	ReferencePressure

	useLinear

	integer

	0

	Flag to use linear elasticity

	Name

	Type

	Default

	Description

	baseline

	path

	none

	Baseline file

	logLevel

	integer

	0

	Log level

	material

	string

	required

	Solid material to test

	mode

	string

	required

	Test mode [triaxial, volumetric, oedometer]

	name

	string

	required

	A name is required for any non-unique nodes

	output

	string

	none

	Output file

	steps

	integer

	required

	Number of load steps to take

	strainFunction

	string

	required

	Function controlling strain loading (role depends on test mode)

	stressFunction

	string

	required

	Function controlling stress loading (role depends on test mode)

Finite Element Discretization

We are currently refactoring the finite element infrastructure, and will update the documentation soon
to reflect the new structure.

Kernel interface

Finite Element Method Kernel Interface

The finite element method kernel interface (FEMKI) specifies an API for the
launching of computational kernels for solving physics discretized using the
finite element method.
Using this approach, a set of generic element looping pattens and kernel
launching functions may be implemented, and reused by various physics solvers
that contain kernels conforming to the FEMKI.

There are several main components of the FEMKI:

	A collection of element looping functions that provide various looping
patterns, and call the launch function.

	The kernel interface, which is specified by the
finiteElement::KernelBase class.
Each physics solver will define a class that contains its kernels functions,
most likely deriving, or conforming to the API specified by the KernelBase
class. Also part of this class will typically be a nested StackVariables
class that defines a collection of stack variables for use in the various
kernel interface functions.

	A launch function, which launches the kernel, and calls the kernel
interface functions conforming to the interface defined by KernelBase.
This function is actaully a member function of the Kernel class, so it
may be overridden by a specific physics kernel, allowing complete
customizationAn of the interface, while maintaining the usage of the
looping patterns.

A Generic Element Looping Pattern

One example of a looping pattern is the
regionBasedKernelApplication
function.

The contents of the looping function are displayed here:

/**
 * @brief Performs a loop over specific regions (by type and name) and calls a kernel launch on the subregions
 * with compile time knowledge of sub-loop bounds such as number of nodes and quadrature points per element.
 * @tparam POLICY The RAJA launch policy to pass to the kernel launch.
 * @tparam CONSTITUTIVE_BASE The common base class for constitutive pass-thru/dispatch which gives the kernel
 * launch compile time knowledge of the constitutive model. This is achieved through a call to the
 * ConstitutivePassThru function which should have a specialization for CONSTITUTIVE_BASE implemented in
 * order to perform the compile time dispatch.
 * @tparam SUBREGION_TYPE The type of subregion to loop over. TODO make this a parameter pack?
 * @tparam KERNEL_FACTORY The type of @p kernelFactory, typically an instantiation of @c KernelFactory, and
 * must adhere to that interface.
 * @param mesh The MeshLevel object.
 * @param targetRegions The names of the target regions(of type @p SUBREGION_TYPE) to apply the @p KERNEL_TEMPLATE.
 * @param finiteElementName The name of the finite element.
 * @param constitutiveNames The names of the constitutive models present in the region.
 * @param kernelFactory The object used to construct the kernel.
 * @return The maximum contribution to the residual, which may be used to scale the residual.
 *
 * @details Loops over all regions Applies/Launches a kernel specified by the @p KERNEL_TEMPLATE through
 * #::geosx::finiteElement::KernelBase::kernelLaunch().
 */
template< typename POLICY,
 typename CONSTITUTIVE_BASE,
 typename SUBREGION_TYPE,
 typename KERNEL_FACTORY >
static
real64 regionBasedKernelApplication(MeshLevel & mesh,
 arrayView1d< string const > const & targetRegions,
 string const & finiteElementName,
 arrayView1d< string const > const & constitutiveNames,
 KERNEL_FACTORY & kernelFactory)
{
 GEOSX_MARK_FUNCTION;
 // save the maximum residual contribution for scaling residuals for convergence criteria.
 real64 maxResidualContribution = 0;

 NodeManager & nodeManager = mesh.getNodeManager();
 EdgeManager & edgeManager = mesh.getEdgeManager();
 FaceManager & faceManager = mesh.getFaceManager();
 ElementRegionManager & elementRegionManager = mesh.getElemManager();

 // Loop over all sub-regions in regions of type SUBREGION_TYPE, that are listed in the targetRegions array.
 elementRegionManager.forElementSubRegions< SUBREGION_TYPE >(targetRegions,
 [&constitutiveNames,
 &maxResidualContribution,
 &nodeManager,
 &edgeManager,
 &faceManager,
 &kernelFactory,
 &finiteElementName]
 (localIndex const targetRegionIndex, auto & elementSubRegion)
 {
 localIndex const numElems = elementSubRegion.size();

 // Get the constitutive model...and allocate a null constitutive model if required.
 constitutive::ConstitutiveBase * constitutiveRelation = nullptr;
 constitutive::NullModel * nullConstitutiveModel = nullptr;
 if(targetRegionIndex <= constitutiveNames.size()-1)
 {
 constitutiveRelation = &elementSubRegion.template getConstitutiveModel(constitutiveNames[targetRegionIndex]);
 }
 else
 {
 nullConstitutiveModel = &elementSubRegion.template registerGroup< constitutive::NullModel >("nullModelGroup");
 constitutiveRelation = nullConstitutiveModel;
 }

 // Call the constitutive dispatch which converts the type of constitutive model into a compile time constant.
 constitutive::ConstitutivePassThru< CONSTITUTIVE_BASE >::execute(*constitutiveRelation,
 [&maxResidualContribution,
 &nodeManager,
 &edgeManager,
 &faceManager,
 targetRegionIndex,
 &kernelFactory,
 &elementSubRegion,
 &finiteElementName,
 numElems]
 (auto & castedConstitutiveRelation)
 {
 FiniteElementBase &
 subRegionFE = elementSubRegion.template getReference< FiniteElementBase >(finiteElementName);

 finiteElement::dispatch3D(subRegionFE,
 [&maxResidualContribution,
 &nodeManager,
 &edgeManager,
 &faceManager,
 targetRegionIndex,
 &kernelFactory,
 &elementSubRegion,
 numElems,
 &castedConstitutiveRelation] (auto const finiteElement)
 {
 auto kernel = kernelFactory.createKernel(nodeManager,
 edgeManager,
 faceManager,
 targetRegionIndex,
 elementSubRegion,
 finiteElement,
 castedConstitutiveRelation);

 using KERNEL_TYPE = decltype(kernel);

 // Call the kernelLaunch function, and store the maximum contribution to the residual.
 maxResidualContribution =
 std::max(maxResidualContribution,
 KERNEL_TYPE::template kernelLaunch< POLICY, KERNEL_TYPE >(numElems, kernel));
 });
 });

 // Remove the null constitutive model (not required, but cleaner)
 if(nullConstitutiveModel)
 {
 elementSubRegion.deregisterGroup("nullModelGroup");
 }

 });

 return maxResidualContribution;
}

This pattern may be used with any kernel class that either:

	Conforms to the KernelBase interface by defining each of the kernel
functions in KernelBase.

	Defines its own kernelLaunch function that conforms the the signature
of KernelBase::kernelLaunch.
This option essentially allows for a custom kernel that does not conform to
the interface defined by KernelBase and KernelBase::kernelLaunch.

The KernelBase::kernelLaunch Interface

The kernelLaunch function is a member of the kernel class itself.
As mentioned above, a physics implementation may use the existing KernelBase
interface, or define its own.
The KernelBase::kernelLaunch function defines a launching policy, and an
internal looping pattern over the quadrautre points, and calls the functions
defined by the KernelBase as shown here:

 template< typename POLICY,
 typename KERNEL_TYPE >
 static
 real64
 kernelLaunch(localIndex const numElems,
 KERNEL_TYPE const & kernelComponent)
 {
 GEOSX_MARK_FUNCTION;

 // Define a RAJA reduction variable to get the maximum residual contribution.
 RAJA::ReduceMax< ReducePolicy< POLICY >, real64 > maxResidual(0);

 forAll< POLICY >(numElems,
 [=] GEOSX_HOST_DEVICE (localIndex const k)
 {
 typename KERNEL_TYPE::StackVariables stack;

 kernelComponent.setup(k, stack);
 for(integer q=0; q<numQuadraturePointsPerElem; ++q)
 {
 kernelComponent.quadraturePointKernel(k, q, stack);
 }
 maxResidual.max(kernelComponent.complete(k, stack));
 });
 return maxResidual.get();
 }

Each of the KernelBase functions called in the KernelBase::kernelLaunch
function are intended to provide a certain amount of modularity and flexibility
for the physics implementations.
The general purpose of each function is described by the function name, but may
be further descibed by the function documentation found
here.

Finite Volume Discretization

Two different finite-volume discretizations are available to simulate single-phase flow in GEOSX, namely, a standard cell-centered TPFA approach, and a hybrid finite-volume scheme relying on both cell-centered and face-centered degrees of freedom.
The key difference between these two approaches is the computation of the flux, as detailed below.

Standard cell-centered TPFA FVM

This is the standard scheme implemented in the SinglePhaseFVM flow solver.
It only uses cell-centered degrees of freedom and implements a Two-Point Flux Approximation (TPFA) for the computation of the flux.
The numerical flux is obtained using the following expression for the mass flux between cells [image: K] and [image: L]:

[image: F_{KL} = \Upsilon_{KL} \frac{\rho^{upw}}{\mu^{upw}} \big(p_K - p_L - \rho^{avg} g (d_K - d_L) \big),]

where [image: p_K] is the pressure of cell [image: K], [image: d_K] is the depth of cell [image: K], and [image: \Upsilon_{KL}] is the standard TPFA transmissibility coefficient at the interface.
The fluid density, [image: \rho^{upw}], and the fluid viscosity, [image: \mu^{upw}], are upwinded using the sign of the potential difference at the interface.

This is currently the only available discretization in the Compositional Multiphase Flow Solver.

Hybrid FVM

This discretization scheme overcomes the limitations of the standard TPFA on non K-orthogonal meshes.
The hybrid finite-volume scheme–equivalent to the well-known hybrid Mimetic Finite Difference (MFD) scheme–remains consistent with the pressure equation even when the mesh does not satisfy the K-orthogonality condition.
This numerical scheme is currently implemented in the SinglePhaseHybridFVM solver.

The hybrid FVM scheme uses both cell-centered and face-centered pressure degrees of freedom.
The one-sided face flux, [image: F_{K,f}], at face [image: f] of cell [image: K] is computed as:

[image: F_{K,f} = \frac{\rho^{upw}}{\mu^{upw}} \widetilde{F}_{K,f},]

where [image: \widetilde{F}_{K,f}] reads:

[image: \widetilde{F}_{K,f} = \sum_{f'} \Upsilon_{ff'} \big(p_K - \pi_f - \rho_K g (d_K - d_f) \big).]

In the previous equation, [image: p_K] is the cell-centered pressure, [image: \pi_f] is the face-centered pressure, [image: d_K] is the depth of cell [image: K], and [image: d_f] is the depth of face [image: f].
The fluid density, [image: \rho^{upw}], and the fluid viscosity, [image: \mu^{upw}], are upwinded using the sign of [image: \widetilde{F}_{K,f}].
The local transmissibility [image: \Upsilon] of size [image: n_{\textit{local faces}} \times n_{\textit{local faces}}] satisfies:

[image: N K = \Upsilon C]

Above, [image: N] is a matrix of size [image: n_{\textit{local faces}} \times 3] storing the normal vectors to each face in this cell, [image: C] is a matrix of size [image: n_{\textit{local faces}} \times 3] storing the vectors from the cell center to the face centers, and [image: K] is the permeability tensor.
The local transmissibility matrix, [image: \Upsilon], is currently computed using the quasi-TPFA approach described in Chapter 6 of this book [https://doi.org/10.1017/9781108591416].
The scheme reduces to the TPFA discretization on K-orthogonal meshes but remains consistent when the mesh does not satisfy this property.
The mass flux [image: F_{K,f}] written above is then added to the mass conservation equation of cell [image: K].

In addition to the mass conservation equations, the hybrid FVM involves algebraic constraints at each mesh face to enforce mass conservation.
For a given interior face [image: f] between two neighboring cells [image: K] and [image: L], the algebraic constraint reads:

[image: \widetilde{F}_{K,f} + \widetilde{F}_{L,f} = 0.]

We obtain a numerical scheme with [image: n_{\textit{cells}}] cell-centered degrees of freedom and [image: n_{\textit{faces}}] face-centered pressure degrees of freedom.
The system involves [image: n_{\textit{cells}}] mass conservation equations and [image: n_{\textit{faces}}] face-based constraints.
The linear systems can be efficiently solved using the MultiGrid Reduction (MGR) preconditioner implemented in the Hypre linear algebra package.

The implementation of the hybrid FVM scheme for Compositional Multiphase Flow Solver is in progress.

DoF Manager

This will contains a description of the DoF manager in GEOSX.

Brief description

The main aim of the Degrees-of-Freedom (DoF) Manager class is to handle all
degrees of freedom associated with fields that exist on mesh elements, faces, edges and nodes.
It creates a map between local mesh objects and global DoF indices.
Additionally, DofManager simplifies construction of system matrix sparsity patterns.

Key concepts are locations and connectors.
Locations, that can be elements, faces, edges or nodes, represent where the DoF is assigned.
For example, a DoF for pressure in a two-point flux approximation will be on a cell (i.e. element), while a displacement DoF for structural equations will be on a node.
The counterparts of locations are connectors, that are the geometrical entities
that link together different DoFs are create the sparsity pattern.
Connectors can be elements, faces, edges, nodes or none.
Using the same example as before, connectors will be faces and cells, respectively.
The case of a mass matrix, where every element is linked only to itself, is an example when there are no connectors, i.e. these have to be set to none.

DoFs located on a mesh object are owned by the same rank that owns the object in parallel mesh partitioning.
Two types of DoF numbering are supported, with the difference only showing in parallel runs of multi-field problems.

	Initially, each field is assigned an independent DoF numbering that starts at 0 and is contiguous across all MPI ranks.
Within each rank, locally owned DoFs are numbered sequentially across mesh locations, and within each mesh location (e.g. node) - sequentially according to component number.
With this numbering, sparsity patterns can be constructed for individual sub-matrices that represent diagonal/off-diagonal blocks of the global coupled system matrix.

	After all fields have been declared, the user can call DofManager::reorderByRank(), which constructs a globally contiguous DoF numbering across all fields.
Specifically, all DoFs owned by rank 0 are numbered field-by-field starting from 0, then those on rank 1, etc.
This makes global system sparsity pattern compatible with linear algebra packages that only support contiguous matrix rows on each rank.
At this point, coupled system matrix sparsity pattern can be constructed.

Thus, each instance of DofManager only supports one type of numbering.
If both types are required, the user is advised to maintain two separate instances of DofManager.

DofManager allocates a separate “DOF index” array for each field on the mesh.
It is an array of global indices, where each value represents the first DoF index for that field and location (or equivalently, the row and column offset of that location’s equations and variables for the field in the matrix).
For example, if index array for a field with 3 components contains the value N, global DoF numbers for that location will be N, N+1, N+2.
DoF on ghosted locations have the same indices as on the owning rank.
The array is stored under a generated key, which can be queried from the DoF manager, and is typically used in system assembly.

Methods

The main methods of DoF Manager are:

	setMesh: sets which portion of the mesh the DoF manager instance is
referring to.
domain identifies the global mesh, while meshLevelIndex and
meshBodyIndex determine the specific level and body, respectively.

void setMesh(DomainPartition * const domain,
 localIndex const meshLevelIndex = 0,
 localIndex const meshBodyIndex = 0);

	addField: creates a new set of DoF, labeled field, with specific
location.
Default number of components is 1, like for pressure in flux.
Default regions is the empty string, meaning all domain.

void addField(string const & fieldName,
 Location const location,
 localIndex const components,
 arrayView1d< string const > const & regions);

	addCoupling: creates a coupling between two fields (rowField and
colField) according to a given connectivity in the regions defined by regions.
Both fields (row and column) must have already been defined on the regions where is required the coupling among them.
Default value for regions is the whole intersection between the regions where the first and the second fields are defined.
This method also creates the coupling between colField and rowField, i.e. the transpose of the rectangular sparsity pattern.
This default behaviour can be disabled by passing symmetric = false.

void addCoupling(string const & rowField,
 string const & colField,
 Connectivity const connectivity,
 arrayView1d< string const > const & regions,
 bool const symmetric);

	reorderByRank: finish populating field and coupling information and apply DoF
re-numbering

void reorderByRank();

	getKey: returns the “key” associated with the field, that can be used to access the index array on the mesh object manager corresponding to field’s location.

string const & getKey(string const & fieldName);

	clear: removes all fields, releases memory and re-opens the DofManager

void clear();

	setSparsityPattern: populates the sparsity for the given
rowField and colField into matrix.
Closes the matrix if closePattern is true.

void setSparsityPattern(MATRIX & matrix,
 string const & rowField,
 string const & colField,
 bool closePattern = true) const;

	setSparsityPattern: populates the sparsity for the full system matrix into matrix.
Closes the matrix if closePattern is true.

void setSparsityPattern(MATRIX & matrix,
 bool closePattern = true) const;

	numGlobalDofs: returns the total number of DoFs across all processors for
the specified name field (if given) or all fields (if empty).

globalIndex numGlobalDofs(string const & field = "") const;

	numLocalDofs: returns the number of DoFs on this process for the
specified name field (if given) or all fields (if empty).

localIndex numLocalDofs(string const & field = "") const;

	printFieldInfo: prints a short summary of declared fields and coupling to the output stream os.

void printFieldInfo(std::ostream & os = std::cout) const;

Example

Here we show how the sparsity pattern is computed for a simple 2D quadrilateral mesh with 6 elements.
Unknowns are pressure, located on the element center, and displacements (x and y components), located on the nodes.
For fluxes, a two-point flux approximation (TPFA) is used.
The representation of the sparsity pattern of the [image: \mathsf{C_L}] matrix (connectors/locations) for the simple mesh, shown in Fig. 35, is
reported in Fig. 36.
It can be notices that the two unknowns for the displacements x and y are grouped together.
Elements are the connectivity for DoF on nodes (Finite Element Method for displacements) and on elements (pressures).
Faces are the connectivity for DoF on elements (Finite Volume Method for pressure), being the flux computation based on the pressure on the two adjacent elements.

[image: ../../../_images/mesh2D.svg]
Small 2D quadrilateral mesh used for this examples.
Nodes are label with black numbers, elements with light gray numbers and
faces with italic dark gray numbers.

[image: ../../../_images/CL.svg]
Sparsity pattern of the binary matrix connections/locations.

The global sparsity pattern, shown in Fig. 37, is obtained through the symbolic multiplication of the transpose of the matrix [image: \mathsf{C_L}] and the matrix itself, i.e. [image: \mathsf{P = C_L^T C_L}].

[image: ../../../_images/pattern.svg]
Sparsity pattern of the global matrix, where red and green entries are related to the displacement field and to the pressure field, respectively.
Blue entries represent coupling blocks.

Real mesh and patterns

Now we build the pattern of the Jacobian matrix for a simple 3D mesh, shown in
Fig. 38. Fields are:

	displacement (location: node, connectivity: element) defined on the blue, orange and red regions;

	pressure (location: element, connectivity: face) defined on the green, orange and red regions;

	mass matrix (location: element, connectivity: element) defined on the green region only.

Moreover, following coupling are imposed:

	displacement-pressure (connectivity: element) on the orange region only;

	pressure-mass matrix and transpose (connectivity: element) everywhere it is
possibile.

[image: ../../../_images/meshCube3D.svg]
Real mesh used to compute the Jacobian pattern.

Fig. 39 shows the global pattern with the field-based ordering of unknowns.
Different colors mean different fields.
Red unkwnons are associated with displacement, yellow ones with pressure and blue ones with mass matrix.
Orange means the coupling among displacement and pressure, while green is the symmetric coupling among pressure and mass matrix.

[image: ../../../_images/global.svg]
Global pattern with field-based ordering.
Red is associated with displacement unknowns, yellow with pressure ones and blue with those of mass matrix field.
Orange means the coupling among displacement and pressure, while green is the symmetric coupling among pressure and mass matrix.

Fig. 40 shows the global pattern with the MPI rank-based ordering of unknowns.
In this case, just two processes are used.
Again, different colors indicate different ranks.

[image: ../../../_images/permutedGlobal.svg]
Global pattern with MPI rank-based ordering.
Red unkwnons are owned by rank 0 and green ones by rank 1.
Blue indicates the coupling among the two processes.

GEOSX Krylov Solvers

This is just a dummy rst file for now.

Mesh Hierarchy

In GEOSX, the mesh structure consists of a hierarchy of classes intended to encapsulate data and
functionality for each topological type.
Each class in the mesh hierarchy represents a distinct topological object, such as a nodes, edges,
faces, elements, etc.
The mesh data structure is illustrated in an object instantiation hierarchy.
The object instantiation hierarchy differs from a “class hierarchy” in that it shows
how instantiations of each class relate to each other in the data hierarchy rather than how each class
type relates to each other in an inheritance diagram.

[image: ../../../_images/MeshObjectInstantiationHierarchy.png]

Object Instantiation Hierarchy for the Mesh Objects.

To illustrate the mesh hierarchy, we propose to present it along with a model with two
regions (Top and Bottom) (Fig. 32).

[image: ../../../_images/model.png]

Example of a model with two regions

DomainPartition

In Fig. 31 the top level object DomainPartition represents
a partition of the decomposed physical domain.
At this time there is a unique DomainPartition for every MPI rank.

Note

Hypothetically,
there may be more than one DomainPartition in cases where the ranks are overloaded.
Currently GEOSX does not support overloading multiple DomainPartition’s onto a rank, although
this may be a future option if its use is properly motivated.

For instance, the model presented as example can be split into two different domains
(Fig. 33).

[image: ../../../_images/mesh_domain.png]

Mesh partioned in two DomainPartition

MeshBody

The MeshBody represents a topologically distinct mesh body.
For instance if a simulation of two separate spheres was required, then one option would be to have
both spheres as part of a single mesh body, while another option would be to have each sphere be
a individual body.

Note

While not currently utilized in GEOSX, the intent is to have the ability to handle the bodies
in a multi-body mesh on an individual basis.
For instance, when conducting high resolution crush simulations of granular materials (i.e. sand),
it may be advantagous to represent each particle as a MeshBody.

MeshLevel

The MeshLevel is intended to facilitate the representation of a multi-level discretization of a MeshBody.

Note

In current practice, the code utilizes a single MeshLevel until such time as we
implement a proper multi-level mesh capability.
The MeshLevel contains the main components that compose a discretized mesh in GEOSX.

Topological Mesh Objects

Each of the “Manager” objects are responsible for holding child objects, data, and providing functionality
specific to a single topological object.
Each topological object that is used to define a discretized mesh has a “Manager” to allow for simple
traversal over the hierarchy, and to provide modular access to data.
As such, the NodeManager manages data for the “nodes”, the EdgeManager manages data for the edges, the FaceManager holds data for the faces and the ElementRegionManager manages
the physical groups within the MeshLevel (regions, fractures, wells etc…).
Additionally each manager contains index maps to the other types objects that are connected to the
objects in that manager.
For instance, the FaceManager contains a downward pointing map that gives the nodes that comprise each
face in the mesh.
Similarly the FaceManager contains an upward pointing map that gives the elements that are connected
to a face.

ElementRegionManager

The element data structure is significantly more complicated than the other Managers.
While the other managers are “flat” across the MeshLevel, the element data structure seeks to provide
a hierarchy in order to define groupings of the physical problem, as well as collecting discretization of
similar topology.
At the top of the element branch of the hierarchy is the ElementRegionManager.
The ElementRegionManager holds a collection of instantiations of ElementRegionBase derived
classes.

ElementRegion

Conceptually the ElementRegion are used to defined regions of the problem domain where a
PhysicsSolver will be applied.

	The CellElementRegion is related to all the polyhedra

	The FaceElementRegion is related to all the faces that have physical meaning in the
domain, such as fractures and faults. This object should not be mistaken with the
FaceManager. The FaceManager handles all the faces of the mesh, not only the
faces of interest.

	The WellElementRegion is related to the well geometry.

An ElementRegion also has a list of materials allocated at each quadrature point across the entire
region.
One example of the utility of the ElementRegion is the case of the simulation of the mechanics
and flow within subsurface reservoir with an overburden.
We could choose to have two ElementRegion, one being the reservoir, and one for the
overburden.
The mechanics solver would be applied to the entire problem, while the flow problem would be applied only
to the reservoir region.

Each ElementRegion holds some number of ElementSubRegion.
The ElementSubRegion is meant to hold all the element topologies present in an ElementSubRegion
in their own groups.
For instance, for a CellElementRegion, there may be one CellElementSubRegion for all
tetrahedra, one for all hexahedra, one for all wedges and one for all the pyramids (Fig. 34).

[image: ../../../_images/mesh_multi.png]

Model meshed with different cell types

Now that all the classes of the mesh hierarchy has been described, we propose to adapt the diagram
presented in Fig. 31 to match with the example presented in Fig. 32.

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	outputSismoTrace

	localIndex

	0

	Flag that indicates if we write the sismo trace in a file .txt, 0 no output, 1 otherwise

	receiverCoordinates

	real64_array2d

	required

	Coordinates (x,y,z) of the receivers

	rickerOrder

	localIndex

	2

	Flag that indicates the order of the Ricker to be used o, 1 or 2. Order 2 by default

	sourceCoordinates

	real64_array2d

	required

	Coordinates (x,y,z) of the sources

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	timeSourceFrequency

	real64

	required

	Central frequency for the time source

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Registered On

	Description

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	pressureNp1AtReceivers

	real64_array

	
	Pressure value at each receiver for each timestep

	receiverIsLocal

	localIndex_array

	
	Flag that indicates whether the receiver is local to this MPI rank

	receiverNodeIds

	localIndex_array2d

	
	Indices of the nodes (in the right order) for each receiver point

	sourceConstants

	real64_array2d

	
	Constant part of the receiver for the nodes listed in m_receiverNodeIds

	sourceIsLocal

	localIndex_array

	
	Flag that indicates whether the source is local to this MPI rank

	sourceNodeIds

	localIndex_array2d

	
	Indices of the nodes (in the right order) for each source point

	dampingVector

	real64_array

	Datastructure: nodeManager

	Diagonal of the Damping Matrix.

	freeSurfaceFaceIndicator

	localIndex_array

	Datastructure: FaceManager

	Free surface indicator, 1 if a face is on free surface 0 otherwise.

	freeSurfaceNodeIndicator

	localIndex_array

	Datastructure: nodeManager

	Free surface indicator, 1 if a node is on free surface 0 otherwise.

	massVector

	real64_array

	Datastructure: nodeManager

	Diagonal of the Mass Matrix.

	pressure_n

	real64_array

	Datastructure: nodeManager

	Scalar pressure at time n.

	pressure_nm1

	real64_array

	Datastructure: nodeManager

	Scalar pressure at time n-1.

	pressure_np1

	real64_array

	Datastructure: nodeManager

	Scalar pressure at time n+1.

	rhs

	real64_array

	Datastructure: nodeManager

	RHS

	stiffnessVector

	real64_array

	Datastructure: nodeManager

	Stiffness vector contains R_h*Pressure_n.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	allowAllPhasesIntoAquifer

	integer

	0

	
Flag to allow all phases to flow into the aquifer.

This flag only matters for the configuration in which flow is from reservoir to aquifer.

- If the flag is equal to 1, then all phases, including non-aqueous phases, are allowed to flow into the aquifer.

- If the flag is equal to 0, then only the water phase is allowed to flow into the aquifer.

If you are in a configuration in which flow is from reservoir to aquifer and you expect non-aqueous phases to saturate the reservoir cells next to the aquifer, set this flag to 1.

This keyword is ignored for single-phase flow simulations

	aquiferAngle

	real64

	required

	Angle subtended by the aquifer boundary from the center of the reservoir [degress]

	aquiferElevation

	real64

	required

	Aquifer elevation (positive going upward) [m]

	aquiferInitialPressure

	real64

	required

	Aquifer initial pressure [Pa]

	aquiferInnerRadius

	real64

	required

	Aquifer inner radius [m]

	aquiferPermeability

	real64

	required

	Aquifer permeability [m^2]

	aquiferPorosity

	real64

	required

	Aquifer porosity

	aquiferThickness

	real64

	required

	Aquifer thickness [m]

	aquiferTotalCompressibility

	real64

	required

	Aquifer total compressibility (rock and fluid) [Pa^-1]

	aquiferWaterDensity

	real64

	required

	Aquifer water density [kg.m^-3]

	aquiferWaterPhaseComponentFraction

	real64_array

	{0}

	Aquifer water phase component fraction. This keyword is ignored for single-phase flow simulations.

	aquiferWaterPhaseComponentNames

	string_array

	{}

	Aquifer water phase component names. This keyword is ignored for single-phase flow simulations.

	aquiferWaterViscosity

	real64

	required

	Aquifer water viscosity [Pa.s]

	bcApplicationTableName

	string

	
	Name of table that specifies the on/off application of the bc.

	beginTime

	real64

	-1e+99

	time at which BC will start being applied.

	direction

	R1Tensor

	{0,0,0}

	Direction to apply boundary condition to

	endTime

	real64

	1e+99

	time at which bc will stop being applied

	functionName

	string

	
	Name of function that specifies variation of the BC

	initialCondition

	integer

	0

	BC is applied as an initial condition.

	name

	string

	required

	A name is required for any non-unique nodes

	pressureInfluenceFunctionName

	string

	
	
Name of the table describing the pressure influence function

. If not provided, we use a default pressure influence function

	scale

	real64

	0

	Scale factor for value of BC.

	setNames

	string_array

	required

	Name of sets that boundary condition is applied to.

	Name

	Type

	Description

	component

	integer

	Component of field (if tensor) to apply boundary condition to

	cumulativeFlux

	real64

	(no description available)

	fieldName

	string

	Name of field that boundary condition is applied to.

	objectPath

	string

	Path to the target field

	Name

	Type

	Default

	Description

	lassen

	node

	unique

	Element: lassen

	quartz

	node

	unique

	Element: quartz

	Name

	Type

	Description

	lassen

	node

	Datastructure: lassen

	quartz

	node

	Datastructure: quartz

	Name

	Type

	Default

	Description

	defaultReferencePorosity

	real64

	required

	Default value of the reference porosity

	grainBulkModulus

	real64

	required

	Grain bulk modulus

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	biotCoefficient

	real64_array

	Biot coefficient.

	dPorosity_dPressure

	real64_array2d

	(no description available)

	oldPorosity

	real64_array2d

	(no description available)

	porosity

	real64_array2d

	(no description available)

	referencePorosity

	real64_array

	(no description available)

	Name

	Type

	Default

	Description

	componentMolarWeight

	real64_array

	required

	Component molar weights

	componentNames

	string_array

	{}

	List of component names

	hydrocarbonFormationVolFactorTableNames

	string_array

	{}

	
List of formation volume factor TableFunction names from the Functions block.

The user must provide one TableFunction per hydrocarbon phase, in the order provided in “phaseNames”.

For instance, if “oil” is before “gas” in “phaseNames”, the table order should be: oilTableName, gasTableName

	hydrocarbonViscosityTableNames

	string_array

	{}

	
List of viscosity TableFunction names from the Functions block.

The user must provide one TableFunction per hydrocarbon phase, in the order provided in “phaseNames”.

For instance, if “oil” is before “gas” in “phaseNames”, the table order should be: oilTableName, gasTableName

	name

	string

	required

	A name is required for any non-unique nodes

	phaseNames

	string_array

	required

	List of fluid phases

	surfaceDensities

	real64_array

	required

	List of surface mass densities for each phase

	tableFiles

	path_array

	{}

	List of filenames with input PVT tables (one per phase)

	waterCompressibility

	real64

	0

	Water compressibility

	waterFormationVolumeFactor

	real64

	0

	Water formation volume factor

	waterReferencePressure

	real64

	0

	Water reference pressure

	waterViscosity

	real64

	0

	Water viscosity

	Name

	Type

	Description

	PVTO

	geosx_constitutive_PVTOData

	(no description available)

	dPhaseCompFraction_dGlobalCompFraction

	LvArray_Array< double, 5, camp_int_seq< long, 0l, 1l, 2l, 3l, 4l >, long, LvArray_ChaiBuffer >

	(no description available)

	dPhaseCompFraction_dPressure

	real64_array4d

	(no description available)

	dPhaseCompFraction_dTemperature

	real64_array4d

	(no description available)

	dPhaseDensity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseDensity_dPressure

	real64_array3d

	(no description available)

	dPhaseDensity_dTemperature

	real64_array3d

	(no description available)

	dPhaseFraction_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseFraction_dPressure

	real64_array3d

	(no description available)

	dPhaseFraction_dTemperature

	real64_array3d

	(no description available)

	dPhaseMassDensity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseMassDensity_dPressure

	real64_array3d

	(no description available)

	dPhaseMassDensity_dTemperature

	real64_array3d

	(no description available)

	dPhaseViscosity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseViscosity_dPressure

	real64_array3d

	(no description available)

	dPhaseViscosity_dTemperature

	real64_array3d

	(no description available)

	dTotalDensity_dGlobalCompFraction

	real64_array3d

	(no description available)

	dTotalDensity_dPressure

	real64_array2d

	(no description available)

	dTotalDensity_dTemperature

	real64_array2d

	(no description available)

	formationVolFactorTableWrappers

	LvArray_Array< geosx_TableFunction_KernelWrapper, 1, camp_int_seq< long, 0l >, long, LvArray_ChaiBuffer >

	(no description available)

	hydrocarbonPhaseOrder

	integer_array

	(no description available)

	phaseCompFraction

	real64_array4d

	(no description available)

	phaseDensity

	real64_array3d

	(no description available)

	phaseFraction

	real64_array3d

	(no description available)

	phaseMassDensity

	real64_array3d

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	phaseViscosity

	real64_array3d

	(no description available)

	totalDensity

	real64_array2d

	(no description available)

	useMass

	integer

	(no description available)

	viscosityTableWrappers

	LvArray_Array< geosx_TableFunction_KernelWrapper, 1, camp_int_seq< long, 0l >, long, LvArray_ChaiBuffer >

	(no description available)

	Name

	Type

	Default

	Description

	childDirectory

	string

	
	Child directory path

	name

	string

	required

	A name is required for any non-unique nodes

	outputFullQuadratureData

	integer

	0

	If true writes out data associated with every quadrature point.

	parallelThreads

	integer

	1

	Number of plot files.

	plotLevel

	geosx_dataRepository_PlotLevel

	1

	Determines which fields to write.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	dimensions

	real64_array

	required

	Length and width of the bounded plane

	lengthVector

	R1Tensor

	required

	Tangent vector defining the orthonormal basis along with the normal.

	name

	string

	required

	A name is required for any non-unique nodes

	normal

	R1Tensor

	required

	Normal (n_x,n_y,n_z) to the plane (will be normalized automatically)

	origin

	R1Tensor

	required

	Origin point (x,y,z) of the plane (basically, any point on the plane)

	tolerance

	real64

	1e-05

	Tolerance to determine if a point sits on the plane or not. It is relative to the maximum dimension of the plane.

	widthVector

	R1Tensor

	required

	Tangent vector defining the orthonormal basis along with the normal.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	strike

	real64

	-90

	The strike angle of the box

	xMax

	R1Tensor

	required

	Maximum (x,y,z) coordinates of the box

	xMin

	R1Tensor

	required

	Minimum (x,y,z) coordinates of the box

	Name

	Type

	Description

	center

	R1Tensor

	(no description available)

	cosStrike

	real64

	(no description available)

	sinStrike

	real64

	(no description available)

	Name

	Type

	Default

	Description

	gasOilRelPermExponent

	real64_array

	{1}

	
Rel perm power law exponent for the pair (gas phase, oil phase) at residual water saturation

The expected format is “{ gasExp, oilExp }”, in that order

	gasOilRelPermMaxValue

	real64_array

	{0}

	
Maximum rel perm value for the pair (gas phase, oil phase) at residual water saturation

The expected format is “{ gasMax, oilMax }”, in that order

	name

	string

	required

	A name is required for any non-unique nodes

	phaseMinVolumeFraction

	real64_array

	{0}

	Minimum volume fraction value for each phase

	phaseNames

	string_array

	required

	List of fluid phases

	waterOilRelPermExponent

	real64_array

	{1}

	
Rel perm power law exponent for the pair (water phase, oil phase) at residual gas saturation

The expected format is “{ waterExp, oilExp }”, in that order

	waterOilRelPermMaxValue

	real64_array

	{0}

	
Maximum rel perm value for the pair (water phase, oil phase) at residual gas saturation

The expected format is “{ waterMax, oilMax }”, in that order

	Name

	Type

	Description

	dPhaseRelPerm_dPhaseVolFraction

	real64_array4d

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseRelPerm

	real64_array3d

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	volFracScale

	real64

	Factor used to scale the phase capillary pressure, defined as: one minus the sum of the phase minimum volume fractions.

	Name

	Type

	Default

	Description

	capPressureEpsilon

	real64

	1e-06

	Wetting-phase saturation at which the max cap. pressure is attained; used to avoid infinite cap. pressure values for saturations close to zero

	name

	string

	required

	A name is required for any non-unique nodes

	phaseCapPressureExponentInv

	real64_array

	{2}

	Inverse of capillary power law exponent for each phase

	phaseEntryPressure

	real64_array

	{1}

	Entry pressure value for each phase

	phaseMinVolumeFraction

	real64_array

	{0}

	Minimum volume fraction value for each phase

	phaseNames

	string_array

	required

	List of fluid phases

	Name

	Type

	Description

	dPhaseCapPressure_dPhaseVolFraction

	real64_array4d

	(no description available)

	phaseCapPressure

	real64_array3d

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	volFracScale

	real64

	Factor used to scale the phase capillary pressure, defined as: one minus the sum of the phase minimum volume fractions.

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	phaseMinVolumeFraction

	real64_array

	{0}

	Minimum volume fraction value for each phase

	phaseNames

	string_array

	required

	List of fluid phases

	phaseRelPermExponent

	real64_array

	{1}

	Minimum relative permeability power law exponent for each phase

	phaseRelPermMaxValue

	real64_array

	{0}

	Maximum relative permeability value for each phase

	Name

	Type

	Description

	dPhaseRelPerm_dPhaseVolFraction

	real64_array4d

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseRelPerm

	real64_array3d

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	volFracScale

	real64

	Factor used to scale the phase relative permeability, defined as: one minus the sum of the phase minimum volume fractions.

	Name

	Type

	Default

	Description

	componentMolarWeight

	real64_array

	{0}

	Component molar weights

	componentNames

	string_array

	{}

	List of component names

	flashModelParaFile

	path

	required

	Name of the file defining the parameters of the flash model

	name

	string

	required

	A name is required for any non-unique nodes

	phaseNames

	string_array

	{}

	List of fluid phases

	phasePVTParaFiles

	path_array

	required

	Names of the files defining the parameters of the viscosity and density models

	Name

	Type

	Description

	dPhaseCompFraction_dGlobalCompFraction

	LvArray_Array< double, 5, camp_int_seq< long, 0l, 1l, 2l, 3l, 4l >, long, LvArray_ChaiBuffer >

	(no description available)

	dPhaseCompFraction_dPressure

	real64_array4d

	(no description available)

	dPhaseCompFraction_dTemperature

	real64_array4d

	(no description available)

	dPhaseDensity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseDensity_dPressure

	real64_array3d

	(no description available)

	dPhaseDensity_dTemperature

	real64_array3d

	(no description available)

	dPhaseFraction_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseFraction_dPressure

	real64_array3d

	(no description available)

	dPhaseFraction_dTemperature

	real64_array3d

	(no description available)

	dPhaseMassDensity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseMassDensity_dPressure

	real64_array3d

	(no description available)

	dPhaseMassDensity_dTemperature

	real64_array3d

	(no description available)

	dPhaseViscosity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseViscosity_dPressure

	real64_array3d

	(no description available)

	dPhaseViscosity_dTemperature

	real64_array3d

	(no description available)

	dTotalDensity_dGlobalCompFraction

	real64_array3d

	(no description available)

	dTotalDensity_dPressure

	real64_array2d

	(no description available)

	dTotalDensity_dTemperature

	real64_array2d

	(no description available)

	phaseCompFraction

	real64_array4d

	(no description available)

	phaseDensity

	real64_array3d

	(no description available)

	phaseFraction

	real64_array3d

	(no description available)

	phaseMassDensity

	real64_array3d

	(no description available)

	phaseViscosity

	real64_array3d

	(no description available)

	totalDensity

	real64_array2d

	(no description available)

	useMass

	integer

	(no description available)

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	particleDiameter

	real64

	required

	Diameter of the spherical particles.

	sphericity

	real64

	required

	Sphericity of the particles.

	Name

	Type

	Description

	dPerm_dPorosity

	real64_array3d

	(no description available)

	dPerm_dPressure

	real64_array3d

	dPerm_dPressure of the rock.

	permeability

	real64_array3d

	permeability of the rock.

	Name

	Type

	Default

	Description

	cellBlocks

	string_array

	{}

	(no description available)

	coarseningRatio

	real64

	0

	(no description available)

	materialList

	string_array

	required

	List of materials present in this region

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	domainBoundaryIndicator

	integer_array

	(no description available)

	ghostRank

	integer_array

	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	(no description available)

	isExternal

	integer_array

	(no description available)

	localToGlobalMap

	globalIndex_array

	Array that contains a map from localIndex to globalIndex.

	elementSubRegions

	node

	Datastructure: elementSubRegions

	neighborData

	node

	Datastructure: neighborData

	sets

	node

	Datastructure: sets

	Name

	Type

	Default

	Description

	beginCycle

	real64

	required

	Cycle at which the coupling will commence.

	childDirectory

	string

	
	Child directory path

	inputPath

	string

	/INVALID_INPUT_PATH

	Path at which the chombo to geosx file will be written.

	name

	string

	required

	A name is required for any non-unique nodes

	outputPath

	string

	required

	Path at which the geosx to chombo file will be written.

	parallelThreads

	integer

	1

	Number of plot files.

	useChomboPressures

	integer

	0

	True iff geosx should use the pressures chombo writes out.

	waitForInput

	integer

	required

	True iff geosx should wait for chombo to write out a file. When true the inputPath must be set.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	expression

	string

	
	Composite math expression

	functionNames

	string_array

	{}

	List of source functions. The order must match the variableNames argument.

	inputVarNames

	string_array

	{}

	Name of fields are input to function.

	name

	string

	required

	A name is required for any non-unique nodes

	variableNames

	string_array

	{}

	List of variables in expression

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	allowLocalCompDensityChopping

	integer

	1

	Flag indicating whether local (cell-wise) chopping of negative compositions is allowed

	capPressureNames

	string_array

	{}

	Name of the capillary pressure constitutive model to use

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	computeCFLNumbers

	integer

	0

	Flag indicating whether CFL numbers are computed or not

	discretization

	string

	required

	Name of discretization object to use for this solver.

	fluidNames

	string_array

	required

	Names of fluid constitutive models for each region.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	inputFluxEstimate

	real64

	1

	Initial estimate of the input flux used only for residual scaling. This should be essentially equivalent to the input flux * dt.

	logLevel

	integer

	0

	Log level

	maxCompFractionChange

	real64

	1

	Maximum (absolute) change in a component fraction between two Newton iterations

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityNames

	string_array

	required

	Names of permeability constitutive models for each region.

	relPermNames

	string_array

	required

	Name of the relative permeability constitutive model to use

	solidNames

	string_array

	required

	Names of solid constitutive models for each region.

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	temperature

	real64

	required

	Temperature

	useMass

	integer

	0

	Use mass formulation instead of molar

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Registered On

	Description

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	facePressure

	real64_array

	Datastructure: FaceManager

	An array that holds the pressures at the faces.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	componentAcentricFactor

	real64_array

	required

	Component acentric factors

	componentBinaryCoeff

	real64_array2d

	{{0}}

	Table of binary interaction coefficients

	componentCriticalPressure

	real64_array

	required

	Component critical pressures

	componentCriticalTemperature

	real64_array

	required

	Component critical temperatures

	componentMolarWeight

	real64_array

	required

	Component molar weights

	componentNames

	string_array

	required

	List of component names

	componentVolumeShift

	real64_array

	{0}

	Component volume shifts

	equationsOfState

	string_array

	required

	List of equation of state types for each phase

	name

	string

	required

	A name is required for any non-unique nodes

	phaseNames

	string_array

	required

	List of fluid phases

	Name

	Type

	Description

	dPhaseCompFraction_dGlobalCompFraction

	LvArray_Array< double, 5, camp_int_seq< long, 0l, 1l, 2l, 3l, 4l >, long, LvArray_ChaiBuffer >

	(no description available)

	dPhaseCompFraction_dPressure

	real64_array4d

	(no description available)

	dPhaseCompFraction_dTemperature

	real64_array4d

	(no description available)

	dPhaseDensity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseDensity_dPressure

	real64_array3d

	(no description available)

	dPhaseDensity_dTemperature

	real64_array3d

	(no description available)

	dPhaseFraction_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseFraction_dPressure

	real64_array3d

	(no description available)

	dPhaseFraction_dTemperature

	real64_array3d

	(no description available)

	dPhaseMassDensity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseMassDensity_dPressure

	real64_array3d

	(no description available)

	dPhaseMassDensity_dTemperature

	real64_array3d

	(no description available)

	dPhaseViscosity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseViscosity_dPressure

	real64_array3d

	(no description available)

	dPhaseViscosity_dTemperature

	real64_array3d

	(no description available)

	dTotalDensity_dGlobalCompFraction

	real64_array3d

	(no description available)

	dTotalDensity_dPressure

	real64_array2d

	(no description available)

	dTotalDensity_dTemperature

	real64_array2d

	(no description available)

	phaseCompFraction

	real64_array4d

	(no description available)

	phaseDensity

	real64_array3d

	(no description available)

	phaseFraction

	real64_array3d

	(no description available)

	phaseMassDensity

	real64_array3d

	(no description available)

	phaseViscosity

	real64_array3d

	(no description available)

	totalDensity

	real64_array2d

	(no description available)

	useMass

	integer

	(no description available)

	Name

	Type

	Default

	Description

	allowLocalCompDensityChopping

	integer

	1

	Flag indicating whether local (cell-wise) chopping of negative compositions is allowed

	capPressureNames

	string_array

	{}

	Name of the capillary pressure constitutive model to use

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	computeCFLNumbers

	integer

	0

	Flag indicating whether CFL numbers are computed or not

	discretization

	string

	required

	Name of discretization object to use for this solver.

	fluidNames

	string_array

	required

	Names of fluid constitutive models for each region.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	inputFluxEstimate

	real64

	1

	Initial estimate of the input flux used only for residual scaling. This should be essentially equivalent to the input flux * dt.

	logLevel

	integer

	0

	Log level

	maxCompFractionChange

	real64

	1

	Maximum (absolute) change in a component fraction between two Newton iterations

	maxRelativePressureChange

	real64

	1

	Maximum (relative) change in (face) pressure between two Newton iterations

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityNames

	string_array

	required

	Names of permeability constitutive models for each region.

	relPermNames

	string_array

	required

	Name of the relative permeability constitutive model to use

	solidNames

	string_array

	required

	Names of solid constitutive models for each region.

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	temperature

	real64

	required

	Temperature

	useMass

	integer

	0

	Use mass formulation instead of molar

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Registered On

	Description

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	facePressure

	real64_array

	Datastructure: FaceManager

	An array that holds the pressures at the faces.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	flowSolverName

	string

	required

	Name of the flow solver to use in the reservoir-well system solver

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	wellSolverName

	string

	required

	Name of the well solver to use in the reservoir-well system solver

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Description

	discretization

	string

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	allowLocalCompDensityChopping

	integer

	1

	Flag indicating whether local (cell-wise) chopping of negative compositions is allowed

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	fluidNames

	string_array

	required

	Name of fluid constitutive object to use for this solver.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	maxCompFractionChange

	real64

	1

	Maximum (absolute) change in a component fraction between two Newton iterations

	maxRelativePressureChange

	real64

	1

	Maximum (relative) change in pressure between two Newton iterations (recommended with rate control)

	name

	string

	required

	A name is required for any non-unique nodes

	relPermNames

	string_array

	required

	Names of relative permeability constitutive models to use

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	useMass

	integer

	0

	Use mass formulation instead of molar

	wellTemperature

	real64

	required

	Temperature

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	WellControls

	node

	
	Element: WellControls

	Name

	Type

	Description

	discretization

	string

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	WellControls

	node

	Datastructure: WellControls

	Name

	Type

	Default

	Description

	compressibility

	real64

	0

	Fluid compressibility

	defaultDensity

	real64

	required

	Default value for density.

	defaultViscosity

	real64

	required

	Default value for viscosity.

	densityModelType

	geosx_constitutive_ExponentApproximationType

	linear

	
Type of density model. Valid options:

* exponential

* linear

* quadratic

	name

	string

	required

	A name is required for any non-unique nodes

	referenceDensity

	real64

	1000

	Reference fluid density

	referencePressure

	real64

	0

	Reference pressure

	referenceViscosity

	real64

	0.001

	Reference fluid viscosity

	viscosibility

	real64

	0

	Fluid viscosity exponential coefficient

	viscosityModelType

	geosx_constitutive_ExponentApproximationType

	linear

	
Type of viscosity model. Valid options:

* exponential

* linear

* quadratic

	Name

	Type

	Description

	dDensity_dPressure

	real64_array2d

	(no description available)

	dViscosity_dPressure

	real64_array2d

	(no description available)

	density

	real64_array2d

	(no description available)

	viscosity

	real64_array2d

	(no description available)

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityComponents

	R1Tensor

	required

	xx, yy and zz components of a diagonal permeability tensor.

	Name

	Type

	Description

	dPerm_dPressure

	real64_array3d

	dPerm_dPressure of the rock.

	permeability

	real64_array3d

	permeability of the rock.

	Name

	Type

	Default

	Description

	BiotPorosity

	node

	
	Element: BiotPorosity

	BlackOilFluid

	node

	
	Element: BlackOilFluid

	BrooksCoreyBakerRelativePermeability

	node

	
	Element: BrooksCoreyBakerRelativePermeability

	BrooksCoreyCapillaryPressure

	node

	
	Element: BrooksCoreyCapillaryPressure

	BrooksCoreyRelativePermeability

	node

	
	Element: BrooksCoreyRelativePermeability

	CO2BrineFluid

	node

	
	Element: CO2BrineFluid

	CarmanKozenyPermeability

	node

	
	Element: CarmanKozenyPermeability

	CompositionalMultiphaseFluid

	node

	
	Element: CompositionalMultiphaseFluid

	CompressibleSinglePhaseFluid

	node

	
	Element: CompressibleSinglePhaseFluid

	CompressibleSolidCarmanKozenyPermeability

	node

	
	Element: CompressibleSolidCarmanKozenyPermeability

	CompressibleSolidConstantPermeability

	node

	
	Element: CompressibleSolidConstantPermeability

	CompressibleSolidParallelPlatesPermeability

	node

	
	Element: CompressibleSolidParallelPlatesPermeability

	ConstantPermeability

	node

	
	Element: ConstantPermeability

	Contact

	node

	
	Element: Contact

	Coulomb

	node

	
	Element: Coulomb

	DamageElasticIsotropic

	node

	
	Element: DamageElasticIsotropic

	DamageSpectralElasticIsotropic

	node

	
	Element: DamageSpectralElasticIsotropic

	DamageVolDevElasticIsotropic

	node

	
	Element: DamageVolDevElasticIsotropic

	DeadOilFluid

	node

	
	Element: DeadOilFluid

	DelftEgg

	node

	
	Element: DelftEgg

	DruckerPrager

	node

	
	Element: DruckerPrager

	ElasticIsotropic

	node

	
	Element: ElasticIsotropic

	ElasticIsotropicPressureDependent

	node

	
	Element: ElasticIsotropicPressureDependent

	ElasticOrthotropic

	node

	
	Element: ElasticOrthotropic

	ElasticTransverseIsotropic

	node

	
	Element: ElasticTransverseIsotropic

	ExtendedDruckerPrager

	node

	
	Element: ExtendedDruckerPrager

	ModifiedCamClay

	node

	
	Element: ModifiedCamClay

	NullModel

	node

	
	Element: NullModel

	ParallelPlatesPermeability

	node

	
	Element: ParallelPlatesPermeability

	ParticleFluid

	node

	
	Element: ParticleFluid

	PermeabilityBase

	node

	
	Element: PermeabilityBase

	PorousDruckerPrager

	node

	
	Element: PorousDruckerPrager

	PorousElasticIsotropic

	node

	
	Element: PorousElasticIsotropic

	PorousElasticOrthotropic

	node

	
	Element: PorousElasticOrthotropic

	PorousElasticTransverseIsotropic

	node

	
	Element: PorousElasticTransverseIsotropic

	PorousExtendedDruckerPrager

	node

	
	Element: PorousExtendedDruckerPrager

	PressurePorosity

	node

	
	Element: PressurePorosity

	ProppantPermeability

	node

	
	Element: ProppantPermeability

	ProppantPorosity

	node

	
	Element: ProppantPorosity

	ProppantSlurryFluid

	node

	
	Element: ProppantSlurryFluid

	ProppantSolidProppantPermeability

	node

	
	Element: ProppantSolidProppantPermeability

	StrainDependentPermeability

	node

	
	Element: StrainDependentPermeability

	TableCapillaryPressure

	node

	
	Element: TableCapillaryPressure

	TableRelativePermeability

	node

	
	Element: TableRelativePermeability

	VanGenuchtenBakerRelativePermeability

	node

	
	Element: VanGenuchtenBakerRelativePermeability

	VanGenuchtenCapillaryPressure

	node

	
	Element: VanGenuchtenCapillaryPressure

	Name

	Type

	Description

	
	
	

	Name

	Type

	Description

	BiotPorosity

	node

	Datastructure: BiotPorosity

	BlackOilFluid

	node

	Datastructure: BlackOilFluid

	BrooksCoreyBakerRelativePermeability

	node

	Datastructure: BrooksCoreyBakerRelativePermeability

	BrooksCoreyCapillaryPressure

	node

	Datastructure: BrooksCoreyCapillaryPressure

	BrooksCoreyRelativePermeability

	node

	Datastructure: BrooksCoreyRelativePermeability

	CO2BrineFluid

	node

	Datastructure: CO2BrineFluid

	CarmanKozenyPermeability

	node

	Datastructure: CarmanKozenyPermeability

	CompositionalMultiphaseFluid

	node

	Datastructure: CompositionalMultiphaseFluid

	CompressibleSinglePhaseFluid

	node

	Datastructure: CompressibleSinglePhaseFluid

	CompressibleSolidCarmanKozenyPermeability

	node

	Datastructure: CompressibleSolidCarmanKozenyPermeability

	CompressibleSolidConstantPermeability

	node

	Datastructure: CompressibleSolidConstantPermeability

	CompressibleSolidParallelPlatesPermeability

	node

	Datastructure: CompressibleSolidParallelPlatesPermeability

	ConstantPermeability

	node

	Datastructure: ConstantPermeability

	Contact

	node

	Datastructure: Contact

	Coulomb

	node

	Datastructure: Coulomb

	DamageElasticIsotropic

	node

	Datastructure: DamageElasticIsotropic

	DamageSpectralElasticIsotropic

	node

	Datastructure: DamageSpectralElasticIsotropic

	DamageVolDevElasticIsotropic

	node

	Datastructure: DamageVolDevElasticIsotropic

	DeadOilFluid

	node

	Datastructure: DeadOilFluid

	DelftEgg

	node

	Datastructure: DelftEgg

	DruckerPrager

	node

	Datastructure: DruckerPrager

	ElasticIsotropic

	node

	Datastructure: ElasticIsotropic

	ElasticIsotropicPressureDependent

	node

	Datastructure: ElasticIsotropicPressureDependent

	ElasticOrthotropic

	node

	Datastructure: ElasticOrthotropic

	ElasticTransverseIsotropic

	node

	Datastructure: ElasticTransverseIsotropic

	ExtendedDruckerPrager

	node

	Datastructure: ExtendedDruckerPrager

	ModifiedCamClay

	node

	Datastructure: ModifiedCamClay

	NullModel

	node

	Datastructure: NullModel

	ParallelPlatesPermeability

	node

	Datastructure: ParallelPlatesPermeability

	ParticleFluid

	node

	Datastructure: ParticleFluid

	PermeabilityBase

	node

	Datastructure: PermeabilityBase

	PorousDruckerPrager

	node

	Datastructure: PorousDruckerPrager

	PorousElasticIsotropic

	node

	Datastructure: PorousElasticIsotropic

	PorousElasticOrthotropic

	node

	Datastructure: PorousElasticOrthotropic

	PorousElasticTransverseIsotropic

	node

	Datastructure: PorousElasticTransverseIsotropic

	PorousExtendedDruckerPrager

	node

	Datastructure: PorousExtendedDruckerPrager

	PressurePorosity

	node

	Datastructure: PressurePorosity

	ProppantPermeability

	node

	Datastructure: ProppantPermeability

	ProppantPorosity

	node

	Datastructure: ProppantPorosity

	ProppantSlurryFluid

	node

	Datastructure: ProppantSlurryFluid

	ProppantSolidProppantPermeability

	node

	Datastructure: ProppantSolidProppantPermeability

	StrainDependentPermeability

	node

	Datastructure: StrainDependentPermeability

	TableCapillaryPressure

	node

	Datastructure: TableCapillaryPressure

	TableRelativePermeability

	node

	Datastructure: TableRelativePermeability

	VanGenuchtenBakerRelativePermeability

	node

	Datastructure: VanGenuchtenBakerRelativePermeability

	VanGenuchtenCapillaryPressure

	node

	Datastructure: VanGenuchtenCapillaryPressure

	Name

	Type

	Default

	Description

	apertureTableName

	string

	required

	Name of the aperture table

	apertureTolerance

	real64

	1e-09

	Value to be used to avoid floating point errors in expressions involving aperture. For example in the case of dividing by the actual aperture (not the effective aperture that results from the aperture function) this value may be used to avoid the 1/0 error. Note that this value may have some physical significance in its usage, as it may be used to smooth out highly nonlinear behavior associated with 1/0 in addition to avoiding the 1/0 error.

	name

	string

	required

	A name is required for any non-unique nodes

	penaltyStiffness

	real64

	0

	Value of the penetration penalty stiffness. Units of Pressure/length

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	cohesion

	real64

	required

	Cohesion

	frictionAngle

	real64

	-1

	Friction angle (in radians)

	frictionCoefficient

	real64

	-1

	Friction coefficient

	name

	string

	required

	A name is required for any non-unique nodes

	penaltyStiffness

	real64

	0

	Value of the penetration penalty stiffness. Units of Pressure/length

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	innerRadius

	real64

	-1

	Inner radius of the anulus

	name

	string

	required

	A name is required for any non-unique nodes

	point1

	R1Tensor

	required

	Center point of one (upper or lower) face of the cylinder

	point2

	R1Tensor

	required

	Center point of the other face of the cylinder

	radius

	real64

	required

	Radius of the cylinder

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	criticalFractureEnergy

	real64

	required

	Critical fracture energy

	criticalStrainEnergy

	real64

	required

	Critical stress in a 1d tension test

	defaultBulkModulus

	real64

	-1

	Default Bulk Modulus Parameter

	defaultDensity

	real64

	required

	Default Material Density

	defaultPoissonRatio

	real64

	-1

	Default Poisson’s Ratio

	defaultShearModulus

	real64

	-1

	Default Shear Modulus Parameter

	defaultYoungModulus

	real64

	-1

	Default Young’s Modulus

	lengthScale

	real64

	required

	Length scale l in the phase-field equation

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	bulkModulus

	real64_array

	Elastic Bulk Modulus Field

	damage

	real64_array2d

	Material Damage Variable

	density

	real64_array2d

	Material Density

	oldStress

	real64_array3d

	Previous Material Stress

	shearModulus

	real64_array

	Elastic Shear Modulus Field

	strainEnergyDensity

	real64_array2d

	Strain Energy Density

	stress

	real64_array3d

	Current Material Stress

	Name

	Type

	Default

	Description

	criticalFractureEnergy

	real64

	required

	Critical fracture energy

	criticalStrainEnergy

	real64

	required

	Critical stress in a 1d tension test

	defaultBulkModulus

	real64

	-1

	Default Bulk Modulus Parameter

	defaultDensity

	real64

	required

	Default Material Density

	defaultPoissonRatio

	real64

	-1

	Default Poisson’s Ratio

	defaultShearModulus

	real64

	-1

	Default Shear Modulus Parameter

	defaultYoungModulus

	real64

	-1

	Default Young’s Modulus

	lengthScale

	real64

	required

	Length scale l in the phase-field equation

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	bulkModulus

	real64_array

	Elastic Bulk Modulus Field

	damage

	real64_array2d

	Material Damage Variable

	density

	real64_array2d

	Material Density

	oldStress

	real64_array3d

	Previous Material Stress

	shearModulus

	real64_array

	Elastic Shear Modulus Field

	strainEnergyDensity

	real64_array2d

	Strain Energy Density

	stress

	real64_array3d

	Current Material Stress

	Name

	Type

	Default

	Description

	criticalFractureEnergy

	real64

	required

	Critical fracture energy

	criticalStrainEnergy

	real64

	required

	Critical stress in a 1d tension test

	defaultBulkModulus

	real64

	-1

	Default Bulk Modulus Parameter

	defaultDensity

	real64

	required

	Default Material Density

	defaultPoissonRatio

	real64

	-1

	Default Poisson’s Ratio

	defaultShearModulus

	real64

	-1

	Default Shear Modulus Parameter

	defaultYoungModulus

	real64

	-1

	Default Young’s Modulus

	lengthScale

	real64

	required

	Length scale l in the phase-field equation

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	bulkModulus

	real64_array

	Elastic Bulk Modulus Field

	damage

	real64_array2d

	Material Damage Variable

	density

	real64_array2d

	Material Density

	oldStress

	real64_array3d

	Previous Material Stress

	shearModulus

	real64_array

	Elastic Shear Modulus Field

	strainEnergyDensity

	real64_array2d

	Strain Energy Density

	stress

	real64_array3d

	Current Material Stress

	Name

	Type

	Default

	Description

	componentMolarWeight

	real64_array

	required

	Component molar weights

	componentNames

	string_array

	{}

	List of component names

	hydrocarbonFormationVolFactorTableNames

	string_array

	{}

	
List of formation volume factor TableFunction names from the Functions block.

The user must provide one TableFunction per hydrocarbon phase, in the order provided in “phaseNames”.

For instance, if “oil” is before “gas” in “phaseNames”, the table order should be: oilTableName, gasTableName

	hydrocarbonViscosityTableNames

	string_array

	{}

	
List of viscosity TableFunction names from the Functions block.

The user must provide one TableFunction per hydrocarbon phase, in the order provided in “phaseNames”.

For instance, if “oil” is before “gas” in “phaseNames”, the table order should be: oilTableName, gasTableName

	name

	string

	required

	A name is required for any non-unique nodes

	phaseNames

	string_array

	required

	List of fluid phases

	surfaceDensities

	real64_array

	required

	List of surface mass densities for each phase

	tableFiles

	path_array

	{}

	List of filenames with input PVT tables (one per phase)

	waterCompressibility

	real64

	0

	Water compressibility

	waterFormationVolumeFactor

	real64

	0

	Water formation volume factor

	waterReferencePressure

	real64

	0

	Water reference pressure

	waterViscosity

	real64

	0

	Water viscosity

	Name

	Type

	Description

	dPhaseCompFraction_dGlobalCompFraction

	LvArray_Array< double, 5, camp_int_seq< long, 0l, 1l, 2l, 3l, 4l >, long, LvArray_ChaiBuffer >

	(no description available)

	dPhaseCompFraction_dPressure

	real64_array4d

	(no description available)

	dPhaseCompFraction_dTemperature

	real64_array4d

	(no description available)

	dPhaseDensity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseDensity_dPressure

	real64_array3d

	(no description available)

	dPhaseDensity_dTemperature

	real64_array3d

	(no description available)

	dPhaseFraction_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseFraction_dPressure

	real64_array3d

	(no description available)

	dPhaseFraction_dTemperature

	real64_array3d

	(no description available)

	dPhaseMassDensity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseMassDensity_dPressure

	real64_array3d

	(no description available)

	dPhaseMassDensity_dTemperature

	real64_array3d

	(no description available)

	dPhaseViscosity_dGlobalCompFraction

	real64_array4d

	(no description available)

	dPhaseViscosity_dPressure

	real64_array3d

	(no description available)

	dPhaseViscosity_dTemperature

	real64_array3d

	(no description available)

	dTotalDensity_dGlobalCompFraction

	real64_array3d

	(no description available)

	dTotalDensity_dPressure

	real64_array2d

	(no description available)

	dTotalDensity_dTemperature

	real64_array2d

	(no description available)

	formationVolFactorTableWrappers

	LvArray_Array< geosx_TableFunction_KernelWrapper, 1, camp_int_seq< long, 0l >, long, LvArray_ChaiBuffer >

	(no description available)

	hydrocarbonPhaseOrder

	integer_array

	(no description available)

	phaseCompFraction

	real64_array4d

	(no description available)

	phaseDensity

	real64_array3d

	(no description available)

	phaseFraction

	real64_array3d

	(no description available)

	phaseMassDensity

	real64_array3d

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	phaseViscosity

	real64_array3d

	(no description available)

	totalDensity

	real64_array2d

	(no description available)

	useMass

	integer

	(no description available)

	viscosityTableWrappers

	LvArray_Array< geosx_TableFunction_KernelWrapper, 1, camp_int_seq< long, 0l >, long, LvArray_ChaiBuffer >

	(no description available)

	Name

	Type

	Default

	Description

	defaultBulkModulus

	real64

	-1

	Default Bulk Modulus Parameter

	defaultCslSlope

	real64

	1

	Slope of the critical state line

	defaultDensity

	real64

	required

	Default Material Density

	defaultPoissonRatio

	real64

	-1

	Default Poisson’s Ratio

	defaultPreConsolidationPressure

	real64

	-1.5

	Initial preconsolidation pressure

	defaultRecompressionIndex

	real64

	0.002

	Recompresion Index

	defaultShapeParameter

	real64

	1

	Shape parameter for the yield surface

	defaultShearModulus

	real64

	-1

	Default Shear Modulus Parameter

	defaultVirginCompressionIndex

	real64

	0.005

	Virgin compression index

	defaultYoungModulus

	real64

	-1

	Default Young’s Modulus

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	bulkModulus

	real64_array

	Elastic Bulk Modulus Field

	cslSlope

	real64_array

	Slope of the critical state line

	density

	real64_array2d

	Material Density

	oldPreConsolidationPressure

	real64_array2d

	Old preconsolidation pressure

	oldStress

	real64_array3d

	Previous Material Stress

	preConsolidationPressure

	real64_array2d

	New preconsolidation pressure

	recompressionIndex

	real64_array

	Recompression index

	shapeParameter

	real64_array

	Shape parameter for the yield surface

	shearModulus

	real64_array

	Elastic Shear Modulus Field

	stress

	real64_array3d

	Current Material Stress

	virginCompressionIndex

	real64_array

	Virgin compression index

	Name

	Type

	Default

	Description

	bcApplicationTableName

	string

	
	Name of table that specifies the on/off application of the bc.

	beginTime

	real64

	-1e+99

	time at which BC will start being applied.

	component

	integer

	-1

	Component of field (if tensor) to apply boundary condition to

	direction

	R1Tensor

	{0,0,0}

	Direction to apply boundary condition to

	endTime

	real64

	1e+99

	time at which bc will stop being applied

	fieldName

	string

	
	Name of field that boundary condition is applied to.

	functionName

	string

	
	Name of function that specifies variation of the BC

	initialCondition

	integer

	0

	BC is applied as an initial condition.

	name

	string

	required

	A name is required for any non-unique nodes

	objectPath

	string

	
	Path to the target field

	scale

	real64

	0

	Scale factor for value of BC.

	setNames

	string_array

	required

	Name of sets that boundary condition is applied to.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	defaultBulkModulus

	real64

	-1

	Default Bulk Modulus Parameter

	defaultCohesion

	real64

	0

	Initial cohesion

	defaultDensity

	real64

	required

	Default Material Density

	defaultDilationAngle

	real64

	30

	Dilation angle (degrees)

	defaultFrictionAngle

	real64

	30

	Friction angle (degrees)

	defaultHardeningRate

	real64

	0

	Cohesion hardening/softening rate

	defaultPoissonRatio

	real64

	-1

	Default Poisson’s Ratio

	defaultShearModulus

	real64

	-1

	Default Shear Modulus Parameter

	defaultYoungModulus

	real64

	-1

	Default Young’s Modulus

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	bulkModulus

	real64_array

	Elastic Bulk Modulus Field

	cohesion

	real64_array2d

	New cohesion state

	density

	real64_array2d

	Material Density

	dilation

	real64_array

	Plastic potential slope

	friction

	real64_array

	Yield surface slope

	hardening

	real64_array

	Hardening rate

	oldCohesion

	real64_array2d

	Old cohesion state

	oldStress

	real64_array3d

	Previous Material Stress

	shearModulus

	real64_array

	Elastic Shear Modulus Field

	stress

	real64_array3d

	Current Material Stress

	Name

	Type

	Default

	Description

	defaultBulkModulus

	real64

	-1

	Default Bulk Modulus Parameter

	defaultDensity

	real64

	required

	Default Material Density

	defaultPoissonRatio

	real64

	-1

	Default Poisson’s Ratio

	defaultShearModulus

	real64

	-1

	Default Shear Modulus Parameter

	defaultYoungModulus

	real64

	-1

	Default Young’s Modulus

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Default

	Description

	defaultDensity

	real64

	required

	Default Material Density

	defaultRecompressionIndex

	real64

	0.002

	Recompresion Index

	defaultRefPressure

	real64

	-1

	Reference Pressure

	defaultRefStrainVol

	real64

	0

	Reference Volumetric Strain

	defaultShearModulus

	real64

	-1

	Elastic Shear Modulus Parameter

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	density

	real64_array2d

	Material Density

	oldStress

	real64_array3d

	Previous Material Stress

	recompressionIndex

	real64_array

	Recompression Index Field

	refPressure

	real64

	Reference Pressure Field

	refStrainVol

	real64

	Reference Volumetric Strain

	shearModulus

	real64_array

	Elastic Shear Modulus

	stress

	real64_array3d

	Current Material Stress

	Name

	Type

	Description

	bulkModulus

	real64_array

	Elastic Bulk Modulus Field

	density

	real64_array2d

	Material Density

	oldStress

	real64_array3d

	Previous Material Stress

	shearModulus

	real64_array

	Elastic Shear Modulus Field

	stress

	real64_array3d

	Current Material Stress

	Name

	Type

	Default

	Description

	defaultC11

	real64

	-1

	Default C11 Component of Voigt Stiffness Tensor

	defaultC12

	real64

	-1

	Default C12 Component of Voigt Stiffness Tensor

	defaultC13

	real64

	-1

	Default C13 Component of Voigt Stiffness Tensor

	defaultC22

	real64

	-1

	Default C22 Component of Voigt Stiffness Tensor

	defaultC23

	real64

	-1

	Default C23 Component of Voigt Stiffness Tensor

	defaultC33

	real64

	-1

	Default C33 Component of Voigt Stiffness Tensor

	defaultC44

	real64

	-1

	Default C44 Component of Voigt Stiffness Tensor

	defaultC55

	real64

	-1

	Default C55 Component of Voigt Stiffness Tensor

	defaultC66

	real64

	-1

	Default C66 Component of Voigt Stiffness Tensor

	defaultDensity

	real64

	required

	Default Material Density

	defaultE1

	real64

	-1

	Default Young’s Modulus E1

	defaultE2

	real64

	-1

	Default Young’s Modulus E2

	defaultE3

	real64

	-1

	Default Young’s Modulus E3

	defaultG12

	real64

	-1

	Default Shear Modulus G12

	defaultG13

	real64

	-1

	Default Shear Modulus G13

	defaultG23

	real64

	-1

	Default Shear Modulus G23

	defaultNu12

	real64

	-1

	Default Poission’s Ratio Nu12

	defaultNu13

	real64

	-1

	Default Poission’s Ratio Nu13

	defaultNu23

	real64

	-1

	Default Poission’s Ratio Nu23

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	c11

	real64_array

	Elastic Stiffness Field C11

	c12

	real64_array

	Elastic Stiffness Field C12

	c13

	real64_array

	Elastic Stiffness Field C13

	c22

	real64_array

	Elastic Stiffness Field C22

	c23

	real64_array

	Elastic Stiffness Field C23

	c33

	real64_array

	Elastic Stiffness Field C33

	c44

	real64_array

	Elastic Stiffness Field C44

	c55

	real64_array

	Elastic Stiffness Field C55

	c66

	real64_array

	Elastic Stiffness Field C66

	density

	real64_array2d

	Material Density

	oldStress

	real64_array3d

	Previous Material Stress

	stress

	real64_array3d

	Current Material Stress

	Name

	Type

	Default

	Description

	defaultC11

	real64

	-1

	Default Stiffness Parameter C11

	defaultC13

	real64

	-1

	Default Stiffness Parameter C13

	defaultC33

	real64

	-1

	Default Stiffness Parameter C33

	defaultC44

	real64

	-1

	Default Stiffness Parameter C44

	defaultC66

	real64

	-1

	Default Stiffness Parameter C66

	defaultDensity

	real64

	required

	Default Material Density

	defaultPoissonRatioAxialTransverse

	real64

	-1

	Default Axial-Transverse Poisson’s Ratio

	defaultPoissonRatioTransverse

	real64

	-1

	Default Transverse Poisson’s Ratio

	defaultShearModulusAxialTransverse

	real64

	-1

	Default Axial-Transverse Shear Modulus

	defaultYoungModulusAxial

	real64

	-1

	Default Axial Young’s Modulus

	defaultYoungModulusTransverse

	real64

	-1

	Default Transverse Young’s Modulus

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	c11

	real64_array

	Elastic Stiffness Field C11

	c13

	real64_array

	Elastic Stiffness Field C13

	c33

	real64_array

	Elastic Stiffness Field C33

	c44

	real64_array

	Elastic Stiffness Field C44

	c66

	real64_array

	Elastic Stiffness Field C66

	density

	real64_array2d

	Material Density

	oldStress

	real64_array3d

	Previous Material Stress

	stress

	real64_array3d

	Current Material Stress

	Name

	Type

	Default

	Description

	CellElementRegion

	node

	
	Element: CellElementRegion

	SurfaceElementRegion

	node

	
	Element: SurfaceElementRegion

	WellElementRegion

	node

	
	Element: WellElementRegion

	Name

	Type

	Description

	domainBoundaryIndicator

	integer_array

	(no description available)

	ghostRank

	integer_array

	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	(no description available)

	isExternal

	integer_array

	(no description available)

	localToGlobalMap

	globalIndex_array

	Array that contains a map from localIndex to globalIndex.

	CellElementRegion

	node

	Datastructure: CellElementRegion

	SurfaceElementRegion

	node

	Datastructure: SurfaceElementRegion

	WellElementRegion

	node

	Datastructure: WellElementRegion

	elementRegionsGroup

	node

	Datastructure: elementRegionsGroup

	neighborData

	node

	Datastructure: neighborData

	sets

	node

	Datastructure: sets

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	fractureRegion

	string

	FractureRegion

	(no description available)

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	mpiCommOrder

	integer

	0

	Flag to enable MPI consistent communication ordering

	name

	string

	required

	A name is required for any non-unique nodes

	solidMaterialNames

	string_array

	required

	Name of the solid material used in solid mechanic solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Registered On

	Description

	discretization

	string

	
	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	parentEdgeIndex

	localIndex_array

	Datastructure: embeddedSurfacesNodeManager

	Index of parent edge within the mesh object it is registered on.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	logLevel

	integer

	0

	Log level

	maxCycle

	integer

	2147483647

	Maximum simulation cycle for the global event loop.

	maxTime

	real64

	1.79769e+308

	Maximum simulation time for the global event loop.

	HaltEvent

	node

	
	Element: HaltEvent

	PeriodicEvent

	node

	
	Element: PeriodicEvent

	SoloEvent

	node

	
	Element: SoloEvent

	Name

	Type

	Description

	currentSubEvent

	integer

	Index of the current subevent.

	cycle

	integer

	Current simulation cycle number.

	dt

	real64

	Current simulation timestep.

	time

	real64

	Current simulation time.

	HaltEvent

	node

	Datastructure: HaltEvent

	PeriodicEvent

	node

	Datastructure: PeriodicEvent

	SoloEvent

	node

	Datastructure: SoloEvent

	Name

	Type

	Default

	Description

	defaultBulkModulus

	real64

	-1

	Default Bulk Modulus Parameter

	defaultCohesion

	real64

	0

	Initial cohesion

	defaultDensity

	real64

	required

	Default Material Density

	defaultDilationRatio

	real64

	1

	Dilation ratio [0,1] (ratio = tan dilationAngle / tan frictionAngle)

	defaultHardening

	real64

	0

	Hardening parameter (hardening rate is faster for smaller values)

	defaultInitialFrictionAngle

	real64

	30

	Initial friction angle (degrees)

	defaultPoissonRatio

	real64

	-1

	Default Poisson’s Ratio

	defaultResidualFrictionAngle

	real64

	30

	Residual friction angle (degrees)

	defaultShearModulus

	real64

	-1

	Default Shear Modulus Parameter

	defaultYoungModulus

	real64

	-1

	Default Young’s Modulus

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	bulkModulus

	real64_array

	Elastic Bulk Modulus Field

	density

	real64_array2d

	Material Density

	dilationRatio

	real64_array

	Plastic potential slope ratio

	hardening

	real64_array

	Hardening parameter

	initialFriction

	real64_array

	Initial yield surface slope

	oldStateVariable

	real64_array2d

	Old equivalent plastic shear strain

	oldStress

	real64_array3d

	Previous Material Stress

	pressureIntercept

	real64_array

	Pressure point at cone vertex

	residualFriction

	real64_array

	Residual yield surface slope

	shearModulus

	real64_array

	Elastic Shear Modulus Field

	stateVariable

	real64_array2d

	New equivalent plastic shear strain

	stress

	real64_array3d

	Current Material Stress

	Name

	Type

	Registered By

	Description

	deltaFacePressure

	real64_array

	
	(no description available)

	domainBoundaryIndicator

	integer_array

	
	(no description available)

	edgeList

	geosx_InterObjectRelation< LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer > >

	
	(no description available)

	elemList

	localIndex_array2d

	
	(no description available)

	elemRegionList

	localIndex_array2d

	
	(no description available)

	elemSubRegionList

	localIndex_array2d

	
	(no description available)

	faceArea

	real64_array

	
	(no description available)

	faceCenter

	real64_array2d

	
	(no description available)

	faceNormal

	real64_array2d

	
	(no description available)

	ghostRank

	integer_array

	
	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	
	(no description available)

	gravityCoefficient

	real64_array

	
	(no description available)

	isExternal

	integer_array

	
	(no description available)

	localToGlobalMap

	globalIndex_array

	
	Array that contains a map from localIndex to globalIndex.

	mimGravityCoefficient

	real64_array

	
	(no description available)

	nodeList

	geosx_InterObjectRelation< LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer > >

	
	(no description available)

	K_IC

	real64_array2d

	Datastructure: SurfaceGenerator

	Critical Stress Intensity Factor [image: K_{IC}] in the plane of the face.

	SIFonFace

	real64_array

	Datastructure: SurfaceGenerator

	Calculated Stress Intensity Factor on the face.

	TransMultiplier

	real64_array

	Datastructure: HybridMimeticDiscretization, Datastructure: TwoPointFluxApproximation

	An array that holds the transmissibility multipliers

	childIndex

	localIndex_array

	Datastructure: SurfaceGenerator

	Index of child within the mesh object it is registered on.

	degreeFromCrackTip

	integer_array

	Datastructure: SurfaceGenerator

	Distance to the crack tip in terms of topological distance. (i.e. how many nodes are along the path to the closest node that is on the crack surface.

	facePressure

	real64_array

	Datastructure: CompositionalMultiphaseFVM, Datastructure: CompositionalMultiphaseHybridFVM, Datastructure: SinglePhaseFVM, Datastructure: SinglePhaseHybridFVM, Datastructure: SinglePhaseProppantFVM

	An array that holds the pressures at the faces.

	freeSurfaceFaceIndicator

	localIndex_array

	Datastructure: AcousticSEM

	Free surface indicator, 1 if a face is on free surface 0 otherwise.

	isFaceSeparable

	integer_array

	Datastructure: SurfaceGenerator

	A flag to mark if the face is separable.

	parentIndex

	localIndex_array

	Datastructure: SurfaceGenerator

	Index of parent within the mesh object it is registered on.

	primaryCandidateFace

	localIndex_array

	Datastructure: SurfaceGenerator

	??

	ruptureState

	integer_array

	Datastructure: SurfaceGenerator

	
Rupture state of the face:

0=not ready for rupture

1=ready for rupture

2=ruptured.

	ruptureTime

	real64_array

	Datastructure: SurfaceGenerator

	Time that the object was ruptured/split.

	neighborData

	node

	
	Datastructure: neighborData

	sets

	node

	
	Datastructure: sets

	Name

	Type

	Default

	Description

	bcApplicationTableName

	string

	
	Name of table that specifies the on/off application of the bc.

	beginTime

	real64

	-1e+99

	time at which BC will start being applied.

	component

	integer

	-1

	Component of field (if tensor) to apply boundary condition to

	direction

	R1Tensor

	{0,0,0}

	Direction to apply boundary condition to

	endTime

	real64

	1e+99

	time at which bc will stop being applied

	fieldName

	string

	
	Name of field that boundary condition is applied to.

	functionName

	string

	
	Name of function that specifies variation of the BC

	initialCondition

	integer

	0

	BC is applied as an initial condition.

	name

	string

	required

	A name is required for any non-unique nodes

	objectPath

	string

	
	Path to the target field

	scale

	real64

	0

	Scale factor for value of BC.

	setNames

	string_array

	required

	Name of sets that boundary condition is applied to.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	Aquifer

	node

	
	Element: Aquifer

	Dirichlet

	node

	
	Element: Dirichlet

	FieldSpecification

	node

	
	Element: FieldSpecification

	SourceFlux

	node

	
	Element: SourceFlux

	Traction

	node

	
	Element: Traction

	Name

	Type

	Description

	Aquifer

	node

	Datastructure: Aquifer

	Dirichlet

	node

	Datastructure: Dirichlet

	FieldSpecification

	node

	Datastructure: FieldSpecification

	SourceFlux

	node

	Datastructure: SourceFlux

	Traction

	node

	Datastructure: Traction

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	formulation

	string

	default

	Specifier to indicate any specialized formuations. For instance, one of the many enhanced assumed strain methods of the Hexahedron parent shape would be indicated here

	name

	string

	required

	A name is required for any non-unique nodes

	order

	integer

	required

	The order of the finite element basis.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	FiniteElementSpace

	node

	
	Element: FiniteElementSpace

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Description

	FiniteElementSpace

	node

	Datastructure: FiniteElementSpace

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	HybridMimeticDiscretization

	node

	
	Element: HybridMimeticDiscretization

	TwoPointFluxApproximation

	node

	
	Element: TwoPointFluxApproximation

	Name

	Type

	Description

	HybridMimeticDiscretization

	node

	Datastructure: HybridMimeticDiscretization

	TwoPointFluxApproximation

	node

	Datastructure: TwoPointFluxApproximation

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	flowSolverName

	string

	required

	Name of the flow solver to use in the flowProppantTransport solver

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	proppantSolverName

	string

	required

	Name of the proppant transport solver to use in the flowProppantTransport solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Description

	discretization

	string

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	CompositeFunction

	node

	
	Element: CompositeFunction

	SymbolicFunction

	node

	
	Element: SymbolicFunction

	TableFunction

	node

	
	Element: TableFunction

	Name

	Type

	Description

	CompositeFunction

	node

	Datastructure: CompositeFunction

	SymbolicFunction

	node

	Datastructure: SymbolicFunction

	TableFunction

	node

	Datastructure: TableFunction

	Name

	Type

	Default

	Description

	BoundedPlane

	node

	
	Element: BoundedPlane

	Box

	node

	
	Element: Box

	Cylinder

	node

	
	Element: Cylinder

	ThickPlane

	node

	
	Element: ThickPlane

	Name

	Type

	Description

	BoundedPlane

	node

	Datastructure: BoundedPlane

	Box

	node

	Datastructure: Box

	Cylinder

	node

	Datastructure: Cylinder

	ThickPlane

	node

	Datastructure: ThickPlane

	Name

	Type

	Default

	Description

	beginTime

	real64

	0

	Start time of this event.

	endTime

	real64

	1e+100

	End time of this event.

	finalDtStretch

	real64

	0.001

	Allow the final dt request for this event to grow by this percentage to match the endTime exactly.

	forceDt

	real64

	-1

	While active, this event will request this timestep value (ignoring any children/targets requests).

	logLevel

	integer

	0

	Log level

	maxEventDt

	real64

	-1

	While active, this event will request a timestep <= this value (depending upon any child/target requests).

	maxRuntime

	real64

	required

	The maximum allowable runtime for the job.

	name

	string

	required

	A name is required for any non-unique nodes

	target

	string

	
	Name of the object to be executed when the event criteria are met.

	targetExactStartStop

	integer

	1

	If this option is set, the event will reduce its timestep requests to match any specified beginTime/endTimes exactly.

	HaltEvent

	node

	
	Element: HaltEvent

	PeriodicEvent

	node

	
	Element: PeriodicEvent

	SoloEvent

	node

	
	Element: SoloEvent

	Name

	Type

	Description

	currentSubEvent

	integer

	Index of the current subevent

	eventForecast

	integer

	Indicates when the event is expected to execute

	isTargetExecuting

	integer

	Index of the current subevent

	lastCycle

	integer

	Last event occurrence (cycle)

	lastTime

	real64

	Last event occurrence (time)

	HaltEvent

	node

	Datastructure: HaltEvent

	PeriodicEvent

	node

	Datastructure: PeriodicEvent

	SoloEvent

	node

	Datastructure: SoloEvent

	Name

	Type

	Default

	Description

	coefficientName

	string

	required

	Name of coefficient field

	innerProductType

	string

	required

	Type of inner product used in the hybrid FVM solver

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Registered On

	Description

	TransMultiplier

	real64_array

	Datastructure: FaceManager

	An array that holds the transmissibility multipliers

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	contactRelationName

	string

	required

	Name of contact relation to enforce constraints on fracture boundary.

	couplingTypeOption

	geosx_HydrofractureSolver_CouplingTypeOption

	required

	
Coupling method. Valid options:

* FIM

* SIM_FixedStress

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	fluidSolverName

	string

	required

	Name of the fluid mechanics solver to use in the poromechanics solver

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	maxNumResolves

	integer

	10

	Value to indicate how many resolves may be executed to perform surface generation after the execution of flow and mechanics solver.

	name

	string

	required

	A name is required for any non-unique nodes

	porousMaterialNames

	string_array

	required

	The name of the material that should be used in the constitutive updates

	solidSolverName

	string

	required

	Name of the solid mechanics solver to use in the poromechanics solver

	surfaceGeneratorName

	string

	required

	Name of the surface generator to use in the hydrofracture solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Description

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	File

	node

	
	Element: File

	Name

	Type

	Description

	File

	node

	Datastructure: File

	Name

	Type

	Default

	Description

	cellBlockNames

	string_array

	required

	Names of each mesh block

	elementTypes

	string_array

	required

	Element types of each mesh block

	name

	string

	required

	A name is required for any non-unique nodes

	nx

	integer_array

	required

	Number of elements in the x-direction within each mesh block

	ny

	integer_array

	required

	Number of elements in the y-direction within each mesh block

	nz

	integer_array

	required

	Number of elements in the z-direction within each mesh block

	positionTolerance

	real64

	1e-10

	A position tolerance to verify if a node belong to a nodeset

	trianglePattern

	integer

	0

	Pattern by which to decompose the hex mesh into prisms (more explanation required)

	xBias

	real64_array

	{1}

	Bias of element sizes in the x-direction within each mesh block (dx_left=(1+b)*L/N, dx_right=(1-b)*L/N)

	xCoords

	real64_array

	required

	x-coordinates of each mesh block vertex

	yBias

	real64_array

	{1}

	Bias of element sizes in the y-direction within each mesh block (dy_left=(1+b)*L/N, dx_right=(1-b)*L/N)

	yCoords

	real64_array

	required

	y-coordinates of each mesh block vertex

	zBias

	real64_array

	{1}

	Bias of element sizes in the z-direction within each mesh block (dz_left=(1+b)*L/N, dz_right=(1-b)*L/N)

	zCoords

	real64_array

	required

	z-coordinates of each mesh block vertex

	Name

	Type

	Description

	meshLevels

	integer

	(no description available)

	Level0

	node

	Datastructure: Level0

	Name

	Type

	Default

	Description

	logLevel

	integer

	0

	Log level

	meshName

	string

	required

	Name of the reservoir mesh associated with this well

	name

	string

	required

	A name is required for any non-unique nodes

	numElementsPerSegment

	integer

	required

	Number of well elements per polyline segment

	polylineNodeCoords

	real64_array2d

	required

	Physical coordinates of the well polyline nodes

	polylineSegmentConn

	globalIndex_array2d

	required

	Connectivity of the polyline segments

	radius

	real64

	required

	Radius of the well

	wellControlsName

	string

	required

	Name of the set of constraints associated with this well

	wellRegionName

	string

	required

	Name of the well element region

	Perforation

	node

	
	Element: Perforation

	Name

	Type

	Description

	meshLevels

	integer

	(no description available)

	Level0

	node

	Datastructure: Level0

	Perforation

	node

	Datastructure: Perforation

	Name

	Type

	Default

	Description

	autoSpaceRadialElems

	real64_array

	{-1}

	Automatically set number and spacing of elements in the radial direction. This overrides the values of nr!Value in each block indicates factor to scale the radial increment.Larger numbers indicate larger radial elements.

	cartesianMappingInnerRadius

	real64

	1e+99

	If using a Cartesian aligned outer boundary, this is inner radius at which to start the mapping.

	cellBlockNames

	string_array

	required

	Names of each mesh block

	elementTypes

	string_array

	required

	Element types of each mesh block

	hardRadialCoords

	real64_array

	{0}

	Sets the radial spacing to specified values

	name

	string

	required

	A name is required for any non-unique nodes

	nr

	integer_array

	required

	Number of elements in the radial direction

	nt

	integer_array

	required

	Number of elements in the tangent direction

	nz

	integer_array

	required

	Number of elements in the z-direction within each mesh block

	positionTolerance

	real64

	1e-10

	A position tolerance to verify if a node belong to a nodeset

	rBias

	real64_array

	{-0.8}

	Bias of element sizes in the radial direction

	radius

	real64_array

	required

	Wellbore radius

	theta

	real64_array

	required

	Tangent angle defining geometry size: 90 for quarter, 180 for half and 360 for full wellbore geometry

	trajectory

	real64_array2d

	{{0}}

	Coordinates defining the wellbore trajectory

	trianglePattern

	integer

	0

	Pattern by which to decompose the hex mesh into prisms (more explanation required)

	useCartesianOuterBoundary

	integer

	1000000

	Enforce a Cartesian aligned outer boundary on the outer block starting with the radial block specified in this value

	xBias

	real64_array

	{1}

	Bias of element sizes in the x-direction within each mesh block (dx_left=(1+b)*L/N, dx_right=(1-b)*L/N)

	yBias

	real64_array

	{1}

	Bias of element sizes in the y-direction within each mesh block (dy_left=(1+b)*L/N, dx_right=(1-b)*L/N)

	zBias

	real64_array

	{1}

	Bias of element sizes in the z-direction within each mesh block (dz_left=(1+b)*L/N, dz_right=(1-b)*L/N)

	zCoords

	real64_array

	required

	z-coordinates of each mesh block vertex

	Name

	Type

	Description

	meshLevels

	integer

	(no description available)

	nx

	integer_array

	Number of elements in the x-direction within each mesh block

	ny

	integer_array

	Number of elements in the y-direction within each mesh block

	xCoords

	real64_array

	x-coordinates of each mesh block vertex

	yCoords

	real64_array

	y-coordinates of each mesh block vertex

	Level0

	node

	Datastructure: Level0

	Name

	Type

	Default

	Description

	activeSetMaxIter

	integer

	10

	Maximum number of iteration for the active set strategy in the lagrangian contact solver

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	contactRelationName

	string

	required

	Name of the constitutive law used for fracture elements

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	solidSolverName

	string

	required

	Name of the solid mechanics solver to use in the lagrangian contact solver

	stabilizationName

	string

	required

	Name of the stabilization to use in the lagrangian contact solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Description

	discretization

	string

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	fieldName

	string

	required

	Name of field variable

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	timeIntegrationOption

	geosx_LaplaceBaseH1_TimeIntegrationOption

	required

	
Time integration method. Options are:

* SteadyState

* ImplicitTransient

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Description

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	fieldName

	string

	required

	Name of field variable

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	timeIntegrationOption

	geosx_LaplaceBaseH1_TimeIntegrationOption

	required

	
Time integration method. Options are:

* SteadyState

* ImplicitTransient

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Description

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	Name

	Type

	Description

	meshLevel

	integer

	(no description available)

	ElementRegions

	node

	Datastructure: ElementRegions

	FaceManager

	node

	Datastructure: FaceManager

	edgeManager

	node

	Datastructure: edgeManager

	embeddedSurfacesEdgeManager

	node

	Datastructure: embeddedSurfacesEdgeManager

	embeddedSurfacesNodeManager

	node

	Datastructure: embeddedSurfacesNodeManager

	finiteVolumeStencils

	node

	Datastructure: finiteVolumeStencils

	nodeManager

	node

	Datastructure: nodeManager

	Name

	Type

	Default

	Description

	amgAggresiveCoarseningLevels

	integer

	0

	
AMG number levels for aggressive coarsening

Available options are: TODO

	amgCoarseSolver

	geosx_LinearSolverParameters_AMG_CoarseType

	direct

	AMG coarsest level solver/smoother type. Available options are: default\|jacobi\|l1jacobi\|gs\|sgs\|l1sgs\|chebyshev\|direct

	amgCoarseningType

	string

	HMIS

	
AMG coarsening algorithm

Available options are: TODO

	amgInterpolationType

	integer

	6

	
AMG interpolation algorithm

Available options are: TODO

	amgNullSpaceType

	geosx_LinearSolverParameters_AMG_NullSpaceType

	constantModes

	AMG near null space approximation. Available options are:constantModes\|rigidBodyModes

	amgNumFunctions

	integer

	1

	
AMG number of functions

Available options are: TODO

	amgNumSweeps

	integer

	2

	AMG smoother sweeps

	amgSmootherType

	geosx_LinearSolverParameters_AMG_SmootherType

	gs

	AMG smoother type. Available options are: default\|jacobi\|l1jacobi\|gs\|sgs\|l1sgs\|chebyshev\|ilu0\|ilut\|ic0\|ict

	amgThreshold

	real64

	0

	AMG strength-of-connection threshold

	directCheckResidual

	integer

	0

	Whether to check the linear system solution residual

	directColPerm

	geosx_LinearSolverParameters_Direct_ColPerm

	metis

	How to permute the columns. Available options are: none\|MMD_AtplusA\|MMD_AtA\|colAMD\|metis\|parmetis

	directEquil

	integer

	1

	Whether to scale the rows and columns of the matrix

	directIterRef

	integer

	1

	Whether to perform iterative refinement

	directParallel

	integer

	1

	Whether to use a parallel solver (instead of a serial one)

	directReplTinyPivot

	integer

	1

	Whether to replace tiny pivots by sqrt(epsilon)*norm(A)

	directRowPerm

	geosx_LinearSolverParameters_Direct_RowPerm

	mc64

	How to permute the rows. Available options are: none\|mc64

	iluFill

	integer

	0

	ILU(K) fill factor

	iluThreshold

	real64

	0

	ILU(T) threshold factor

	krylovAdaptiveTol

	integer

	0

	Use Eisenstat-Walker adaptive linear tolerance

	krylovMaxIter

	integer

	200

	Maximum iterations allowed for an iterative solver

	krylovMaxRestart

	integer

	200

	Maximum iterations before restart (GMRES only)

	krylovTol

	real64

	1e-06

	
Relative convergence tolerance of the iterative method

If the method converges, the iterative solution [image: \mathsf{x}_k] is such that

the relative residual norm satisfies:

[image: \left\lVert \mathsf{b} - \mathsf{A} \mathsf{x}_k \right\rVert_2] < krylovTol * [image: \left\lVert\mathsf{b}\right\rVert_2]

	krylovWeakestTol

	real64

	0.001

	Weakest-allowed tolerance for adaptive method

	logLevel

	integer

	0

	Log level

	preconditionerType

	geosx_LinearSolverParameters_PreconditionerType

	iluk

	Preconditioner type. Available options are: none\|jacobi\|l1-jacobi\|gs\|sgs\|l1-sgs\|chebyshev\|iluk\|ilut\|icc\|ict\|amg\|mgr\|block\|direct

	solverType

	geosx_LinearSolverParameters_SolverType

	direct

	Linear solver type. Available options are: direct\|cg\|gmres\|fgmres\|bicgstab\|preconditioner

	stopIfError

	integer

	1

	Whether to stop the simulation if the linear solver reports an error

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	InternalMesh

	node

	
	Element: InternalMesh

	InternalWell

	node

	
	Element: InternalWell

	InternalWellbore

	node

	
	Element: InternalWellbore

	PAMELAMeshGenerator

	node

	
	Element: PAMELAMeshGenerator

	Name

	Type

	Description

	InternalMesh

	node

	Datastructure: InternalMesh

	InternalWell

	node

	Datastructure: InternalWell

	InternalWellbore

	node

	Datastructure: InternalWellbore

	PAMELAMeshGenerator

	node

	Datastructure: PAMELAMeshGenerator

	Name

	Type

	Description

	InternalMesh

	node

	Datastructure: InternalMesh

	InternalWell

	node

	Datastructure: InternalWell

	InternalWellbore

	node

	Datastructure: InternalWellbore

	PAMELAMeshGenerator

	node

	Datastructure: PAMELAMeshGenerator

	Name

	Type

	Default

	Description

	defaultCslSlope

	real64

	1

	Slope of the critical state line

	defaultDensity

	real64

	required

	Default Material Density

	defaultPreConsolidationPressure

	real64

	-1.5

	Initial preconsolidation pressure

	defaultRecompressionIndex

	real64

	0.002

	Recompresion Index

	defaultRefPressure

	real64

	-1

	Reference Pressure

	defaultRefStrainVol

	real64

	0

	Reference Volumetric Strain

	defaultShearModulus

	real64

	-1

	Elastic Shear Modulus Parameter

	defaultVirginCompressionIndex

	real64

	0.005

	Virgin compression index

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	cslSlope

	real64_array

	Slope of the critical state line

	density

	real64_array2d

	Material Density

	oldPreConsolidationPressure

	real64_array2d

	Old preconsolidation pressure

	oldStress

	real64_array3d

	Previous Material Stress

	preConsolidationPressure

	real64_array2d

	New preconsolidation pressure

	recompressionIndex

	real64_array

	Recompression Index Field

	refPressure

	real64

	Reference Pressure Field

	refStrainVol

	real64

	Reference Volumetric Strain

	shearModulus

	real64_array

	Elastic Shear Modulus

	stress

	real64_array3d

	Current Material Stress

	virginCompressionIndex

	real64_array

	Virgin compression index

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	fluidSolverName

	string

	required

	Name of the fluid mechanics solver to use in the poroelastic solver

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	porousMaterialNames

	string_array

	required

	The name of the material that should be used in the constitutive updates

	solidSolverName

	string

	required

	Name of the solid mechanics solver to use in the poroelastic solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Description

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	allowNonConverged

	integer

	0

	Allow non-converged solution to be accepted. (i.e. exit from the Newton loop without achieving the desired tolerance)

	dtCutIterLimit

	real64

	0.7

	Fraction of the Max Newton iterations above which the solver asks for the time-step to be cut for the next dt.

	dtIncIterLimit

	real64

	0.4

	Fraction of the Max Newton iterations below which the solver asks for the time-step to be doubled for the next dt.

	lineSearchAction

	geosx_NonlinearSolverParameters_LineSearchAction

	Attempt

	
How the line search is to be used. Options are:

* None - Do not use line search.

* Attempt - Use line search. Allow exit from line search without achieving smaller residual than starting residual.

* Require - Use line search. If smaller residual than starting resdual is not achieved, cut time step.

	lineSearchCutFactor

	real64

	0.5

	Line search cut factor. For instance, a value of 0.5 will result in the effective application of the last solution by a factor of (0.5, 0.25, 0.125, …)

	lineSearchMaxCuts

	integer

	4

	Maximum number of line search cuts.

	logLevel

	integer

	0

	Log level

	maxSubSteps

	integer

	10

	Maximum number of time sub-steps allowed for the solver

	maxTimeStepCuts

	integer

	2

	Max number of time step cuts

	newtonMaxIter

	integer

	5

	Maximum number of iterations that are allowed in a Newton loop.

	newtonMinIter

	integer

	1

	Minimum number of iterations that are required before exiting the Newton loop.

	newtonTol

	real64

	1e-06

	The required tolerance in order to exit the Newton iteration loop.

	timestepCutFactor

	real64

	0.5

	Factor by which the time step will be cut if a timestep cut is required.

	Name

	Type

	Description

	newtonNumberOfIterations

	integer

	Number of Newton’s iterations.

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	FiniteElements

	node

	unique

	Element: FiniteElements

	FiniteVolume

	node

	unique

	Element: FiniteVolume

	Name

	Type

	Description

	FiniteElements

	node

	Datastructure: FiniteElements

	FiniteVolume

	node

	Datastructure: FiniteVolume

	Name

	Type

	Default

	Description

	Blueprint

	node

	
	Element: Blueprint

	ChomboIO

	node

	
	Element: ChomboIO

	Python

	node

	
	Element: Python

	Restart

	node

	
	Element: Restart

	Silo

	node

	
	Element: Silo

	TimeHistory

	node

	
	Element: TimeHistory

	VTK

	node

	
	Element: VTK

	Name

	Type

	Description

	Blueprint

	node

	Datastructure: Blueprint

	ChomboIO

	node

	Datastructure: ChomboIO

	Python

	node

	Datastructure: Python

	Restart

	node

	Datastructure: Restart

	Silo

	node

	Datastructure: Silo

	TimeHistory

	node

	Datastructure: TimeHistory

	VTK

	node

	Datastructure: VTK

	Name

	Type

	Default

	Description

	fieldNamesInGEOSX

	string_array

	{}

	Name of the fields within GEOSX

	fieldsToImport

	string_array

	{}

	Fields to be imported from the external mesh file

	file

	path

	required

	path to the mesh file

	name

	string

	required

	A name is required for any non-unique nodes

	reverseZ

	integer

	0

	0 : Z coordinate is upward, 1 : Z coordinate is downward

	scale

	real64

	1

	Scale the coordinates of the vertices

	Name

	Type

	Description

	meshLevels

	integer

	(no description available)

	Level0

	node

	Datastructure: Level0

	Name

	Type

	Default

	Description

	fieldName

	string

	required

	The name of the (packable) field associated with the specified object to retrieve data from

	name

	string

	required

	A name is required for any non-unique nodes

	objectPath

	string

	required

	The name of the object from which to retrieve field values.

	onlyOnSetChange

	localIndex

	0

	Whether or not to only collect when the collected sets of indices change in any way.

	setNames

	string_array

	{}

	The set(s) for which to retrieve data.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	dPerm_dAperture

	real64_array3d

	(no description available)

	dPerm_dPressure

	real64_array3d

	dPerm_dPressure of the rock.

	permeability

	real64_array3d

	permeability of the rock.

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	value

	string

	required

	Input parameter definition for the preprocessor

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	Parameter

	node

	
	Element: Parameter

	Name

	Type

	Description

	Parameter

	node

	Datastructure: Parameter

	Name

	Type

	Default

	Description

	collisionAlpha

	real64

	1.27

	Collision alpha coefficient

	collisionBeta

	real64

	1.5

	Collision beta coefficient

	fluidViscosity

	real64

	0.001

	Fluid viscosity

	hinderedSettlingCoefficient

	real64

	5.9

	Hindered settling coefficient

	isCollisionalSlip

	integer

	0

	Whether the collisional component of the slip velocity is considered

	maxProppantConcentration

	real64

	0.6

	Max proppant concentration

	name

	string

	required

	A name is required for any non-unique nodes

	particleSettlingModel

	geosx_constitutive_ParticleSettlingModel

	required

	
Particle settling velocity model. Valid options:

* Stokes

* Intermediate

* Turbulence

	proppantDensity

	real64

	1400

	Proppant density

	proppantDiameter

	real64

	0.0002

	Proppant diameter

	slipConcentration

	real64

	0.1

	Slip concentration

	sphericity

	real64

	1

	Sphericity

	Name

	Type

	Description

	collisionFactor

	real64_array

	(no description available)

	dCollisionFactor_dProppantConcentration

	real64_array

	(no description available)

	dSettlingFactor_dComponentConcentration

	real64_array2d

	(no description available)

	dSettlingFactor_dPressure

	real64_array

	(no description available)

	dSettlingFactor_dProppantConcentration

	real64_array

	(no description available)

	proppantPackPermeability

	real64_array

	(no description available)

	settlingFactor

	real64_array

	(no description available)

	Name

	Type

	Default

	Description

	distanceFromHead

	real64

	required

	Linear distance from well head to the perforation

	name

	string

	required

	A name is required for any non-unique nodes

	transmissibility

	real64

	-1

	Perforation transmissibility

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	beginTime

	real64

	0

	Start time of this event.

	cycleFrequency

	integer

	1

	Event application frequency (cycle, default)

	endTime

	real64

	1e+100

	End time of this event.

	finalDtStretch

	real64

	0.001

	Allow the final dt request for this event to grow by this percentage to match the endTime exactly.

	forceDt

	real64

	-1

	While active, this event will request this timestep value (ignoring any children/targets requests).

	function

	string

	
	Name of an optional function to evaluate when the time/cycle criteria are met.If the result is greater than the specified eventThreshold, the function will continue to execute.

	logLevel

	integer

	0

	Log level

	maxEventDt

	real64

	-1

	While active, this event will request a timestep <= this value (depending upon any child/target requests).

	name

	string

	required

	A name is required for any non-unique nodes

	object

	string

	
	If the optional function requires an object as an input, specify its path here.

	set

	string

	
	If the optional function is applied to an object, specify the setname to evaluate (default = everything).

	stat

	integer

	0

	If the optional function is applied to an object, specify the statistic to compare to the eventThreshold.The current options include: min, avg, and max.

	target

	string

	
	Name of the object to be executed when the event criteria are met.

	targetExactStartStop

	integer

	1

	If this option is set, the event will reduce its timestep requests to match any specified beginTime/endTimes exactly.

	targetExactTimestep

	integer

	1

	If this option is set, the event will reduce its timestep requests to match the specified timeFrequency perfectly: dt_request = min(dt_request, t_last + time_frequency - time)).

	threshold

	real64

	0

	If the optional function is used, the event will execute if the value returned by the function exceeds this threshold.

	timeFrequency

	real64

	-1

	Event application frequency (time). Note: if this value is specified, it will override any cycle-based behavior.

	HaltEvent

	node

	
	Element: HaltEvent

	PeriodicEvent

	node

	
	Element: PeriodicEvent

	SoloEvent

	node

	
	Element: SoloEvent

	Name

	Type

	Description

	currentSubEvent

	integer

	Index of the current subevent

	eventForecast

	integer

	Indicates when the event is expected to execute

	isTargetExecuting

	integer

	Index of the current subevent

	lastCycle

	integer

	Last event occurrence (cycle)

	lastTime

	real64

	Last event occurrence (time)

	HaltEvent

	node

	Datastructure: HaltEvent

	PeriodicEvent

	node

	Datastructure: PeriodicEvent

	SoloEvent

	node

	Datastructure: SoloEvent

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	dPerm_dPressure

	real64_array3d

	dPerm_dPressure of the rock.

	permeability

	real64_array3d

	permeability of the rock.

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	fieldName

	string

	required

	name of field variable

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	localDissipation

	string

	required

	Type of local dissipation function. Can be Linear or Quadratic

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	solidMaterialNames

	string_array

	required

	name of solid constitutive model

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	timeIntegrationOption

	string

	required

	option for default time integration method

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Description

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	couplingTypeOption

	geosx_PhaseFieldFractureSolver_CouplingTypeOption

	required

	
Coupling option. Valid options:

* FixedStress

* TightlyCoupled

	damageSolverName

	string

	required

	Name of the damage mechanics solver to use in the PhaseFieldFracture solver

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	solidSolverName

	string

	required

	Name of the solid mechanics solver to use in the PhaseFieldFracture solver

	subcycling

	integer

	required

	turn on subcycling on each load step

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Description

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	compressibility

	real64

	required

	Solid compressibility

	defaultReferencePorosity

	real64

	required

	Default value of the reference porosity

	name

	string

	required

	A name is required for any non-unique nodes

	referencePressure

	real64

	required

	Reference pressure for solid compressibility

	Name

	Type

	Description

	dPorosity_dPressure

	real64_array2d

	(no description available)

	oldPorosity

	real64_array2d

	(no description available)

	porosity

	real64_array2d

	(no description available)

	referencePorosity

	real64_array

	(no description available)

	Name

	Type

	Default

	Description

	Benchmarks

	node

	unique

	Element: Benchmarks

	Constitutive

	node

	unique

	Element: Constitutive

	ElementRegions

	node

	unique

	Element: ElementRegions

	Events

	node

	unique, required

	Element: Events

	FieldSpecifications

	node

	unique

	Element: FieldSpecifications

	Functions

	node

	unique

	Element: Functions

	Geometry

	node

	unique

	Element: Geometry

	Included

	node

	unique

	Element: Included

	Mesh

	node

	unique, required

	Element: Mesh

	NumericalMethods

	node

	unique

	Element: NumericalMethods

	Outputs

	node

	unique, required

	Element: Outputs

	Parameters

	node

	unique

	Element: Parameters

	Solvers

	node

	unique, required

	Element: Solvers

	Tasks

	node

	unique

	Element: Tasks

	Name

	Type

	Description

	Benchmarks

	node

	Datastructure: Benchmarks

	Constitutive

	node

	Datastructure: Constitutive

	ElementRegions

	node

	Datastructure: ElementRegions

	Events

	node

	Datastructure: Events

	FieldSpecifications

	node

	Datastructure: FieldSpecifications

	Functions

	node

	Datastructure: Functions

	Geometry

	node

	Datastructure: Geometry

	Included

	node

	Datastructure: Included

	Mesh

	node

	Datastructure: Mesh

	NumericalMethods

	node

	Datastructure: NumericalMethods

	Outputs

	node

	Datastructure: Outputs

	Parameters

	node

	Datastructure: Parameters

	Solvers

	node

	Datastructure: Solvers

	Tasks

	node

	Datastructure: Tasks

	commandLine

	node

	Datastructure: commandLine

	domain

	node

	Datastructure: domain

	Name

	Type

	Default

	Description

	maxProppantConcentration

	real64

	required

	Maximum proppant concentration.

	name

	string

	required

	A name is required for any non-unique nodes

	proppantDiameter

	real64

	required

	Proppant diameter.

	Name

	Type

	Description

	dPerm_dAperture

	real64_array3d

	(no description available)

	dPerm_dPressure

	real64_array3d

	dPerm_dPressure of the rock.

	permeability

	real64_array3d

	permeability of the rock.

	permeabilityMultiplier

	real64_array3d

	(no description available)

	proppantPackPermeability

	real64

	(no description available)

	Name

	Type

	Default

	Description

	defaultReferencePorosity

	real64

	required

	Default value of the reference porosity

	maxProppantConcentration

	real64

	required

	Maximum proppant concentration

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	dPorosity_dPressure

	real64_array2d

	(no description available)

	oldPorosity

	real64_array2d

	(no description available)

	porosity

	real64_array2d

	(no description available)

	referencePorosity

	real64_array

	(no description available)

	Name

	Type

	Default

	Description

	componentNames

	string_array

	{}

	List of fluid component names

	compressibility

	real64

	0

	Fluid compressibility

	defaultCompressibility

	real64_array

	{0}

	Default value for compressibility.

	defaultDensity

	real64_array

	{0}

	Default value for density.

	defaultViscosity

	real64_array

	{0}

	Default value for viscosity.

	flowBehaviorIndex

	real64_array

	{0}

	Flow behavior index

	flowConsistencyIndex

	real64_array

	{0}

	Flow consistency index

	maxProppantConcentration

	real64

	0.6

	Maximum proppant concentration

	name

	string

	required

	A name is required for any non-unique nodes

	referenceDensity

	real64

	1000

	Reference fluid density

	referencePressure

	real64

	100000

	Reference pressure

	referenceProppantDensity

	real64

	1400

	Reference proppant density

	referenceViscosity

	real64

	0.001

	Reference fluid viscosity

	Name

	Type

	Description

	FluidDensity

	real64_array2d

	(no description available)

	FluidViscosity

	real64_array2d

	(no description available)

	componentDensity

	real64_array3d

	(no description available)

	dCompDens_dCompConc

	real64_array4d

	(no description available)

	dCompDens_dPres

	real64_array3d

	(no description available)

	dDens_dCompConc

	real64_array3d

	(no description available)

	dDens_dPres

	real64_array2d

	(no description available)

	dDens_dProppantConc

	real64_array2d

	(no description available)

	dFluidDens_dCompConc

	real64_array3d

	(no description available)

	dFluidDens_dPres

	real64_array2d

	(no description available)

	dFluidVisc_dCompConc

	real64_array3d

	(no description available)

	dFluidVisc_dPres

	real64_array2d

	(no description available)

	dVisc_dCompConc

	real64_array3d

	(no description available)

	dVisc_dPres

	real64_array2d

	(no description available)

	dVisc_dProppantConc

	real64_array2d

	(no description available)

	density

	real64_array2d

	(no description available)

	viscosity

	real64_array2d

	(no description available)

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityModelName

	string

	required

	Name of the permeability model.

	porosityModelName

	string

	required

	Name of the porosity model.

	solidModelName

	string

	required

	Name of the solid model.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	bridgingFactor

	real64

	0

	Bridging factor used for bridging/screen-out calculation

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	criticalShieldsNumber

	real64

	0

	Critical Shields number

	discretization

	string

	required

	Name of discretization object to use for this solver.

	fluidNames

	string_array

	required

	Names of fluid constitutive models for each region.

	frictionCoefficient

	real64

	0.03

	Friction coefficient

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	inputFluxEstimate

	real64

	1

	Initial estimate of the input flux used only for residual scaling. This should be essentially equivalent to the input flux * dt.

	logLevel

	integer

	0

	Log level

	maxProppantConcentration

	real64

	0.6

	Maximum proppant concentration

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityNames

	string_array

	required

	Names of permeability constitutive models for each region.

	proppantDensity

	real64

	2500

	Proppant density

	proppantDiameter

	real64

	0.0004

	Proppant diameter

	proppantNames

	string_array

	required

	Name of proppant constitutive object to use for this solver.

	solidNames

	string_array

	required

	Names of solid constitutive models for each region.

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	updateProppantPacking

	integer

	0

	Flag that enables/disables proppant-packing update

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Description

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	childDirectory

	string

	
	Child directory path

	name

	string

	required

	A name is required for any non-unique nodes

	parallelThreads

	integer

	1

	Number of plot files.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	childDirectory

	string

	
	Child directory path

	name

	string

	required

	A name is required for any non-unique nodes

	parallelThreads

	integer

	1

	Number of plot files.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	args

	string

	
	Any extra command line arguments to pass to GEOSX.

	autoPartition

	string

	
	May be ‘Off’ or ‘On’, if ‘On’ partitioning arguments are created automatically. Default is Off.

	name

	string

	required

	The name of this benchmark.

	nodes

	integer

	required

	The number of nodes needed to run the benchmark.

	strongScaling

	integer_array

	{0}

	Repeat the benchmark N times, scaling the number of nodes in the benchmark by these values.

	tasksPerNode

	integer

	required

	The number of tasks per node to run the benchmark with.

	threadsPerTask

	integer

	0

	The number of threads per task to run the benchmark with.

	timeLimit

	integer

	0

	The time limit of the benchmark.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	childDirectory

	string

	
	Child directory path

	name

	string

	required

	A name is required for any non-unique nodes

	parallelThreads

	integer

	1

	Number of plot files.

	plotFileRoot

	string

	plot

	(no description available)

	plotLevel

	integer

	1

	(no description available)

	writeCellElementMesh

	integer

	1

	(no description available)

	writeEdgeMesh

	integer

	0

	(no description available)

	writeFEMFaces

	integer

	0

	(no description available)

	writeFaceElementMesh

	integer

	1

	(no description available)

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object to use for this solver.

	fluidNames

	string_array

	required

	Names of fluid constitutive models for each region.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	inputFluxEstimate

	real64

	1

	Initial estimate of the input flux used only for residual scaling. This should be essentially equivalent to the input flux * dt.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityNames

	string_array

	required

	Names of permeability constitutive models for each region.

	solidNames

	string_array

	required

	Names of solid constitutive models for each region.

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Registered On

	Description

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	facePressure

	real64_array

	Datastructure: FaceManager

	An array that holds the pressures at the faces.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object to use for this solver.

	fluidNames

	string_array

	required

	Names of fluid constitutive models for each region.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	inputFluxEstimate

	real64

	1

	Initial estimate of the input flux used only for residual scaling. This should be essentially equivalent to the input flux * dt.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityNames

	string_array

	required

	Names of permeability constitutive models for each region.

	solidNames

	string_array

	required

	Names of solid constitutive models for each region.

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Registered On

	Description

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	facePressure

	real64_array

	Datastructure: FaceManager

	An array that holds the pressures at the faces.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	fluidSolverName

	string

	required

	Name of the fluid mechanics solver to use in the poromechanics solver

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	porousMaterialNames

	string_array

	required

	The name of the material that should be used in the constitutive updates

	solidSolverName

	string

	required

	Name of the solid mechanics solver to use in the poromechanics solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	fluidSolverName

	string

	required

	Name of the fluid mechanics solver to use in the poromechanics solver

	fracturesSolverName

	string

	required

	Name of the fractures solver to use in the fractured poroelastic solver

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	porousMaterialNames

	string_array

	required

	The name of the material that should be used in the constitutive updates

	solidSolverName

	string

	required

	Name of the solid mechanics solver to use in the poromechanics solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Description

	discretization

	string

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	Name

	Type

	Description

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	discretization

	string

	required

	Name of discretization object to use for this solver.

	fluidNames

	string_array

	required

	Names of fluid constitutive models for each region.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	inputFluxEstimate

	real64

	1

	Initial estimate of the input flux used only for residual scaling. This should be essentially equivalent to the input flux * dt.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	permeabilityNames

	string_array

	required

	Names of permeability constitutive models for each region.

	solidNames

	string_array

	required

	Names of solid constitutive models for each region.

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Registered On

	Description

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	facePressure

	real64_array

	Datastructure: FaceManager

	An array that holds the pressures at the faces.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	flowSolverName

	string

	required

	Name of the flow solver to use in the reservoir-well system solver

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	wellSolverName

	string

	required

	Name of the well solver to use in the reservoir-well system solver

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Description

	discretization

	string

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	fluidNames

	string_array

	required

	Name of fluid constitutive object to use for this solver.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	WellControls

	node

	
	Element: WellControls

	Name

	Type

	Description

	discretization

	string

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	WellControls

	node

	Datastructure: WellControls

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	contactRelationName

	string

	required

	Name of contact relation to enforce constraints on fracture boundary.

	fractureRegionName

	string

	required

	Name of the fracture region.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	name

	string

	required

	A name is required for any non-unique nodes

	solidSolverName

	string

	required

	Name of the solid mechanics solver in the rock matrix

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Description

	discretization

	string

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	maxStableDt

	real64

	Value of the Maximum Stable Timestep for this solver.

	LinearSolverParameters

	node

	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	contactRelationName

	string

	NOCONTACT

	Name of contact relation to enforce constraints on fracture boundary.

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	massDamping

	real64

	0

	Value of mass based damping coefficient.

	maxNumResolves

	integer

	10

	Value to indicate how many resolves may be executed after some other event is executed. For example, if a SurfaceGenerator is specified, it will be executed after the mechanics solve. However if a new surface is generated, then the mechanics solve must be executed again due to the change in topology.

	name

	string

	required

	A name is required for any non-unique nodes

	newmarkBeta

	real64

	0.25

	Value of [image: \beta] in the Newmark Method for Implicit Dynamic time integration option. This should be pow(newmarkGamma+0.5,2.0)/4.0 unless you know what you are doing.

	newmarkGamma

	real64

	0.5

	Value of [image: \gamma] in the Newmark Method for Implicit Dynamic time integration option

	solidMaterialNames

	string_array

	required

	The name of the material that should be used in the constitutive updates

	stiffnessDamping

	real64

	0

	Value of stiffness based damping coefficient.

	strainTheory

	integer

	0

	
Indicates whether or not to use Infinitesimal Strain Theory [https://en.wikipedia.org/wiki/Infinitesimal_strain_theory], or Finite Strain Theory [https://en.wikipedia.org/wiki/Finite_strain_theory]. Valid Inputs are:

0 - Infinitesimal Strain

1 - Finite Strain

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	timeIntegrationOption

	geosx_SolidMechanicsLagrangianFEM_TimeIntegrationOption

	ExplicitDynamic

	
Time integration method. Options are:

* QuasiStatic

* ImplicitDynamic

* ExplicitDynamic

	useVelocityForQS

	integer

	0

	Flag to indicate the use of the incremental displacement from the previous step as an initial estimate for the incremental displacement of the current step.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Registered On

	Description

	maxForce

	real64

	
	The maximum force contribution in the problem domain.

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	Acceleration

	real64_array2d

	Datastructure: nodeManager

	An array that holds the current acceleration on the nodes. This array also is used to hold the summation of nodal forces resulting from the governing equations.

	IncrementalDisplacement

	real64_array2d

	Datastructure: nodeManager

	An array that holds the incremental displacements for the current time step on the nodes.

	Mass

	real64_array

	Datastructure: nodeManager

	An array that holds the mass on the nodes.

	TotalDisplacement

	real64_array2d

	Datastructure: nodeManager

	An array that holds the total displacements on the nodes.

	Velocity

	real64_array2d

	Datastructure: nodeManager

	An array that holds the current velocity on the nodes.

	contactForce

	real64_array2d

	Datastructure: nodeManager

	An array that holds the contact force.

	externalForce

	real64_array2d

	Datastructure: nodeManager

	An array that holds the external forces on the nodes. This includes any boundary conditions as well as coupling forces such as hydraulic forces.

	uhatTilde

	real64_array2d

	Datastructure: nodeManager

	An array that holds the incremental displacement predictors on the nodes.

	velocityTilde

	real64_array2d

	Datastructure: nodeManager

	An array that holds the velocity predictors on the nodes.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	contactRelationName

	string

	NOCONTACT

	Name of contact relation to enforce constraints on fracture boundary.

	discretization

	string

	required

	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	massDamping

	real64

	0

	Value of mass based damping coefficient.

	maxNumResolves

	integer

	10

	Value to indicate how many resolves may be executed after some other event is executed. For example, if a SurfaceGenerator is specified, it will be executed after the mechanics solve. However if a new surface is generated, then the mechanics solve must be executed again due to the change in topology.

	name

	string

	required

	A name is required for any non-unique nodes

	newmarkBeta

	real64

	0.25

	Value of [image: \beta] in the Newmark Method for Implicit Dynamic time integration option. This should be pow(newmarkGamma+0.5,2.0)/4.0 unless you know what you are doing.

	newmarkGamma

	real64

	0.5

	Value of [image: \gamma] in the Newmark Method for Implicit Dynamic time integration option

	solidMaterialNames

	string_array

	required

	The name of the material that should be used in the constitutive updates

	stiffnessDamping

	real64

	0

	Value of stiffness based damping coefficient.

	strainTheory

	integer

	0

	
Indicates whether or not to use Infinitesimal Strain Theory [https://en.wikipedia.org/wiki/Infinitesimal_strain_theory], or Finite Strain Theory [https://en.wikipedia.org/wiki/Finite_strain_theory]. Valid Inputs are:

0 - Infinitesimal Strain

1 - Finite Strain

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	timeIntegrationOption

	geosx_SolidMechanicsLagrangianFEM_TimeIntegrationOption

	ExplicitDynamic

	
Time integration method. Options are:

* QuasiStatic

* ImplicitDynamic

* ExplicitDynamic

	useVelocityForQS

	integer

	0

	Flag to indicate the use of the incremental displacement from the previous step as an initial estimate for the incremental displacement of the current step.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Registered On

	Description

	maxForce

	real64

	
	The maximum force contribution in the problem domain.

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	Acceleration

	real64_array2d

	Datastructure: nodeManager

	An array that holds the current acceleration on the nodes. This array also is used to hold the summation of nodal forces resulting from the governing equations.

	IncrementalDisplacement

	real64_array2d

	Datastructure: nodeManager

	An array that holds the incremental displacements for the current time step on the nodes.

	Mass

	real64_array

	Datastructure: nodeManager

	An array that holds the mass on the nodes.

	TotalDisplacement

	real64_array2d

	Datastructure: nodeManager

	An array that holds the total displacements on the nodes.

	Velocity

	real64_array2d

	Datastructure: nodeManager

	An array that holds the current velocity on the nodes.

	contactForce

	real64_array2d

	Datastructure: nodeManager

	An array that holds the contact force.

	externalForce

	real64_array2d

	Datastructure: nodeManager

	An array that holds the external forces on the nodes. This includes any boundary conditions as well as coupling forces such as hydraulic forces.

	uhatTilde

	real64_array2d

	Datastructure: nodeManager

	An array that holds the incremental displacement predictors on the nodes.

	velocityTilde

	real64_array2d

	Datastructure: nodeManager

	An array that holds the velocity predictors on the nodes.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	beginTime

	real64

	0

	Start time of this event.

	endTime

	real64

	1e+100

	End time of this event.

	finalDtStretch

	real64

	0.001

	Allow the final dt request for this event to grow by this percentage to match the endTime exactly.

	forceDt

	real64

	-1

	While active, this event will request this timestep value (ignoring any children/targets requests).

	logLevel

	integer

	0

	Log level

	maxEventDt

	real64

	-1

	While active, this event will request a timestep <= this value (depending upon any child/target requests).

	name

	string

	required

	A name is required for any non-unique nodes

	target

	string

	
	Name of the object to be executed when the event criteria are met.

	targetCycle

	integer

	-1

	Targeted cycle to execute the event.

	targetExactStartStop

	integer

	1

	If this option is set, the event will reduce its timestep requests to match any specified beginTime/endTimes exactly.

	targetExactTimestep

	integer

	1

	If this option is set, the event will reduce its timestep requests to match the specified execution time exactly: dt_request = min(dt_request, t_target - time)).

	targetTime

	real64

	-1

	Targeted time to execute the event.

	HaltEvent

	node

	
	Element: HaltEvent

	PeriodicEvent

	node

	
	Element: PeriodicEvent

	SoloEvent

	node

	
	Element: SoloEvent

	Name

	Type

	Description

	currentSubEvent

	integer

	Index of the current subevent

	eventForecast

	integer

	Indicates when the event is expected to execute

	isTargetExecuting

	integer

	Index of the current subevent

	lastCycle

	integer

	Last event occurrence (cycle)

	lastTime

	real64

	Last event occurrence (time)

	HaltEvent

	node

	Datastructure: HaltEvent

	PeriodicEvent

	node

	Datastructure: PeriodicEvent

	SoloEvent

	node

	Datastructure: SoloEvent

	Name

	Type

	Default

	Description

	gravityVector

	R1Tensor

	{0,0,-9.81}

	Gravity vector used in the physics solvers

	AcousticSEM

	node

	
	Element: AcousticSEM

	CompositionalMultiphaseFVM

	node

	
	Element: CompositionalMultiphaseFVM

	CompositionalMultiphaseHybridFVM

	node

	
	Element: CompositionalMultiphaseHybridFVM

	CompositionalMultiphaseReservoir

	node

	
	Element: CompositionalMultiphaseReservoir

	CompositionalMultiphaseWell

	node

	
	Element: CompositionalMultiphaseWell

	EmbeddedSurfaceGenerator

	node

	
	Element: EmbeddedSurfaceGenerator

	FlowProppantTransport

	node

	
	Element: FlowProppantTransport

	Hydrofracture

	node

	
	Element: Hydrofracture

	LagrangianContact

	node

	
	Element: LagrangianContact

	LaplaceFEM

	node

	
	Element: LaplaceFEM

	LaplaceVEM

	node

	
	Element: LaplaceVEM

	MultiphasePoromechanics

	node

	
	Element: MultiphasePoromechanics

	PhaseFieldDamageFEM

	node

	
	Element: PhaseFieldDamageFEM

	PhaseFieldFracture

	node

	
	Element: PhaseFieldFracture

	ProppantTransport

	node

	
	Element: ProppantTransport

	SinglePhaseFVM

	node

	
	Element: SinglePhaseFVM

	SinglePhaseHybridFVM

	node

	
	Element: SinglePhaseHybridFVM

	SinglePhasePoromechanics

	node

	
	Element: SinglePhasePoromechanics

	SinglePhasePoromechanicsEmbeddedFractures

	node

	
	Element: SinglePhasePoromechanicsEmbeddedFractures

	SinglePhaseProppantFVM

	node

	
	Element: SinglePhaseProppantFVM

	SinglePhaseReservoir

	node

	
	Element: SinglePhaseReservoir

	SinglePhaseWell

	node

	
	Element: SinglePhaseWell

	SolidMechanicsEmbeddedFractures

	node

	
	Element: SolidMechanicsEmbeddedFractures

	SolidMechanicsLagrangianSSLE

	node

	
	Element: SolidMechanicsLagrangianSSLE

	SolidMechanics_LagrangianFEM

	node

	
	Element: SolidMechanics_LagrangianFEM

	SurfaceGenerator

	node

	
	Element: SurfaceGenerator

	Name

	Type

	Description

	AcousticSEM

	node

	Datastructure: AcousticSEM

	CompositionalMultiphaseFVM

	node

	Datastructure: CompositionalMultiphaseFVM

	CompositionalMultiphaseHybridFVM

	node

	Datastructure: CompositionalMultiphaseHybridFVM

	CompositionalMultiphaseReservoir

	node

	Datastructure: CompositionalMultiphaseReservoir

	CompositionalMultiphaseWell

	node

	Datastructure: CompositionalMultiphaseWell

	EmbeddedSurfaceGenerator

	node

	Datastructure: EmbeddedSurfaceGenerator

	FlowProppantTransport

	node

	Datastructure: FlowProppantTransport

	Hydrofracture

	node

	Datastructure: Hydrofracture

	LagrangianContact

	node

	Datastructure: LagrangianContact

	LaplaceFEM

	node

	Datastructure: LaplaceFEM

	LaplaceVEM

	node

	Datastructure: LaplaceVEM

	MultiphasePoromechanics

	node

	Datastructure: MultiphasePoromechanics

	PhaseFieldDamageFEM

	node

	Datastructure: PhaseFieldDamageFEM

	PhaseFieldFracture

	node

	Datastructure: PhaseFieldFracture

	ProppantTransport

	node

	Datastructure: ProppantTransport

	SinglePhaseFVM

	node

	Datastructure: SinglePhaseFVM

	SinglePhaseHybridFVM

	node

	Datastructure: SinglePhaseHybridFVM

	SinglePhasePoromechanics

	node

	Datastructure: SinglePhasePoromechanics

	SinglePhasePoromechanicsEmbeddedFractures

	node

	Datastructure: SinglePhasePoromechanicsEmbeddedFractures

	SinglePhaseProppantFVM

	node

	Datastructure: SinglePhaseProppantFVM

	SinglePhaseReservoir

	node

	Datastructure: SinglePhaseReservoir

	SinglePhaseWell

	node

	Datastructure: SinglePhaseWell

	SolidMechanicsEmbeddedFractures

	node

	Datastructure: SolidMechanicsEmbeddedFractures

	SolidMechanicsLagrangianSSLE

	node

	Datastructure: SolidMechanicsLagrangianSSLE

	SolidMechanics_LagrangianFEM

	node

	Datastructure: SolidMechanics_LagrangianFEM

	SurfaceGenerator

	node

	Datastructure: SurfaceGenerator

	Name

	Type

	Default

	Description

	bcApplicationTableName

	string

	
	Name of table that specifies the on/off application of the bc.

	beginTime

	real64

	-1e+99

	time at which BC will start being applied.

	component

	integer

	-1

	Component of field (if tensor) to apply boundary condition to

	direction

	R1Tensor

	{0,0,0}

	Direction to apply boundary condition to

	endTime

	real64

	1e+99

	time at which bc will stop being applied

	fieldName

	string

	
	Name of field that boundary condition is applied to.

	functionName

	string

	
	Name of function that specifies variation of the BC

	initialCondition

	integer

	0

	BC is applied as an initial condition.

	name

	string

	required

	A name is required for any non-unique nodes

	objectPath

	string

	
	Path to the target field

	scale

	real64

	0

	Scale factor for value of BC.

	setNames

	string_array

	required

	Name of sets that boundary condition is applied to.

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	dPerm_dPressure

	real64_array3d

	dPerm_dPressure of the rock.

	permeability

	real64_array3d

	permeability of the rock.

	Name

	Type

	Default

	Description

	defaultAperture

	real64

	required

	The default aperture of newly formed surface elements.

	materialList

	string_array

	required

	List of materials present in this region

	name

	string

	required

	A name is required for any non-unique nodes

	subRegionType

	geosx_SurfaceElementRegion_SurfaceSubRegionType

	faceElement

	
Type of surface element subregion. Valid options:

* faceElement

* embeddedElement

	Name

	Type

	Description

	domainBoundaryIndicator

	integer_array

	(no description available)

	ghostRank

	integer_array

	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	(no description available)

	isExternal

	integer_array

	(no description available)

	localToGlobalMap

	globalIndex_array

	Array that contains a map from localIndex to globalIndex.

	elementSubRegions

	node

	Datastructure: elementSubRegions

	neighborData

	node

	Datastructure: neighborData

	sets

	node

	Datastructure: sets

	Name

	Type

	Default

	Description

	cflFactor

	real64

	0.5

	Factor to apply to the CFL condition [http://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_condition] when calculating the maximum allowable time step. Values should be in the interval (0,1]

	fractureRegion

	string

	Fracture

	(no description available)

	initialDt

	real64

	1e+99

	Initial time-step value required by the solver to the event manager.

	logLevel

	integer

	0

	Log level

	mpiCommOrder

	integer

	0

	Flag to enable MPI consistent communication ordering

	name

	string

	required

	A name is required for any non-unique nodes

	nodeBasedSIF

	integer

	0

	Flag for choosing between node or edge based criteria: 1 for node based criterion

	rockToughness

	real64

	required

	Rock toughness of the solid material

	solidMaterialNames

	string_array

	required

	Name of the solid material used in solid mechanic solver

	targetRegions

	string_array

	required

	Allowable regions that the solver may be applied to. Note that this does not indicate that the solver will be applied to these regions, only that allocation will occur such that the solver may be applied to these regions. The decision about what regions this solver will beapplied to rests in the EventManager.

	LinearSolverParameters

	node

	unique

	Element: LinearSolverParameters

	NonlinearSolverParameters

	node

	unique

	Element: NonlinearSolverParameters

	Name

	Type

	Registered On

	Description

	discretization

	string

	
	Name of discretization object (defined in the Numerical Methods) to use for this solver. For instance, if this is a Finite Element Solver, the name of a Finite Element Discretization should be specified. If this is a Finite Volume Method, the name of a Finite Volume Discretization discretization should be specified.

	failCriterion

	integer

	
	(no description available)

	maxStableDt

	real64

	
	Value of the Maximum Stable Timestep for this solver.

	tipEdges

	LvArray_SortedArray< long, long, LvArray_ChaiBuffer >

	
	Set containing all the tip edges

	tipFaces

	LvArray_SortedArray< long, long, LvArray_ChaiBuffer >

	
	Set containing all the tip faces

	tipNodes

	LvArray_SortedArray< long, long, LvArray_ChaiBuffer >

	
	Set containing all the nodes at the fracture tip

	trailingFaces

	LvArray_SortedArray< long, long, LvArray_ChaiBuffer >

	
	Set containing all the trailing faces

	K_IC

	real64_array2d

	Datastructure: FaceManager

	Critical Stress Intensity Factor [image: K_{IC}] in the plane of the face.

	SIFNode

	real64_array

	Datastructure: nodeManager

	Calculated Stress Intensity Factor on the node.

	SIF_I

	real64_array

	Datastructure: edgeManager

	Calculated mode 1 Stress Intensity Factor on the node.

	SIF_II

	real64_array

	Datastructure: edgeManager

	Calculated mode 2 Stress Intensity Factor on the node.

	SIF_III

	real64_array

	Datastructure: edgeManager

	Calculated mode 3 Stress Intensity Factor on the node.

	SIFonFace

	real64_array

	Datastructure: FaceManager

	Calculated Stress Intensity Factor on the face.

	childIndex

	localIndex_array

	Datastructure: edgeManager

	Index of child within the mesh object it is registered on.

	degreeFromCrack

	integer_array

	Datastructure: nodeManager

	Distance to the crack in terms of topological distance. (i.e. how many nodes are along the path to the closest node that is on the crack surface.

	degreeFromCrackTip

	integer_array

	Datastructure: nodeManager

	Distance to the crack tip in terms of topological distance. (i.e. how many nodes are along the path to the closest node that is on the crack surface.

	isFaceSeparable

	integer_array

	Datastructure: FaceManager

	A flag to mark if the face is separable.

	parentIndex

	localIndex_array

	Datastructure: edgeManager

	Index of parent within the mesh object it is registered on.

	primaryCandidateFace

	localIndex_array

	Datastructure: FaceManager

	??

	ruptureState

	integer_array

	Datastructure: FaceManager

	
Rupture state of the face:

0=not ready for rupture

1=ready for rupture

2=ruptured.

	ruptureTime

	real64_array

	Datastructure: nodeManager

	Time that the object was ruptured/split.

	LinearSolverParameters

	node

	
	Datastructure: LinearSolverParameters

	NonlinearSolverParameters

	node

	
	Datastructure: NonlinearSolverParameters

	Name

	Type

	Default

	Description

	expression

	string

	required

	Symbolic math expression

	inputVarNames

	string_array

	{}

	Name of fields are input to function.

	name

	string

	required

	A name is required for any non-unique nodes

	variableNames

	string_array

	required

	List of variables in expression. The order must match the evaluate argument

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	nonWettingIntermediateCapPressureTableName

	string

	
	
Capillary pressure table for the pair (non-wetting phase, intermediate phase)

Note that this input is only used for three-phase flow.

If you want to do a two-phase simulation, please use instead wettingNonWettingCapPressureTableName to specify the table names

	phaseNames

	string_array

	required

	List of fluid phases

	wettingIntermediateCapPressureTableName

	string

	
	
Capillary pressure table for the pair (wetting phase, intermediate phase)

Note that this input is only used for three-phase flow.

If you want to do a two-phase simulation, please use instead wettingNonWettingCapPressureTableName to specify the table names

	wettingNonWettingCapPressureTableName

	string

	
	
Capillary pressure table for the pair (wetting phase, non-wetting phase)

Note that this input is only used for two-phase flow.

If you want to do a three-phase simulation, please use instead wettingIntermediateCapPressureTableName and nonWettingIntermediateCapPressureTableName to specify the table names

	Name

	Type

	Description

	capPresWrappers

	LvArray_Array< geosx_TableFunction_KernelWrapper, 1, camp_int_seq< long, 0l >, long, LvArray_ChaiBuffer >

	(no description available)

	dPhaseCapPressure_dPhaseVolFraction

	real64_array4d

	(no description available)

	phaseCapPressure

	real64_array3d

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	Name

	Type

	Default

	Description

	coordinateFiles

	path_array

	{}

	List of coordinate file names for ND Table

	coordinates

	real64_array

	{0}

	Coordinates inputs for 1D tables

	inputVarNames

	string_array

	{}

	Name of fields are input to function.

	interpolation

	geosx_TableFunction_InterpolationType

	linear

	
Interpolation method. Valid options:

* linear

* nearest

* upper

* lower

	name

	string

	required

	A name is required for any non-unique nodes

	values

	real64_array

	{0}

	Values for 1D tables

	voxelFile

	path

	
	Voxel file name for ND Table

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	nonWettingIntermediateRelPermTableNames

	string_array

	{}

	
List of relative permeability tables for the pair (non-wetting phase, intermediate phase)

The expected format is “{ nonWettingPhaseRelPermTableName, intermediatePhaseRelPermTableName }”, in that order

Note that this input is only used for three-phase flow.

If you want to do a two-phase simulation, please use instead wettingNonWettingRelPermTableNames to specify the table names

	phaseNames

	string_array

	required

	List of fluid phases

	wettingIntermediateRelPermTableNames

	string_array

	{}

	
List of relative permeability tables for the pair (wetting phase, intermediate phase)

The expected format is “{ wettingPhaseRelPermTableName, intermediatePhaseRelPermTableName }”, in that order

Note that this input is only used for three-phase flow.

If you want to do a two-phase simulation, please use instead wettingNonWettingRelPermTableNames to specify the table names

	wettingNonWettingRelPermTableNames

	string_array

	{}

	
List of relative permeability tables for the pair (wetting phase, non-wetting phase)

The expected format is “{ wettingPhaseRelPermTableName, nonWettingPhaseRelPermTableName }”, in that order

Note that this input is only used for two-phase flow.

If you want to do a three-phase simulation, please use instead wettingIntermediateRelPermTableNames and nonWettingIntermediateRelPermTableNames to specify the table names

	Name

	Type

	Description

	dPhaseRelPerm_dPhaseVolFraction

	real64_array4d

	(no description available)

	phaseMinVolumeFraction

	real64_array

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseRelPerm

	real64_array3d

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	relPermWrappers

	LvArray_Array< geosx_TableFunction_KernelWrapper, 1, camp_int_seq< long, 0l >, long, LvArray_ChaiBuffer >

	(no description available)

	Name

	Type

	Default

	Description

	PackCollection

	node

	
	Element: PackCollection

	TriaxialDriver

	node

	
	Element: TriaxialDriver

	Name

	Type

	Description

	PackCollection

	node

	Datastructure: PackCollection

	TriaxialDriver

	node

	Datastructure: TriaxialDriver

	Name

	Type

	Default

	Description

	name

	string

	required

	A name is required for any non-unique nodes

	normal

	R1Tensor

	required

	Normal (n_x,n_y,n_z) to the plane (will be normalized automatically)

	origin

	R1Tensor

	required

	Origin point (x,y,z) of the plane (basically, any point on the plane)

	thickness

	real64

	required

	The total thickness of the plane (with half to each side)

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	childDirectory

	string

	
	Child directory path

	filename

	string

	TimeHistory

	The filename to which to write time history output.

	format

	string

	hdf

	The output file format for time history output.

	name

	string

	required

	A name is required for any non-unique nodes

	parallelThreads

	integer

	1

	Number of plot files.

	sources

	string_array

	required

	A list of collectors from which to collect and output time history information.

	Name

	Type

	Description

	restart

	integer

	The current history record to be written, on restart from an earlier time allows use to remove invalid future history.

	Name

	Type

	Default

	Description

	bcApplicationTableName

	string

	
	Name of table that specifies the on/off application of the bc.

	beginTime

	real64

	-1e+99

	time at which BC will start being applied.

	direction

	R1Tensor

	{0,0,0}

	Direction to apply boundary condition to

	endTime

	real64

	1e+99

	time at which bc will stop being applied

	functionName

	string

	
	Name of function that specifies variation of the BC

	initialCondition

	integer

	0

	BC is applied as an initial condition.

	inputStress

	R2SymTensor

	{0,0,0,0,0,0}

	Input stress for tractionType = stress

	name

	string

	required

	A name is required for any non-unique nodes

	objectPath

	string

	
	Path to the target field

	scale

	real64

	0

	Scale factor for value of BC.

	setNames

	string_array

	required

	Name of sets that boundary condition is applied to.

	tractionType

	geosx_TractionBoundaryCondition_TractionType

	vector

	
Type of traction boundary condition. Options are:

vector - traction is applied to the faces as specified from the scale and direction,

normal - traction is applied to the faces as a pressure specified from the product of scale and the outward face normal,

stress - traction is applied to the faces as specified by the inner product of input stress and face normal.

	Name

	Type

	Description

	component

	integer

	Component of field (if tensor) to apply boundary condition to

	fieldName

	string

	Name of field that boundary condition is applied to.

	Name

	Type

	Default

	Description

	axialControl

	string

	required

	Function controlling axial stress or strain (depending on test mode)

	baseline

	path

	none

	Baseline file

	initialStress

	real64

	required

	Initial stress (scalar used to set an isotropic stress state)

	logLevel

	integer

	0

	Log level

	material

	string

	required

	Solid material to test

	mode

	string

	required

	Test mode [stressControl, strainControl, mixedControl]

	name

	string

	required

	A name is required for any non-unique nodes

	output

	string

	none

	Output file

	radialControl

	string

	required

	Function controlling radial stress or strain (depending on test mode)

	steps

	integer

	required

	Number of load steps to take

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	areaRelTol

	real64

	1e-08

	Relative tolerance for area calculations.

	coefficientModelNames

	string_array

	{}

	List of constitutive models that contain the coefficient used to build the stencil

	coefficientName

	string

	required

	Name of coefficient field

	fieldName

	string

	required

	Name of primary solution field

	meanPermCoefficient

	real64

	1

	(no description available)

	name

	string

	required

	A name is required for any non-unique nodes

	targetRegions

	string_array

	{}

	List of regions to build the stencil for

	usePEDFM

	integer

	0

	(no description available)

	Name

	Type

	Registered On

	Description

	cellStencil

	geosx_CellElementStencilTPFA

	
	(no description available)

	edfmStencil

	geosx_EmbeddedSurfaceToCellStencil

	
	(no description available)

	faceElementToCellStencil

	geosx_FaceElementToCellStencil

	
	(no description available)

	fractureStencil

	geosx_SurfaceElementStencil

	
	(no description available)

	TransMultiplier

	real64_array

	Datastructure: FaceManager

	An array that holds the transmissibility multipliers

	Name

	Type

	Default

	Description

	childDirectory

	string

	
	Child directory path

	name

	string

	required

	A name is required for any non-unique nodes

	parallelThreads

	integer

	1

	Number of plot files.

	plotFileRoot

	string

	VTK

	Name of the root file for this output.

	plotLevel

	integer

	1

	Level detail plot. Only fields with lower of equal plot level will be output.

	writeBinaryData

	integer

	1

	Output the data in binary format

	writeFEMFaces

	integer

	0

	(no description available)

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	gasOilRelPermExponentInv

	real64_array

	{0.5}

	
Rel perm power law exponent inverse for the pair (gas phase, oil phase) at residual water saturation

The expected format is “{ gasExp, oilExp }”, in that order

	gasOilRelPermMaxValue

	real64_array

	{0}

	
Maximum rel perm value for the pair (gas phase, oil phase) at residual water saturation

The expected format is “{ gasMax, oilMax }”, in that order

	name

	string

	required

	A name is required for any non-unique nodes

	phaseMinVolumeFraction

	real64_array

	{0}

	Minimum volume fraction value for each phase

	phaseNames

	string_array

	required

	List of fluid phases

	waterOilRelPermExponentInv

	real64_array

	{0.5}

	
Rel perm power law exponent inverse for the pair (water phase, oil phase) at residual gas saturation

The expected format is “{ waterExp, oilExp }”, in that order

	waterOilRelPermMaxValue

	real64_array

	{0}

	
Maximum rel perm value for the pair (water phase, oil phase) at residual gas saturation

The expected format is “{ waterMax, oilMax }”, in that order

	Name

	Type

	Description

	dPhaseRelPerm_dPhaseVolFraction

	real64_array4d

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseRelPerm

	real64_array3d

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	volFracScale

	real64

	Factor used to scale the phase capillary pressure, defined as: one minus the sum of the phase minimum volume fractions.

	Name

	Type

	Default

	Description

	capPressureEpsilon

	real64

	1e-06

	Saturation at which the extremum capillary pressure is attained; used to avoid infinite capillary pressure values for saturations close to 0 and 1

	name

	string

	required

	A name is required for any non-unique nodes

	phaseCapPressureExponentInv

	real64_array

	{0.5}

	Inverse of capillary power law exponent for each phase

	phaseCapPressureMultiplier

	real64_array

	{1}

	Entry pressure value for each phase

	phaseMinVolumeFraction

	real64_array

	{0}

	Minimum volume fraction value for each phase

	phaseNames

	string_array

	required

	List of fluid phases

	Name

	Type

	Description

	dPhaseCapPressure_dPhaseVolFraction

	real64_array4d

	(no description available)

	phaseCapPressure

	real64_array3d

	(no description available)

	phaseOrder

	integer_array

	(no description available)

	phaseTypes

	integer_array

	(no description available)

	volFracScale

	real64

	Factor used to scale the phase capillary pressure, defined as: one minus the sum of the phase minimum volume fractions.

	Name

	Type

	Default

	Description

	control

	geosx_WellControls_Control

	required

	
Well control. Valid options:

* BHP

* phaseVolRate

* totalVolRate

	injectionStream

	real64_array

	{-1}

	Global component densities for the injection stream

	name

	string

	required

	A name is required for any non-unique nodes

	referenceElevation

	real64

	required

	Reference elevation where BHP control is enforced

	surfacePressure

	real64

	0

	Surface pressure used to compute volumetric rates when surface conditions are used

	surfaceTemperature

	real64

	0

	Surface temperature used to compute volumetric rates when surface conditions are used

	targetBHP

	real64

	-1

	Target bottom-hole pressure

	targetBHPTableName

	string

	
	Name of the BHP table when the rate is a time dependent function

	targetPhaseName

	string

	
	Name of the target phase

	targetPhaseRate

	real64

	0

	Target phase volumetric rate

	targetPhaseRateTableName

	string

	
	Name of the phase rate table when the rate is a time dependent function

	targetTotalRate

	real64

	0

	Target total volumetric rate

	targetTotalRateTableName

	string

	
	Name of the total rate table when the rate is a time dependent function

	type

	geosx_WellControls_Type

	required

	
Well type. Valid options:

* producer

* injector

	useSurfaceConditions

	integer

	0

	
Flag to specify whether rates are checked at surface or reservoir conditions.

Equal to 1 for surface conditions, and to 0 for reservoir conditions

	Name

	Type

	Description

	
	
	

	Name

	Type

	Default

	Description

	materialList

	string_array

	required

	List of materials present in this region

	name

	string

	required

	A name is required for any non-unique nodes

	Name

	Type

	Description

	domainBoundaryIndicator

	integer_array

	(no description available)

	ghostRank

	integer_array

	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	(no description available)

	isExternal

	integer_array

	(no description available)

	localToGlobalMap

	globalIndex_array

	Array that contains a map from localIndex to globalIndex.

	wellControlsName

	string

	(no description available)

	wellGeneratorName

	string

	(no description available)

	elementSubRegions

	node

	Datastructure: elementSubRegions

	neighborData

	node

	Datastructure: neighborData

	sets

	node

	Datastructure: sets

	Name

	Type

	Description

	domainBoundaryIndicator

	integer_array

	(no description available)

	elementCenter

	real64_array2d

	(no description available)

	elementVolume

	real64_array

	(no description available)

	ghostRank

	integer_array

	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	(no description available)

	isExternal

	integer_array

	(no description available)

	localToGlobalMap

	globalIndex_array

	Array that contains a map from localIndex to globalIndex.

	nextWellElementIndex

	localIndex_array

	(no description available)

	nextWellElementIndexGlobal

	localIndex_array

	(no description available)

	nodeList

	geosx_InterObjectRelation< LvArray_Array< long, 2, camp_int_seq< long, 0l, 1l >, long, LvArray_ChaiBuffer > >

	(no description available)

	numEdgesPerElement

	localIndex

	(no description available)

	numFacesPerElement

	localIndex

	(no description available)

	numNodesPerElement

	localIndex

	(no description available)

	radius

	real64_array

	(no description available)

	topRank

	integer

	(no description available)

	topWellElementIndex

	localIndex

	(no description available)

	wellControlsName

	string

	(no description available)

	ConstitutiveModels

	node

	Datastructure: ConstitutiveModels

	neighborData

	node

	Datastructure: neighborData

	sets

	node

	Datastructure: sets

	wellElementSubRegion

	node

	Datastructure: wellElementSubRegion

	Name

	Type

	Description

	
	
	

	Name

	Type

	Description

	domainBoundaryIndicator

	integer_array

	(no description available)

	ghostRank

	integer_array

	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	(no description available)

	isExternal

	integer_array

	(no description available)

	localToGlobalMap

	globalIndex_array

	Array that contains a map from localIndex to globalIndex.

	cellBlocks

	node

	Datastructure: cellBlocks

	neighborData

	node

	Datastructure: neighborData

	sets

	node

	Datastructure: sets

	Name

	Type

	Description

	beginFromRestart

	integer

	Flag to indicate restart run.

	inputFileName

	string

	Name of the input xml file.

	outputDirectory

	string

	Directory in which to put the output files, if not specified defaults to the current directory.

	overridePartitionNumbers

	integer

	Flag to indicate partition number override

	problemName

	string

	Used in writing the output files, if not specified defaults to the name of the input file.

	restartFileName

	string

	Name of the restart file.

	schemaFileName

	string

	Name of the output schema

	suppressPinned

	integer

	Whether to disallow using pinned memory allocations for MPI communication buffers.

	useNonblockingMPI

	integer

	Whether to prefer using non-blocking MPI communication where implemented (results in non-deterministic DOF numbering).

	xPartitionsOverride

	integer

	Number of partitions in the x-direction

	yPartitionsOverride

	integer

	Number of partitions in the y-direction

	zPartitionsOverride

	integer

	Number of partitions in the z-direction

	Name

	Type

	Description

	Neighbors

	std_vector< geosx_NeighborCommunicator, std_allocator< geosx_NeighborCommunicator > >

	(no description available)

	partitionManager

	geosx_PartitionBase

	(no description available)

	Constitutive

	node

	Datastructure: Constitutive

	MeshBodies

	node

	Datastructure: MeshBodies

	cellManager

	node

	Datastructure: cellManager

	Name

	Type

	Registered By

	Description

	domainBoundaryIndicator

	integer_array

	
	(no description available)

	edgesToFractureConnectors

	geosx_mapBase< long, long, std_integral_constant< bool, true > >

	
	A map of edge local indices to the fracture connector local indices.

	faceList

	geosx_InterObjectRelation< LvArray_ArrayOfSets< long, long, LvArray_ChaiBuffer > >

	
	(no description available)

	fractureConnectorsToEdges

	localIndex_array

	
	A map of fracture connector local indices to edge local indices.

	fractureConnectorsToElementIndex

	LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer >

	
	A map of fracture connector local indices face element local indices

	ghostRank

	integer_array

	
	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	
	(no description available)

	isExternal

	integer_array

	
	(no description available)

	localToGlobalMap

	globalIndex_array

	
	Array that contains a map from localIndex to globalIndex.

	nodeList

	geosx_InterObjectRelation< LvArray_Array< long, 2, camp_int_seq< long, 0l, 1l >, long, LvArray_ChaiBuffer > >

	
	(no description available)

	SIF_I

	real64_array

	Datastructure: SurfaceGenerator

	Calculated mode 1 Stress Intensity Factor on the node.

	SIF_II

	real64_array

	Datastructure: SurfaceGenerator

	Calculated mode 2 Stress Intensity Factor on the node.

	SIF_III

	real64_array

	Datastructure: SurfaceGenerator

	Calculated mode 3 Stress Intensity Factor on the node.

	childIndex

	localIndex_array

	Datastructure: SurfaceGenerator

	Index of child within the mesh object it is registered on.

	parentIndex

	localIndex_array

	Datastructure: SurfaceGenerator

	Index of parent within the mesh object it is registered on.

	neighborData

	node

	
	Datastructure: neighborData

	sets

	node

	
	Datastructure: sets

	Name

	Type

	Description

	
	
	

	Name

	Type

	Description

	WellElementRegionuniqueSubRegion

	node

	Datastructure: WellElementRegionuniqueSubRegion

	Name

	Type

	Description

	domainBoundaryIndicator

	integer_array

	(no description available)

	edgesToFractureConnectors

	geosx_mapBase< long, long, std_integral_constant< bool, true > >

	A map of edge local indices to the fracture connector local indices.

	faceList

	geosx_InterObjectRelation< LvArray_ArrayOfSets< long, long, LvArray_ChaiBuffer > >

	(no description available)

	fractureConnectorsToEdges

	localIndex_array

	A map of fracture connector local indices to edge local indices.

	fractureConnectorsToElementIndex

	LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer >

	A map of fracture connector local indices face element local indices

	ghostRank

	integer_array

	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	(no description available)

	isExternal

	integer_array

	(no description available)

	localToGlobalMap

	globalIndex_array

	Array that contains a map from localIndex to globalIndex.

	nodeList

	geosx_InterObjectRelation< LvArray_Array< long, 2, camp_int_seq< long, 0l, 1l >, long, LvArray_ChaiBuffer > >

	(no description available)

	neighborData

	node

	Datastructure: neighborData

	sets

	node

	Datastructure: sets

	Name

	Type

	Registered By

	Description

	domainBoundaryIndicator

	integer_array

	
	(no description available)

	edgeList

	geosx_InterObjectRelation< LvArray_ArrayOfSets< long, long, LvArray_ChaiBuffer > >

	
	(no description available)

	elemList

	LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer >

	
	(no description available)

	elemRegionList

	LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer >

	
	(no description available)

	elemSubRegionList

	LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer >

	
	(no description available)

	ghostRank

	integer_array

	
	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	
	(no description available)

	isExternal

	integer_array

	
	(no description available)

	localToGlobalMap

	globalIndex_array

	
	Array that contains a map from localIndex to globalIndex.

	parentEdgeGlobalIndex

	globalIndex_array

	
	(no description available)

	referencePosition

	real64_array2d

	
	(no description available)

	parentEdgeIndex

	localIndex_array

	Datastructure: EmbeddedSurfaceGenerator

	Index of parent edge within the mesh object it is registered on.

	neighborData

	node

	
	Datastructure: neighborData

	sets

	node

	
	Datastructure: sets

	Name

	Type

	Description

	TwoPointFluxApproximation

	node

	Datastructure: TwoPointFluxApproximation

	Name

	Type

	Default

	Description

	Run

	node

	unique

	Element: Run

	Name

	Type

	Description

	Run

	node

	Datastructure: Run

	Name

	Type

	Description

	
	
	

	Name

	Type

	Registered By

	Description

	ReferencePosition

	real64_array2d

	
	(no description available)

	domainBoundaryIndicator

	integer_array

	
	(no description available)

	edgeList

	geosx_InterObjectRelation< LvArray_ArrayOfSets< long, long, LvArray_ChaiBuffer > >

	
	(no description available)

	elemList

	LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer >

	
	(no description available)

	elemRegionList

	LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer >

	
	(no description available)

	elemSubRegionList

	LvArray_ArrayOfArrays< long, long, LvArray_ChaiBuffer >

	
	(no description available)

	faceList

	geosx_InterObjectRelation< LvArray_ArrayOfSets< long, long, LvArray_ChaiBuffer > >

	
	(no description available)

	ghostRank

	integer_array

	
	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	
	(no description available)

	isExternal

	integer_array

	
	(no description available)

	localToGlobalMap

	globalIndex_array

	
	Array that contains a map from localIndex to globalIndex.

	primaryField

	real64_array

	
	Primary field variable

	Acceleration

	real64_array2d

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the current acceleration on the nodes. This array also is used to hold the summation of nodal forces resulting from the governing equations.

	IncrementalDisplacement

	real64_array2d

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the incremental displacements for the current time step on the nodes.

	Mass

	real64_array

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the mass on the nodes.

	SIFNode

	real64_array

	Datastructure: SurfaceGenerator

	Calculated Stress Intensity Factor on the node.

	TotalDisplacement

	real64_array2d

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the total displacements on the nodes.

	Velocity

	real64_array2d

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the current velocity on the nodes.

	childIndex

	localIndex_array

	Datastructure: SurfaceGenerator

	Index of child within the mesh object it is registered on.

	contactForce

	real64_array2d

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the contact force.

	dampingVector

	real64_array

	Datastructure: AcousticSEM

	Diagonal of the Damping Matrix.

	degreeFromCrack

	integer_array

	Datastructure: SurfaceGenerator

	Distance to the crack in terms of topological distance. (i.e. how many nodes are along the path to the closest node that is on the crack surface.

	degreeFromCrackTip

	integer_array

	Datastructure: SurfaceGenerator

	Distance to the crack tip in terms of topological distance. (i.e. how many nodes are along the path to the closest node that is on the crack surface.

	externalForce

	real64_array2d

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the external forces on the nodes. This includes any boundary conditions as well as coupling forces such as hydraulic forces.

	freeSurfaceNodeIndicator

	localIndex_array

	Datastructure: AcousticSEM

	Free surface indicator, 1 if a node is on free surface 0 otherwise.

	massVector

	real64_array

	Datastructure: AcousticSEM

	Diagonal of the Mass Matrix.

	parentIndex

	localIndex_array

	Datastructure: SurfaceGenerator

	Index of parent within the mesh object it is registered on.

	pressure_n

	real64_array

	Datastructure: AcousticSEM

	Scalar pressure at time n.

	pressure_nm1

	real64_array

	Datastructure: AcousticSEM

	Scalar pressure at time n-1.

	pressure_np1

	real64_array

	Datastructure: AcousticSEM

	Scalar pressure at time n+1.

	rhs

	real64_array

	Datastructure: AcousticSEM

	RHS

	ruptureTime

	real64_array

	Datastructure: SurfaceGenerator

	Time that the object was ruptured/split.

	stiffnessVector

	real64_array

	Datastructure: AcousticSEM

	Stiffness vector contains R_h*Pressure_n.

	uhatTilde

	real64_array2d

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the incremental displacement predictors on the nodes.

	velocityTilde

	real64_array2d

	Datastructure: SolidMechanicsLagrangianSSLE, Datastructure: SolidMechanics_LagrangianFEM

	An array that holds the velocity predictors on the nodes.

	neighborData

	node

	
	Datastructure: neighborData

	sets

	node

	
	Datastructure: sets

	Name

	Type

	Default

	Description

	Run

	node

	unique

	Element: Run

	Name

	Type

	Description

	Run

	node

	Datastructure: Run

	Name

	Type

	Description

	externalSet

	LvArray_SortedArray< long, long, LvArray_ChaiBuffer >

	(no description available)

	Name

	Type

	Description

	domainBoundaryIndicator

	integer_array

	(no description available)

	ghostRank

	integer_array

	(no description available)

	globalToLocalMap

	geosx_mapBase< long long, long, std_integral_constant< bool, false > >

	(no description available)

	isExternal

	integer_array

	(no description available)

	localToGlobalMap

	globalIndex_array

	Array that contains a map from localIndex to globalIndex.

	location

	real64_array2d

	(no description available)

	numPerforationsGlobal

	globalIndex

	(no description available)

	reservoirElementIndex

	localIndex_array

	(no description available)

	reservoirElementRegion

	localIndex_array

	(no description available)

	reservoirElementSubregion

	localIndex_array

	(no description available)

	wellElementIndex

	localIndex_array

	(no description available)

	wellTransmissibility

	real64_array

	(no description available)

	neighborData

	node

	Datastructure: neighborData

	sets

	node

	Datastructure: sets

 nav.xhtml

 Table of Contents

 		
 GEOSX Documentation

 		
 Quick Start Guide

 		
 Frequently Asked Questions

 		
 Does GEOSX have a graphical user interface?:

 		
 Do I need to be a code developer to use GEOSX?:

 		
 What are the system requirements?:

 		
 Help, I get errors while trying to download/compile/run!:

 		
 Repository Organization

 		
 Username and Authentication

 		
 Download

 		
 Configuration

 		
 Compilation

 		
 Running

 		
 Testing

 		
 Tutorials

 		
 Tutorial 1: First Steps

 		
 Single-phase solver

 		
 Mesh

 		
 Geometry

 		
 Events

 		
 Numerical methods

 		
 Regions

 		
 Constitutive models

 		
 Defining properties

 		
 Output

 		
 Running GEOSX

 		
 Visualization

 		
 To go further

 		
 Tutorial 2: External Meshes

 		
 Hexahedral elements

 		
 Externally Generated Tetrahedral Elements

 		
 To go further

 		
 Tutorial 3: Regions and Property Specifications

 		
 Single-phase solver

 		
 Mesh

 		
 Geometry

 		
 Events

 		
 Numerical methods

 		
 Regions

 		
 Constitutive models

 		
 Defining properties

 		
 Output

 		
 Using functions to specify properties

 		
 Running GEOSX

 		
 Visualization of results

 		
 To go further

 		
 Tutorial 4: Boundary Conditions and Time-Dependent Functions

 		
 Discretized computational domain

 		
 Gravity

 		
 Solid mechanics solver

 		
 Finite element discretization

 		
 Constitutive model

 		
 Boundary conditions

 		
 Table function

 		
 Execution

 		
 Result

 		
 To go further

 		
 Basic Examples

 		
 Multiphase Flow

 		
 Multiphase flow solver

 		
 Mesh

 		
 Geometry

 		
 Events

 		
 Numerical methods

 		
 Reservoir region

 		
 Constitutive models

 		
 Initial and boundary conditions

 		
 Output

 		
 Running GEOSX

 		
 Visualization

 		
 To go further

 		
 Multiphase Flow with Wells

 		
 Coupling the flow solver with wells

 		
 Mesh definition and well geometry

 		
 Events

 		
 Numerical methods

 		
 Reservoir and well regions

 		
 Constitutive models

 		
 Initial conditions

 		
 Outputs

 		
 Tasks

 		
 Running GEOSX

 		
 Visualization

 		
 To go further

 		
 CO 2 Injection

 		
 Multiphase flow and well solvers

 		
 Mesh and well geometry

 		
 Events

 		
 Numerical methods

 		
 Element regions

 		
 Constitutive laws

 		
 Property specification

 		
 Output

 		
 Tasks

 		
 Running GEOSX

 		
 Visualization

 		
 To go further

 		
 Poromechanics

 		
 Description of the case

 		
 Coupled solvers

 		
 Multiphysics numerical methods

 		
 Mesh, material properties, and boundary conditions

 		
 Running GEOSX

 		
 Inspecting results

 		
 To go further

 		
 Hydraulic Fracturing

 		
 Description of the case

 		
 Included: including external xml files

 		
 Parameters: defining variables to be used throughout the file

 		
 Mesh with biased boundaries

 		
 Defining a fracture nodeset

 		
 Boundary conditions

 		
 Coupled hydraulic fracturing solver

 		
 Events

 		
 Functions to set in-situ properties

 		
 Running GEOSX

 		
 Inspecting results

 		
 Modifying Parameters Via the Command-Line

 		
 To go further

 		
 Advanced Examples

 		
 Validation and Verification Studies

 		
 Sneddonâ��s Problem

 		
 Toughness dominated KGD hydraulic fracture

 		
 Kirsch Wellbore Problem

 		
 Elasto-Plastic Near-Well Deformation

 		
 Modified Cam-Clay Model for Wellbore Problems

 		
 Cased Elastic Wellbore Problem

 		
 Deviated Elastic Wellbore Problem

 		
 Deviated Poro-Elastic Wellbore Subjected to Fluid Injection

 		
 Deviated Poro-Elastic Wellbore Subjected to In-situ Stresses and Pore Pressure

 		
 Vertical PoroElasto-Plastic Wellbore Problem

 		
 Proppant Slot Test

 		
 Single Fracture Under Shear Compression

 		
 Performance Benchmarks

 		
 Application Studies

 		
 pygeosx Examples

 		
 In Situ Data Monitor

 		
 Initial Condition Modification

 		
 User Guide

 		
 Input Files

 		
 XML

 		
 Input Validation

 		
 XML Schema

 		
 Advanced XML Features

 		
 Meshes

 		
 Internal Mesh Generation

 		
 Using an External Mesh

 		
 Physics Solvers

 		
 Solution Strategy

 		
 Solid Mechanics Solver

 		
 Singlephase Flow Solver

 		
 Compositional Multiphase Flow Solver

 		
 Compositional Multiphase Well Solver

 		
 Poromechanics Solver

 		
 Proppant Transport Solver

 		
 Constitutive Models

 		
 Solid Models

 		
 Fluid Models

 		
 Relative Permeability Models

 		
 Capillary Pressure Models

 		
 Porosity models

 		
 Permeability models

 		
 Porous Solids

 		
 Initial and Boundary Conditions

 		
 Aquifer Boundary Condition

 		
 Event Management

 		
 Event Execution Rules

 		
 Event Manager Configuration

 		
 Other Event Features

 		
 Tasks Manager

 		
 Tasks Manager Configuration

 		
 Functions

 		
 Function Inputs and Application

 		
 Function Types

 		
 Linear Solvers

 		
 Introduction

 		
 Direct methods

 		
 Iterative methods

 		
 Summary

 		
 Preconditioner descriptions

 		
 HYPRE MGR Preconditioner

 		
 Block preconditioner

 		
 Numerical Methods

 		
 Finite Element Discretization

 		
 Finite Volume Discretization

 		
 Parallel Partitioning

 		
 Partition and ghosting : simple examples

 		
 Specifying partitioning pattern

 		
 Ghost ranks

 		
 Considerations for visualization

 		
 Outputs

 		
 Defining an output

 		
 Triggering the outputs

 		
 Visualisation of the outputs

 		
 pygeosx â�� GEOSX in Python

 		
 Module Functions

 		
 GEOSX State

 		
 Module Classes

 		
 Segmentation Faults

 		
 Indices and tables

 		
 Developer Guide

 		
 Contributing

 		
 Code style

 		
 Git Workflow

 		
 Sphinx Documentation

 		
 Doxygen Documentation

 		
 Unit Testing

 		
 Input Files

 		
 Integrated Tests

 		
 Benchmarks

 		
 Basic profiling with CALIPER

 		
 [Unsupported] Developing inside Docker with precompiled TPL binaries

 		
 Code Components

 		
 Data Repository

 		
 XML Input

 		
 Working with data in GEOSX

 		
 Mesh Hierarchy

 		
 DoF Manager

 		
 LvArray

 		
 Kernel interface

 		
 Adding a new Physics Solver

 		
 Doxygen

 		
 Build Guide

 		
 System prerequisites

 		
 List of prerequisites

 		
 Installing prerequisites

 		
 Third-party dependencies

 		
 List of third-party libraries and tools

 		
 Building bundled dependencies

 		
 Installing dependencies individually

 		
 Building GEOSX

 		
 Build steps

 		
 Configuration options

 		
 Spack and Uberenv

 		
 Build Configuration

 		
 Adding a Dependency (Advanced)

 		
 Continuous Integration process

 		
 Building docker images

 		
 Docker images contract

 		
 Datastructure Index

 		
 Input Schema Definitions

 		
 Element: AcousticSEM

 		
 Element: Aquifer

 		
 Element: Benchmarks

 		
 Element: BiotPorosity

 		
 Element: BlackOilFluid

 		
 Element: Blueprint

 		
 Element: BoundedPlane

 		
 Element: Box

 		
 Element: BrooksCoreyBakerRelativePermeability

 		
 Element: BrooksCoreyCapillaryPressure

 		
 Element: BrooksCoreyRelativePermeability

 		
 Element: CO2BrineFluid

 		
 Element: CarmanKozenyPermeability

 		
 Element: CellElementRegion

 		
 Element: ChomboIO

 		
 Element: CompositeFunction

 		
 Element: CompositionalMultiphaseFVM

 		
 Element: CompositionalMultiphaseFluid

 		
 Element: CompositionalMultiphaseHybridFVM

 		
 Element: CompositionalMultiphaseReservoir

 		
 Element: CompositionalMultiphaseWell

 		
 Element: CompressibleSinglePhaseFluid

 		
 Element: CompressibleSolidCarmanKozenyPermeability

 		
 Element: CompressibleSolidConstantPermeability

 		
 Element: CompressibleSolidParallelPlatesPermeability

 		
 Element: ConstantPermeability

 		
 Element: Constitutive

 		
 Element: Contact

 		
 Element: Coulomb

 		
 Element: Cylinder

 		
 Element: DamageElasticIsotropic

 		
 Element: DamageSpectralElasticIsotropic

 		
 Element: DamageVolDevElasticIsotropic

 		
 Element: DeadOilFluid

 		
 Element: DelftEgg

 		
 Element: Dirichlet

 		
 Element: DruckerPrager

 		
 Element: ElasticIsotropic

 		
 Element: ElasticIsotropicPressureDependent

 		
 Element: ElasticOrthotropic

 		
 Element: ElasticTransverseIsotropic

 		
 Element: ElementRegions

 		
 Element: EmbeddedSurfaceGenerator

 		
 Element: Events

 		
 Element: ExtendedDruckerPrager

 		
 Element: FieldSpecification

 		
 Element: FieldSpecifications

 		
 Element: File

 		
 Element: FiniteElementSpace

 		
 Element: FiniteElements

 		
 Element: FiniteVolume

 		
 Element: FlowProppantTransport

 		
 Element: Functions

 		
 Element: Geometry

 		
 Element: HaltEvent

 		
 Element: HybridMimeticDiscretization

 		
 Element: Hydrofracture

 		
 Element: Included

 		
 Element: InternalMesh

 		
 Element: InternalWell

 		
 Element: InternalWellbore

 		
 Element: LagrangianContact

 		
 Element: LaplaceFEM

 		
 Element: LaplaceVEM

 		
 Element: LinearSolverParameters

 		
 Element: Mesh

 		
 Element: ModifiedCamClay

 		
 Element: MultiphasePoromechanics

 		
 Element: NonlinearSolverParameters

 		
 Element: NullModel

 		
 Element: NumericalMethods

 		
 Element: Outputs

 		
 Element: PAMELAMeshGenerator

 		
 Element: PackCollection

 		
 Element: ParallelPlatesPermeability

 		
 Element: Parameter

 		
 Element: Parameters

 		
 Element: ParticleFluid

 		
 Element: Perforation

 		
 Element: PeriodicEvent

 		
 Element: PermeabilityBase

 		
 Element: PhaseFieldDamageFEM

 		
 Element: PhaseFieldFracture

 		
 Element: PorousDruckerPrager

 		
 Element: PorousElasticIsotropic

 		
 Element: PorousElasticOrthotropic

 		
 Element: PorousElasticTransverseIsotropic

 		
 Element: PorousExtendedDruckerPrager

 		
 Element: PressurePorosity

 		
 Element: Problem

 		
 Element: ProppantPermeability

 		
 Element: ProppantPorosity

 		
 Element: ProppantSlurryFluid

 		
 Element: ProppantSolidProppantPermeability

 		
 Element: ProppantTransport

 		
 Element: Python

 		
 Element: Restart

 		
 Element: Run

 		
 Element: Silo

 		
 Element: SinglePhaseFVM

 		
 Element: SinglePhaseHybridFVM

 		
 Element: SinglePhasePoromechanics

 		
 Element: SinglePhasePoromechanicsEmbeddedFractures

 		
 Element: SinglePhaseProppantFVM

 		
 Element: SinglePhaseReservoir

 		
 Element: SinglePhaseWell

 		
 Element: SolidMechanicsEmbeddedFractures

 		
 Element: SolidMechanicsLagrangianSSLE

 		
 Element: SolidMechanics_LagrangianFEM

 		
 Element: SoloEvent

 		
 Element: Solvers

 		
 Element: SourceFlux

 		
 Element: StrainDependentPermeability

 		
 Element: SurfaceElementRegion

 		
 Element: SurfaceGenerator

 		
 Element: SymbolicFunction

 		
 Element: TableCapillaryPressure

 		
 Element: TableFunction

 		
 Element: TableRelativePermeability

 		
 Element: Tasks

 		
 Element: ThickPlane

 		
 Element: TimeHistory

 		
 Element: Traction

 		
 Element: TriaxialDriver

 		
 Element: TwoPointFluxApproximation

 		
 Element: VTK

 		
 Element: VanGenuchtenBakerRelativePermeability

 		
 Element: VanGenuchtenCapillaryPressure

 		
 Element: WellControls

 		
 Element: WellElementRegion

 		
 Element: lassen

 		
 Element: quartz

 		
 Datastructure Definitions

 		
 Datastructure: AcousticSEM

 		
 Datastructure: Aquifer

 		
 Datastructure: Benchmarks

 		
 Datastructure: BiotPorosity

 		
 Datastructure: BlackOilFluid

 		
 Datastructure: Blueprint

 		
 Datastructure: BoundedPlane

 		
 Datastructure: Box

 		
 Datastructure: BrooksCoreyBakerRelativePermeability

 		
 Datastructure: BrooksCoreyCapillaryPressure

 		
 Datastructure: BrooksCoreyRelativePermeability

 		
 Datastructure: CO2BrineFluid

 		
 Datastructure: CarmanKozenyPermeability

 		
 Datastructure: CellElementRegion

 		
 Datastructure: ChomboIO

 		
 Datastructure: CompositeFunction

 		
 Datastructure: CompositionalMultiphaseFVM

 		
 Datastructure: CompositionalMultiphaseFluid

 		
 Datastructure: CompositionalMultiphaseHybridFVM

 		
 Datastructure: CompositionalMultiphaseReservoir

 		
 Datastructure: CompositionalMultiphaseWell

 		
 Datastructure: CompressibleSinglePhaseFluid

 		
 Datastructure: CompressibleSolidCarmanKozenyPermeability

 		
 Datastructure: CompressibleSolidConstantPermeability

 		
 Datastructure: CompressibleSolidParallelPlatesPermeability

 		
 Datastructure: ConstantPermeability

 		
 Datastructure: Constitutive

 		
 Datastructure: ConstitutiveModels

 		
 Datastructure: Contact

 		
 Datastructure: Coulomb

 		
 Datastructure: Cylinder

 		
 Datastructure: DamageElasticIsotropic

 		
 Datastructure: DamageSpectralElasticIsotropic

 		
 Datastructure: DamageVolDevElasticIsotropic

 		
 Datastructure: DeadOilFluid

 		
 Datastructure: DelftEgg

 		
 Datastructure: Dirichlet

 		
 Datastructure: DruckerPrager

 		
 Datastructure: ElasticIsotropic

 		
 Datastructure: ElasticIsotropicPressureDependent

 		
 Datastructure: ElasticOrthotropic

 		
 Datastructure: ElasticTransverseIsotropic

 		
 Datastructure: ElementRegions

 		
 Datastructure: EmbeddedSurfaceGenerator

 		
 Datastructure: Events

 		
 Datastructure: ExtendedDruckerPrager

 		
 Datastructure: FaceManager

 		
 Datastructure: FieldSpecification

 		
 Datastructure: FieldSpecifications

 		
 Datastructure: File

 		
 Datastructure: FiniteElementSpace

 		
 Datastructure: FiniteElements

 		
 Datastructure: FiniteVolume

 		
 Datastructure: FlowProppantTransport

 		
 Datastructure: Functions

 		
 Datastructure: Geometry

 		
 Datastructure: HaltEvent

 		
 Datastructure: HybridMimeticDiscretization

 		
 Datastructure: Hydrofracture

 		
 Datastructure: Included

 		
 Datastructure: InternalMesh

 		
 Datastructure: InternalWell

 		
 Datastructure: InternalWellbore

 		
 Datastructure: LagrangianContact

 		
 Datastructure: LaplaceFEM

 		
 Datastructure: LaplaceVEM

 		
 Datastructure: Level0

 		
 Datastructure: LinearSolverParameters

 		
 Datastructure: Mesh

 		
 Datastructure: MeshBodies

 		
 Datastructure: ModifiedCamClay

 		
 Datastructure: MultiphasePoromechanics

 		
 Datastructure: NonlinearSolverParameters

 		
 Datastructure: NullModel

 		
 Datastructure: NumericalMethods

 		
 Datastructure: Outputs

 		
 Datastructure: PAMELAMeshGenerator

 		
 Datastructure: PackCollection

 		
 Datastructure: ParallelPlatesPermeability

 		
 Datastructure: Parameter

 		
 Datastructure: Parameters

 		
 Datastructure: ParticleFluid

 		
 Datastructure: Perforation

 		
 Datastructure: PeriodicEvent

 		
 Datastructure: PermeabilityBase

 		
 Datastructure: PhaseFieldDamageFEM

 		
 Datastructure: PhaseFieldFracture

 		
 Datastructure: PorousDruckerPrager

 		
 Datastructure: PorousElasticIsotropic

 		
 Datastructure: PorousElasticOrthotropic

 		
 Datastructure: PorousElasticTransverseIsotropic

 		
 Datastructure: PorousExtendedDruckerPrager

 		
 Datastructure: PressurePorosity

 		
 Datastructure: Problem

 		
 Datastructure: ProppantPermeability

 		
 Datastructure: ProppantPorosity

 		
 Datastructure: ProppantSlurryFluid

 		
 Datastructure: ProppantSolidProppantPermeability

 		
 Datastructure: ProppantTransport

 		
 Datastructure: Python

 		
 Datastructure: Restart

 		
 Datastructure: Run

 		
 Datastructure: Silo

 		
 Datastructure: SinglePhaseFVM

 		
 Datastructure: SinglePhaseHybridFVM

 		
 Datastructure: SinglePhasePoromechanics

 		
 Datastructure: SinglePhasePoromechanicsEmbeddedFractures

 		
 Datastructure: SinglePhaseProppantFVM

 		
 Datastructure: SinglePhaseReservoir

 		
 Datastructure: SinglePhaseWell

 		
 Datastructure: SolidMechanicsEmbeddedFractures

 		
 Datastructure: SolidMechanicsLagrangianSSLE

 		
 Datastructure: SolidMechanics_LagrangianFEM

 		
 Datastructure: SoloEvent

 		
 Datastructure: Solvers

 		
 Datastructure: SourceFlux

 		
 Datastructure: StrainDependentPermeability

 		
 Datastructure: SurfaceElementRegion

 		
 Datastructure: SurfaceGenerator

 		
 Datastructure: SymbolicFunction

 		
 Datastructure: TableCapillaryPressure

 		
 Datastructure: TableFunction

 		
 Datastructure: TableRelativePermeability

 		
 Datastructure: Tasks

 		
 Datastructure: ThickPlane

 		
 Datastructure: TimeHistory

 		
 Datastructure: Traction

 		
 Datastructure: TriaxialDriver

 		
 Datastructure: TwoPointFluxApproximation

 		
 Datastructure: VTK

 		
 Datastructure: VanGenuchtenBakerRelativePermeability

 		
 Datastructure: VanGenuchtenCapillaryPressure

 		
 Datastructure: WellControls

 		
 Datastructure: WellElementRegion

 		
 Datastructure: WellElementRegionuniqueSubRegion

 		
 Datastructure: cellBlocks

 		
 Datastructure: cellManager

 		
 Datastructure: commandLine

 		
 Datastructure: domain

 		
 Datastructure: edgeManager

 		
 Datastructure: elementRegionsGroup

 		
 Datastructure: elementSubRegions

 		
 Datastructure: embeddedSurfacesEdgeManager

 		
 Datastructure: embeddedSurfacesNodeManager

 		
 Datastructure: finiteVolumeStencils

 		
 Datastructure: lassen

 		
 Datastructure: neighborData

 		
 Datastructure: nodeManager

 		
 Datastructure: quartz

 		
 Datastructure: sets

 		
 Datastructure: wellElementSubRegion

 		
 Contributors

 		
 Publications

 		
 Preprints and Early-Views

 		
 2021

 		
 2020

 		
 2019

 		
 Acknowledgements

_images/Example-1_01_0018.png
10

[ed] 3inssaid

08
02
00

i

xml

_images/Example-1_01_002.png
Radial stress (MPa)

Hoop stress (MPa)

10

® GEOSX result
— anaiytic

0100 0125 0150 0175 0200 0225 0250 0275 0300
r(m)

0.100

0125

0150

0175

0200
r(m)

0225

0350 0275 0300

_images/Example-1_01_0014.png
Normal Traction [MPa]

o
o

|
N
ul

|
u
o

k—-—-————————————-—d

== Analytical Solution
e Numerical Solution

| | |
[a) = = |
o (6] o ()]

-17.5
1.00 —-0.75 —-0.50 —0.25 0.00 0.25 0.50 0.75 1.00
Length [m]

Relative Shear Displacement [mm]

»
o

w
wn

w
o

N
U

N
o

=
]

1.0 = Analytical Solution
e Numerical Solution

0'(1.00 0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00
Length [m]

_images/Example-1_01_0016.png
—e— Producer #1
~e— Producer #2
—e— Producer #3
—e— Producer #4

3500

1000

total rate [cubic meters per day]

s00

0 2 40 & 8 100 120 10 160
time [days]

_images/Example-1_01_008.png
= Oy - Analytical

® O - GEOSX
s Ogg - Analytical

-15.0 ® 0pe - GEOSX
Orp - Analytical

-17.5 _
® Op- GEOSX
107! 10°
r (m)

Displacement (mm)

| | I I
= © © © o o
o ~ (6,1 N o N
o wm o [9;] o wm

ur - Analytical

ur - GEOSX
—1.25 e Ug - Analytical
Ug - GEOSX
1071 10°

r (m)

_images/Example2-1_01_00.png
10

£
§ FoAo%F 8 f
[P
g3
5 o
.
£

(ean) ssans eipes anmau3

12

10

(edi) anssaud 2104

02 03 04 05 06 07 08 09 10

01

T (m)

_images/Example-1_01_004.png
(ean) ss3s Juabuer anpau3

00

T (m)

03 04 05 o0s 07 08 09 10

02

T (m)

® GEOSX result

Analytic

(edw) ssans eipes a3

01

(edi) anssaud 2104

02 03 04 05 06 07 08 09 10

01

_images/Example-1_01_006.png
200

175

150

125

100

75

Fracture halflength (m)

50

25

00

06

Inlet fluid pressure (MPa)

Inlet aperture (mm)

030

025

020

015

010

005

0 B kY & & 100
Injection time ()

® GEOSX result
— Analytic

0 B kY & & 100
Injection time ()

B

o &
Injection time ()

&

100

_images/MCC_Stress.png
DB: plot_00020000
Cycle: 200 Time:1

Mesh
Var. omega

Pseudocolor
Var. Omega_solld_MateralFields/principalSiressvector_magnitude

— 10036405

_images/MCC_wellMesh.png

_images/MCC_wellSketch.png

_images/ModifiedCamClayPQ.png
Modified . !
Cam-Clay / ! N\
/ Cam-Clay i M N
Pe pc/2

_images/MohrCoulomb.png
Tmax

Tmax

Omin

ax + Omin) /2 cCOt §

_images/MeshObjectInstantiationHierarchy.png
DomainPartition

MeshBody MeshBody
“Body1” “Body2”
MeshLevel MeshLevel MeshLevel
“Level 0” “Level 1” “Level 0”
I
[I I |
NodeManager EdgeManager FaceManager ElementRegionManager

1

CellElementRegion

“Region0”

FaceElementRegion

“FractureRegion0”

WellElementRegion

“Well 1”7

CellElementSubRegion

“Hexes”

L

FaceElementSubRegion
“default”

CellElementSubRegion

“Tets”

WellElementSubRegion
“default”

_images/ModifiedCamClayHardening.png
elastic
rebound

isotropic
compression

» log(—p.)

_images/PoroDP_X.png
Effective Radial Stress (MPa)

rd

T T T T T
10 === PoroElastic_t*=0.046 ||
? = PoroPlastic_t*=0.046
& 8 === PoroElastic_t*=0.462 | |
E === PoroPlastic_t*=0.462
2 6 === PoroElastic_t*=4.62
5 PoroPlastic_t*=4.62
0
0
04
o
.
[«]
o
0
10 10
rd
0 T T T T T
=== PoroElastic_t*=0.046
5 === PoroPlastic_t*=0.046 ||
=== PoroElastic_t*=0.462
4 === PoroPlastic_t*=0.462 | |
=== PoroElastic_t*=4.62
PoroPlastic_t*=4.62
6
8
10
12
10 10

Radial Displacement (um)

Effective Tangential Stress (MPa)

40

30 “““I
20 8 2 s * '-.- -
Et‘: “ag
10
0 === PoroElastic_t*=0.046
= PoroPlastic_t*=0.046
10 === PoroElastic_t*=0.462
=== PoroPlastic_t*=0.462
20 === PoroElastic_t*=4.62
=== PoroPlastic_t*=4.62
30 T I I I I
0
10 10
rd
0 T I I I I
=== PoroElastic_t*=0.046
5 === PoroPlastic_t*=0.046 | |
=== PoroElastic_t*=0.462
A === PoroPlastic_t*=0.462 | |
=== PoroElastic_t*=4.62
’ = PoroPlastic_t*=4.62
8 B BEL T PP
A “‘-I -...... -ty .
10 O
125
£ 10

rd

_images/PoroDP_wellSketch.png

_images/PoroDP_Stress.png
PoroPlastic
DB: plot_00103300 DB: plot_00103300
Cycle: 1033 Time:497640 Cycle: 033 Time:497640

(b)

_images/PoroDP_WellMesh.png

_images/PoroElastic_PP.png
DB: plot_00103200
Cycle: 1032 Time:497640

Pseudocolor
Var. Omega_ElementFields/pressure
98636406

7.4008+06

49376406

_images/PoroElastic_X.png
Effective Radial Stress (MPa)

Pore Pressure (MPa)

10

Analytical_t*=0.046 ||
GEOSX_t*=0.046
Analytical_t*=0.462
GEOSX_t*=0.462
Analytical_t*=4.62
GEOSX_t*=4.62

10

Analytical_t*=0.046
GEOSX_t*=0.046 ||
Analytical_t*=0.462
GEOSX_t*=0.462
Analytical_t*=4.62
GEOSX_t*=4.62

rd

10

Radial Displacement (um)

Effective Tangential Stress (MPa)

40

oo R
(&)
30
(]
(€]
20
10
0 == Analytical_t*=0.046
e o GEOSX t*=0.046
10 = Analytical_t*=0.462
e o GEOSX t*=0.462
20 == Analytical_t*=4.62
© o GEOSX_t*=4.62
30) I I I I I I
10 10
rd
0 I I I I I
=== Analytical_t*=0.046
2 ® o GEOSX_t*=0.046 ||
= Analytical_t*=0.462
a ® e GEOSX_t*=0.462 ||
=== Analytical_t*=4.62
e o GEOSX t*=4.62
6 ||
-8
-10
125
10 10

rd

_images/Verification.png
20 = 25 I I I I
: === g-Elastic
= e e (-Plastic
15 . 20 = 0,-Elastic ||
—_ : —_ ® o (,-Plastic
E é 215 ~ g,-Elastic
=10 : o-Analytical s 0-Plastic
g : e o 0-GEOSX ~10
© E === g,-Analytical °
5 : ® o 0,GEOSX |
. ~== 0z-Analytical 5
: e o 0,-GEOSX
0 = I I I — 0
10* 10° 10*
rd
i = 12 i
=== Analytical === Analytical
lo e GEOSX || 10 e o GEOSX ||
‘-“4“““
f‘“““
15 20 %0 1.02 1.04 1.06 1..08 1.10

ao/a

_images/Verification1.png
0.40

0.35

0.30

1

m
o o
N N
o ul

aperture [m
o
(=)
(6]

analytical solution
numerical solution

10.0

5.0

7.5

2.5 0.0 2.5
length [m]

5.0

7.5

10.0

_images/aperture.png
Aperture (mm)

0.0

0.0

T
25

T T T
50 7.5 10.0 1
Time (min)

T T T
2.5 15.0 17.5 20.0

_images/beam.png

_images/WellMesh.png

_images/Wellbore.png

_images/displacement_yy.png
TotalDisplacement Y

0.000878
Eo 0008

0004

-0.0004 /

-0.0008
-0.000878

_images/egg_model.png

_images/config.png
Outlet 1

Outlet 2

1ft

[]<— nlet 1

[]<— Inlet3

_images/fcCo2-sat-0.png
b

8
3

_images/fcCo2-sat-1.png
b

0.00

=)
3
[

=08
—06
—04

02

_images/extents.png
Extents (m)

200

150

100

50

T
10
Time (min)

15

20

_images/fcCo2-logK.png
130
135

x

-4
L 145

M50

_images/final_pressure.png
1.0e+07

8.0e+06

6.0e+06

_images/fcCo2-sat-2.png
b

0.00

=)
3
[

=08
—06
—04

02

_images/final_beam_bending.png

_images/wellSketch.png

_images/tetra_final.png
1.104e+06

1.078e+06

1.053e+06

1.027e+06

— 1.002e+06

L 9.761le+05

_images/tetra_mesh.png
57“~
,_Il"—A“V T
— _—
_A" R
—/ ‘vAv

NN
i
QARHD
N
L

N :

_images/sxx.png

_images/hex_final.png
— 1.102e+06

— 1.079e+06

1.055e+06

1.032e+06

1.009e+06

9.857e+05

_images/hex_mesh.png
i A
o

_images/full_mesh.png

_images/initial_pressure.png
66666

111111

_images/interp_methods.png
_ _ _ _4
x
i

(x) Jeauy| (x) Joddn (X) 3159109U (X) Jamo|

_images/hf_example.png
Pseudocolor
Var: GEOSX/Aperture (mm)
2390

1818
L 1.246

— 06740

-\01020

Pseudocolor

Var: GEOSX/s_yy (MPa)
7.891

7481

7.070

—6.659

—6.249

_images/initial_beam_bending.png

_images/mapping_perm.png
N o ¥ o o

_images/mesh.png

_images/mesh3.png

_images/mesh1.png

_images/mesh2.png

_images/mesh6.png
i A
o

_images/mesh4.png

_images/mesh5.png

_images/mesh_domain.png

_images/pressure.gif
Pressure (Pa)
e 7.000e+06

4.000e+06

_images/model.png

_images/pressure1.png
Pressure (MPa)
o = N w Y w o ~ ©

0.0

T
25

T
5.0

T T T T
7.5 10.0 125 15

Time (min)

T
.0 17.5 20.0

_images/pressure_5e8.png
3.5e+06
3e+b
2.5e+6

— 2e+b

1.5e+6
le+6
500000
0.0e+00

pressure

_images/pressure.png
S

oSeesy
Soss

S
SRS
SIS

=
SN
e
RS
=

Sedeesy

R

e

_images/pressure1.gif
Pressure
me4.200e407

12647

05e+7

3.98e+7

3.900e+07

_images/mesh_multi.png

_images/mesh_with_bias.png

_images/saturation.gif
(Water Saturation
+8.000e-01

0.65

0.5

EO 35
2.000e-01

_images/saturation1.gif
Water saturation

« 1.0e+00

_images/reservoir_structure.png

_images/reservoir_transparent.png

_images/source_sink.png
i A
o

_images/sketch.png
al

_images/slip.png

_images/pressure_initial.png
3.5e+06
3e+b
2.5e+6

— 2e+b

1.5e+6
le+6
500000
0.0e+00

pressure

_images/propagation.gif

_images/pressure_drilling.png

_images/Example-1_01_00.png
Radial stress (MPa)

225

250

275

—3.00

325

350

375

—a.00

Hoop stress (MPa)

575

550

525

500

475

450

425

400

® GEOSX result
— anaiytic

0110

0l1s

0120
r(m)

0125

0130

oflo olis o120 ol ol
r(m)

_images/Example-1_01_0010.png
500 500
I mmm 0-Analytical I w p_Analytical
| e 0-GEOSX E | ® p_GEOSX
mmmm 0,-Analytical e q_Analytical
400 I . bocedo | < 400 | q_GEOSX
I w0 -Analytical .: I
~300 I > peoro & 300 I
g o
-8
) | % |
® 200 | 5 200 I
5 |
2
100 | T 100
]
5 I
900 10t 102 900 10t 102
rd rd
400 - 1000
mess Analytical / mess Analytical
350/ ° GEOSX 7 © GEOSX
800
300
=250 T 600
= -4
< 200 3
3
%150 a 400
100
200
50
00 50 100 150 200 250 300 350 400 %.9 1.0 1.1 1.2 1.3 1.4 1.5

p (kPa) a/a0

_images/DPyield.png
L]

o

‘couLomB

___ CIRCUMSCRIBING
CONE

_images/DevView.png

_images/Example-1_01_0012.png
Normalized Bank Length

Normalized Suspended Proppant Area

12

10

08

06

04

02

00

06

05

04

03

02

01

00

Time (s)

0s
(@) (b)
& .
s
i .
o Experiment3050 | § 01 . o Experiment-30/50
o GEOSX-30/50 mesh e GEOSX-30/50 mesh
00
13 1 15 20 75 30 35 4 o 0 15 20 25 30 35 4
Time (s) Time (s)
10
@ p—————) 7 P—
o GEOSX-30/50mesh | B oo e GEOSX-30/50 mesh
-
&
8
2o
3
2 o4
o
H
| 0
502 e
L A S £
5
2 oo
13 W 15 2 75 30 35 a0 3 o 15 20 75 30 35 a0

Time (s)

_images/Comparison.png
105 5 Experiment 505 y _ Experiment |

Suspended proppant Simulation

Proppant bed
c)

_static/up-pressed.png

_static/up.png

_static/file.png

_static/plus.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/ajax-loader.gif

